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Abstract

Epilepsy is recognised as a dynamic disease, where both seizure susceptibility and

seizure characteristics themselves change over time. Specifically, we recently quanti-

fied the variable electrographic spatio-temporal seizure evolutions that exist within

individual patients. This variability appears to follow subject-specific circadian, or lon-

ger, timescale modulations. It is therefore important to know whether continuously

recorded interictaliEEG features can capture signatures of these modulations over

different timescales. In this study, we analyse continuous intracranial electroencepha-

lographic (iEEG) recordings from video-telemetry units and find fluctuations in iEEG

band power over timescales ranging from minutes up to 12 days. As expected and in

agreement with previous studies, we find that all subjects show a circadian fluctua-

tion in their iEEG band power. We additionally detect other fluctuations of similar

magnitude on subject-specific timescales. Importantly, we find that a combination of

these fluctuations on different timescales can explain changes in seizure evolutions

in most subjects above chance level. These results suggest that subject-specific fluc-

tuations in iEEG band power over timescales of minutes to days may serve as

markers of seizure modulating processes. We hope that future study can link these

detected fluctuations to their biological driver(s). There is a critical need to better

understand seizure modulating processes, as this will enable the development of

novel treatment strategies that could minimise the seizure spread, duration or sever-

ity and therefore the clinical impact of seizures.
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1 | INTRODUCTION

Epilepsy is a common neurological condition characterised by recur-

rent, unprovoked seizures (Fisher et al., 2014). It affects approximately

1% of the world's population and a third of patients experience

refractory epilepsy, where seizures are not adequately controlled

despite medication (Chen, Brodie, Liew, & Kwan, 2018; Kwan &

Brodie, 2000).

Importantly, epilepsy is not a static disorder; electrographic sei-

zure and epileptiform activities have been shown to fluctuate over
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hours to years in both intensity and spatial distribution. Specifically,

while seizures often share common features in the same patient

(Burns et al., 2014; Kramer et al., 2010; Schevon et al., 2012;

Schindler et al., 2011; Truccolo et al., 2011; Wagner et al., 2015),

electrographic seizure activity may change in terms of duration (Cook

et al., 2016), spatial spread (Karthick, Tanaka, Khoo, & Gotman, 2018;

Marciani & Gotman, 1986; Naftulin et al., 2018; Pensel, Schnuerch,

Elger, & Surges, 2020), spectral properties (Alarcon, Binnie, Elwes, &

Polkey, 1995) from one seizure to the next. Our recent study

(Schroeder et al., 2020) has additionally shown that the seizure EEG

spatio-temporal evolution from seizure start to seizure termination

(or short: 'seizure evolution') also changes from one seizure to the

next in the same patient. Notably, these changes were consistent with

daily (circadian) and/or longer-term fluctuations in most patients

(Schroeder et al., 2020). In support of our observations, a recent study

quantifying single-channel properties of seizure onset and offset also

noted that different types of dynamics can be seen across different

seizures in the same patient (Saggio et al., 2020). Similarly, seizure

symptoms are also known to change over time. For example, focal sei-

zures, which evolve into bilateral tonic–clonic seizures, preferentially

arise from sleep (Jobst et al., 2001). Subclinical seizures (without clini-

cal symptoms) are also reported to follow circadian patterns (Jin

et al., 2017). Finally, seizure severity appears to depend on the sever-

ity of the preceding seizure in the same patient (Sunderam, Osorio, &

Frei, 2007). Thus, epileptic seizures are not a fully deterministic

sequence of abnormal brain activity patterns, but are clearly modu-

lated by processes that shape the neural activity during a seizure and

affect seizure severity.

However, it is unclear what these seizure-modulating processes

are, and how to quantify and measure them. Given the evidence of

seizure properties fluctuating over various timescales of hours to

days, we hypothesise here that the seizure-modulating processes will

also fluctuate over these timescales. From existing literature, we also

know that continuously recorded electroencephalograms (EEG) show

fluctuations over such timescales. For example, spectral properties of

the EEG change from moment to moment (Oken & Chiappa, 1988)

and also follow a circadian rhythm (Aeschbach et al., 1999). Global

and local characteristics of the continuously recorded (interictal) func-

tional network fluctuate over timescales from hours to days, with cir-

cadian rhythm having a particularly strong effect on these dynamics

(Geier & Lehnertz, 2017; Geier, Lehnertz, & Bialonski, 2015; Mitsis

et al., 2020). Interictalfluctuations related to epilepsy are also seen:

high frequency oscillation (HFO) rates vary in location and power

within each subject over time (Gliske et al., 2018). Interictal spikes also

change in their location and rate over hours to days (Baud

et al., 2018; Chen et al., 2021; Conrad et al., 2020; Gliske et al., 2018;

Karoly et al., 2016).

We therefore hypothesised that fluctuations of certain features

captured in continuously recorded EEG may serve as biomarkers of

seizure-modulating processes. We expected these fluctuations to

appear on the timescale of hours to days, and we investigated if they

can also explain how seizure evolutions change within the same

patient. Previous study suggests that many interictal features,

including interictal spike rate (Baud et al., 2018; Karoly et al., 2016,

2017; Proix et al., 2021) and high frequency oscillation rate (Chen

et al., 2021; Gliske et al., 2018; Scott, Gliske, Kuhlmann, &

Stacey, 2021) may serve as biomarkers for modulatory processes.

Here, we investigate the full spectral range, using band power in main

EEG frequency bands, to capture a complete view of brain activities.

Specifically, we use clustering and dimensionality reduction to detect

subject-specific spectral patterns in continuously recorded EEG. We

then extract the temporal fluctuations over minutes, hour, and days in

these common spectral patterns and explore whether fluctuations on

different timescales are associated with how seizure evolutions

change in each subject.

2 | METHODS

2.1 | Data acquisition

We analysed open source data from subjects with drug-resistant focal

epilepsy in accordance with the ethical standards set by the Newcas-

tle University Ethics Committee (Ref: 18818/2019). The data consist

of a total of 2656 h of long-term intracranial electroencephalography

(iEEG) from 18 subjects (available at http://ieeg-swez.ethz.ch). Contin-

uous recordings in each subject cover 24 to 128 EEG channels and

vary between 2 and 12 days. More information about the data is

given in Supporting information Section S1. Sampling frequency was

either 512 or 1024 Hz depending on the subject. Electrodes (strip,

grid and depth) were implanted intracranially by clinicians. The onset

and termination of seizures were defined electrographically in the

intracranial EEG recordings by visual inspection by an epileptologist

for the purpose of subsequent data analysis. The collection of the data

was conducted in the Sleep–Wake-Epilepsy-Centre (SWEC) at the

University Hospital of Bern, Department of Neurology, as part of their

presurgical evaluation programme, independently of this study

(Burrello, Cavigelli, Schindler, Benini, & Rahimi, 2019).

The iEEG signals were provided in already preprocessed form.

Briefly, signals were median-referenced and band-pass filtered from

0.5 to 120 Hz using a fourth order Butterworth filter (forward and

backward). Seizure onset and termination times were determined by a

board-certified epileptologist. Channels with artefacts were also iden-

tified and excluded by the same epileptologist. These steps were all

conducted independently of this study and resulted in the publicly

available data and annotations. All subjects formally consented to

their iEEG data being used for research purposes (Burrello

et al., 2019).

2.2 | IEEG preprocessing

We performed additional preprocessing steps to extract iEEG band

power from five main frequency bands (Figure 1a). For each recording

channel, the signal was divided into 30 s epochs (Figure 1b). For each

epoch, the band power was computed for the following frequency
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bands: δ: 1–4 Hz, θ: 4–8 Hz, α: 8–13 Hz, β: 13–30 Hz and γ: 30–

80 Hz. Band power across the five main frequency bands was esti-

mated using Welch's method for every 30 s epoch, with 3 s sliding

window without overlap between consecutive windows. This estima-

tion yielded a time-varying band power, with each time point

corresponding to the mean power within a 30 s window. The band

power values were aggregated into band-specific matrices with

dimensions #channels � #epochs. Then, these matrices were log

transformed and standardised across all epochs and channels within a

frequency band. To enable subsequent analysis steps, we also Sigmoid

transformed (S xð Þ¼ 1þexp �xð Þ½ ��1) the standardised data to ensure

positive entries between 0 and 1. For each subject, we then

concatenated the matrices from all frequency bands yielding a single

(5�#channels)�#epochs (henceforth defined as n� T; Figure 1b).

We will refer to this matrix as the data matrix X throughout the

article.

Note that we did not exclude seizure epochs from the construc-

tion of the data matrix, as seizures only represent a few epochs in the

context of the continuous recording. Our downstream analysis (with

empirical mode decomposition) is robust to 'noise' of this type, and

we show in Data S8.2 that this choice does not affect our main

results. Note also that our measure of how seizure evolutions change
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F IGURE 1 Workflow of data preprocessing; calculation of band power in 30 s epochs and subsequent dimensionality reduction to detect
subject-specific spectral patterns. (a) The multi-channel continuous iEEG recording was divided into 30 s nonoverlapping epochs. (b) The
standardised, log and sigmoid transformed band power. (c,d) NMF (dimensionality reduction) of the band power matrix results in the
decomposition W � H. (c) The matrix W contains the basis vectors, each of which had 5� #channels weights that represents a pattern of
frequency across all channels and frequency bands. (d) The coefficients matrix H captures the contribution of each frequency pattern (basis
vector) to each time window
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over time (in Section 2.10; Schroeder et al., 2020) was based on func-

tional network activity of the seizure, whilst we used band power fea-

tures to measure fluctuations of the continuous EEG. Therefore, the

fluctuations of the continuous EEG were not trivially related to vari-

ability in seizure evolutions (also shown in Supporting information

Section S3).

2.3 | Nonnegative matrix factorization for
dimensionality reduction

As the data matrix X for each subject is high-dimensional with redun-

dant information (e.g., in different channels), we applied a dimension-

ality reduction step on X using Nonnegative Matrix Factorization

(NMF) (Lee & Seung, 1999). NMF provides a low-rank approximation

to a nonnegative input matrix X∈ℝn�T
þ as the product of two nonnega-

tive matrices, W∈ℝn�k
þ and H∈ℝk�T

þ , such that X≈W�H≡X
0
, given an

integer k. Specifically, we applied the nonnegative singular value

decomposition (SVD) with low-rank correction (NNSVD-LRC) (Atif,

Qazi, & Gillis, 2019), which is a method of low-rank approximation

using an NMF initialisation approach based on SVD.

In this way, we decomposed each subject's band power data

matrix X into W and H matrices (Figure 1c,d). Every column of matrix

W corresponded to a single NMF component and formed a basis vec-

tor or feature weight with n elements. Each row of H represented

how a single NMF component evolves over all T time epochs. We also

refer to a single row of H as the NMF-expression coefficient time

series. This dimensionality reduction step not only compressed the

data matrix X into few relevant dimensions, but can also be under-

stood as a data-driven pattern detection, or (soft) clustering of recur-

rent spectral patterns in the continuously recorded EEG. For example,

Figure 1 shows that the band power in each channel at a particular

time window could be (approximately) described as a weighted sum of

three patterns (given by the three basis vectors in W). The weights

were given as the expression coefficients (in H) at each time point.

This data-driven spectral pattern detection essentially provided us

with a comprehensive view of the EEG in each subject, without the

need to pre-define specific patterns of interest, which may not

acknowledge subject-specific variations in these spectral patterns.

To determine the optimal number of representative NMF compo-

nents, k, for each subject, we performed NNSVD-LRC for

k¼3,4,…,15. For each value of k, we obtained the matrices W and H.

Using these matrices, we calculated the relative reconstruction errorsP
n,T

jX�X0 j = n�Tð Þ, as well as the quantity c = max{max(jCorr[W]j),
max(jCorr[H]j)} for each k, where max(jCorr[W]j) represents the maxi-

mum absolute correlation among all column pairs of W, and max(jCorr
[H]j represents the maximum absolute correlation among all row pairs

of H. The latter represents the strongest correlation or anticorrelation

between NMF components in terms of their feature weights W and

their expression coefficient time series H. In this way, redundant infor-

mation, particularly in H, was excluded whilst preserving the important

spatio-temporal patterns for the next processing steps. A distinct

number of NMF components, k, was selected for each subject. This

was the k yielding the smallest correlation between the NMF compo-

nents that had a relative reconstruction error smaller than 5%.

After determining the optimal choice of k, we obtained two matri-

ces for each subject, W and H. To re-iterate, the matrix W consists of

the basis vectors, while H is a multivariate time series with dimensions

equal to k � T (= the number of NMF components � the total num-

ber of time epochs).

2.4 | Extracting fluctuations in interictal band
power using MEMD

To investigate fluctuations in band power on different timescales, we

analysed the matrix H using Empirical Mode Decomposition (EMD)

(Huang et al., 1998, 2003). It is well known that EEG signals are non-

stationary processes characterised by time-varying features

(Fingelkurts & Fingelkurts, 2001; Kaplan, Fingelkurts, Fingelkurts,

Borisov, & Darkhovsky, 2005). EMD is a popular data-adaptive

method to detect nonstationary and nonrhythmic fluctuations on dif-

ferent timescales. Compared to Fourier and Wavelet-based

approaches, EMD does not assume any particular basis function or

local stationarity. EMD also does not require detrended time series

and does not make assumptions about trends or timescales of trends.

It has the advantage of fully decomposing the signal into the full range

of timescales of fluctuations; their point-wise summation fully recon-

structs the original signal. As the nature of these band power fluctua-

tions is unknown and most likely not stationary, we opted for a data-

driven method that makes as few assumptions as possible.

EMD decomposes an input signal Y (t), into M finite narrow-band

fluctuations, known as intrinsic mode functions (IMFs), based on the

local extrema of the signal: Y tð Þ¼PM
i¼1

IMFi tð Þþ r tð Þ, where r(t) is the

residue signal (Huang et al., 1998). The IMFs additionally satisfy the

properties that make the Hilbert-transform well-defined and therefore

naturally yield instantaneous frequency and phases for each IMF.

However, local extrema are not directly applicable to multivariate

time series signals (Rehman & Mandic, 2010), as we have in the

H matrix. Therefore, we used an extension of the EMD to multi-

dimensional space, called the Multivariate Empirical Mode Decomposi-

tion (MEMD) (Rehman & Mandic, 2010). In MEMD, multiple projections

of the multivariate signal are generated along different directions in n-

dimensional spaces; the multidimensional envelope of the signal is then

obtained by interpolating across the different envelopes of these projec-

tions (Rehman & Mandic, 2010). An additional advantage of this method

is that it yields the same number of IMFs across the different dimensions

of the multivariate signal, and preserves fluctuations of similar frequency

across the different dimensions within each of the IMFs (mode-align-

ment; Rehman & Mandic, 2010).

For the purpose of this analysis, we used MEMD to decompose

the NMF-expression coefficient time series, H, into a number of

multi-dimensional oscillatory modes. Therefore, the matrix H can be

represented by the sum of M multi-dimensional IMF signals, where

the dimension for each IMF is equal to k (i.e., the number of rows of

PANAGIOTOPOULOU ET AL. 2463



the matrix H, which corresponds to the number of NMF components).

To clarify, we can think of all IMFs in a specific dimension as the

decomposition of the corresponding NMF-expression coefficient time

series. Thus, IMFi,j refers to the j-th dimension of the i-th IMF time-

scale. The j-th NMF-expression coefficient time series Hj = Yj(t) can

be written as Yj tð Þ¼
PM
i¼1

IMFi,j tð Þþ rj tð Þ. This equation applies to every

NMF component j¼1,…,k.

2.5 | Extracting time-varying characteristics from
band power fluctuations (IMFs) using Hilbert spectral
analysis

To obtain a time-frequency representation of the oscillatory modes

(IMFs), and hence derive their time-varying characteristics (instanta-

neous frequency, phase, and amplitude), we applied a Hilbert-

transform on each dimension of the IMF (following classical analysis

methods for EMD) (Huang, 2014; Huang et al., 1998, 2003).

For any (real-valued) univariate signal u(t), we can define its

Hilbert transform as:

H uð Þ tð Þ¼1
π
P
ðþ∞

�∞

u τð Þ
t� τ

dτ, ð1Þ

where P represents the Cauchy principal value for any function u(t)

∈LP class (Huang et al., 1998).

The analytical signal v(t) obtained from the Hilbert transform can

be expressed as:

v tð Þ¼ u tð Þþ iH uð Þ tð Þ¼ a tð Þeiθ tð Þ, ð2Þ

where

a tð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u tð Þ2þH uð Þ tð Þ2

q
ð3Þ

and

θ tð Þ¼ tan�1 H uð Þ tð Þ
u tð Þ

� �
ð4Þ

are the instantaneous amplitude and instantaneous phase,

respectively.

The instantaneous frequency, f(t), can then be calculated as

follows:

f tð Þ¼ dθ tð Þ
dt

: ð5Þ

The application of EMD along with Hilbert transform leads to the

so-called Hilbert-Huang transform. Through the Hilbert spectral analysis,

each IMF's instantaneous frequency can be represented as functions of

time. The result is a frequency-time distribution of signal amplitude

(or energy using the squared values of amplitude, a2(t)), designated as Hil-

bert amplitude spectrum or Hilbert spectrum (or Hilbert energy spectrum

if energy is used instead of amplitude), H(f, t).

For each univariate IMF signal, we can obtain the Hilbert energy

spectrum as a function of instantaneous frequency and time mathe-

matically using the following formula:

H f,tð Þ¼ a2 tð Þ, f ¼ f tð Þ
0, otherwise:

(
ð6Þ

For visualisation purposes, we will display the inverse of the

instantaneous frequency, that is, the instantaneous period length, also

termed 'cycle length' in the following.

The Hilbert-Huang marginal spectrum h(f ) of the original signal u

(t) can then be defined as the total energy distributed across the fre-

quency space within a time period [0, T]. Mathematically, this defini-

tion can be expressed as shown below:

h fð Þ¼
ðT

0
H f,tð Þdt: ð7Þ

By using Equations (6) and (7), we can obtain the Hilbert-Huang

marginal spectrum for a univariate IMF signal. However, the applica-

tion of the multivariate EMD results in multivariate IMF signals. In

order to compute the Hilbert-Huang marginal spectrum of each multi-

variate IMF signal across all dimensions, we simply averaged over the

dimensions Hi(f, t) across i¼1,…,k dimensions:

h f,tð Þ¼

Pk
i¼1

Hi f,tð Þ
k

: ð8Þ

The corresponding marginal spectrum hðfÞ was then similarly

defined as:

h fð Þ¼
ðT

0
H f,tð Þdt: ð9Þ

For numerical computations, we discretised time t to compute

the integrals as sums. Figure 2 shows the marginal Hilbert-Huang

spectra for different multivariate IMFs in an example subject.

2.6 | Peak fluctuation frequency in each IMF

Within each subject, each IMF was characterised by a peak fluctuation

frequency (measured in cycles/day here). It was determined as the

frequency with the highest power based on the marginal Hilbert-

Huang spectrum over all frequencies, hðfÞ.

2.6.1 | Finding a circadian IMF

We will later focus one part of our analysis on IMFs that fluctuate on

the timescale of 24 h (1 cycle/day). To detect those IMFs, we found

IMF(s) with a peak fluctuation frequency of 1 cycle/day. If two IMFs

were found (i.e., both displayed the a peak frequency at around

1 cycle/day), then the circadian IMF was determined to be the IMF

with the higher power. This case only occurred in one subject.
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2.7 | Relative contribution of iEEG main frequency
bands in different IMFs

To understand how much each of the iEEG frequency bands and

channels contributed to a certain IMF, we first determined how much

each dimension of the IMF contributed to the overall power of the

IMF. To this end, we first obtained the mean power Eij in each dimen-

sion j of every i-th IMF signal:

Eij ¼
PT
t¼0

aij tð Þ2

T
, ð10Þ
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where T is, as before, the number of time epochs and aij(t) is the instan-

taneous amplitude for the j-th dimension of i-th IMF signal at time point

t. One of the main properties of MEMD is that multivariate signals are

decomposed into multivariate IMF signals of the same dimensions,

where all dimensions within an IMF share fluctuations of the same time-

scale (Lv, Yuan, & Song, 2016). Hence, focusing on the mean power

over time of each dimension within an IMF is a good indication of the

power on a particular timescale. The relative contribution of each j-th

dimension to the i-th IMF (or relative power) was then defined as:

Rij ¼ EijPk
j¼1

Eij

, ð11Þ

with k indicating the number of IMF dimensions (also the number of

NMF components).

Using the relative contribution of each dimension as weights,

we can then form the weighted sum of all dimensions in terms

of contributions of iEEG main frequency bands. By summing

channel contributions for each iEEG main frequency band (see

Figure 3b&c for an example subject), we obtained a matrix of

dimensions (# main frequency bands = 5) � (# dimensions = k).

This matrix was then multiplied with the weight indicating the

contribution of each dimension to yield a vector (of length #

main frequency bands = 5) representing the contribution of each

main frequency band to particular IMF for each subject

(Figure 3d).
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2.8 | Different band power fluctuations reveal
spatial heterogeneity within iEEG main
frequency band

To determine if all recording channels contribute homogeneously to

an IMF in a particular frequency band, we used a measure that quan-

tifies sparsity of a distribution: the Gini index (Hurley & Rickard, 2009).

Given a vector x¼ x1,x2,…,xNð Þ sorted in ascending order such that

x1 < x2 <…< xN, the Gini index can be derived using the following

formula:

G xð Þ¼1�2
XN
i¼1

xi
xk k1

N� iþ 1
2

N

� �
: ð12Þ

It can range from 0 to 1, with values closer to 0 indicating low

sparsity (homogeneity) and values closer to 1 corresponding to higher

sparsity (heterogeneity).

We derived the Gini index for each IMF across different channels

within each main frequency band. In other words, for each IMF, we

first computed the contribution Ci to each i-th IMF as the product of

the relative power (Equation 11) and the weights matrix:

Ci ¼
P
j
Rij�Wj , with i indexing the IMF number, and j indexing its

dimension. Specifically, Wj is the j-th column of the W matrix from the

NMF decomposition (Figure 1c), whereas Rij is a scalar representing

the relative power of the j-th dimension to the i-th IMF (see

Section 2.7). The resulting Ci is a vector of length #frequency bands

(=5)�#channels, that is, the same length as Wj. As we are interested

in the distribution of each Ci across channels for each frequency band,

we applied the Gini index to each frequency band separately in each

Ci, yielding one Gini index per frequency band and IMF.

2.9 | Seizure distance in terms of a particular band
power fluctuation (IMF)

For each subject, we quantified the difference between pairs of sei-

zures in terms of each IMF. This measure (which we subsequently

term the 'IMF distance') thus quantifies how different two seizures

are to each other in terms of a particular fluctuation of the band

power. To obtain this difference, we first computed the product

W � IMFi(t), where IMFi(t) is the multi-dimensional i-th IMF (k � T

matrix). The product yields the matrices X0
IMFi

for all i¼1,…,M time-

scales. X0
IMFi

reconstructs the i-th IMF in the original space of all chan-

nels and frequency bands. For each X0
IMFi

, we computed a distance

matrix based on the multivariate Euclidean distance of IMF values for

each pair of seizures: Di a,bð Þ¼
���X0

IMFi
tað Þ�X0

IMFi
tbð Þ

���, where ta and tb

are the time epochs of the seizure pair's onset. Therefore, we

obtained M IMF seizure distance matrices per subject, each rep-

resenting the pairwise seizure distance for a specific IMF.

Note that any seizure-induced changes in the band power will

only be present in a few epochs (as we use 30 s long epochs). There-

fore, the seizures are considered to only influence the fastest IMFs

(highest-frequency fluctuations), while they have little effect on the

slower IMFs. Supporting information Section S8.1 additionally shows

that our main results were reproduced by using the IMF seizure dis-

tances obtained from one epoch before the seizure onset epoch

(ta � 1 and tb � 1).

2.10 | Quantifying differences in seizure
evolutions using seizure dissimilarity

To quantify how seizures themselves change over time in terms of the

seizure EEG evolutions, in our previous study, we introduced a quanti-

tative measure of how dissimilar two seizures are within a subject

(Schroeder et al., 2020). Briefly, each epileptic seizure in a subject was

analysed in terms of its evolution through the space of functional net-

work dynamics (using exactly the same pipeline as (Schroeder

et al., 2020)). Each pair of seizures was then compared to each other

using dynamic time warping (Sakoe & Chiba, 1978), allowing us to rec-

ognise seizures with shared evolutions (or parts of evolutions), even if

the seizures evolved and different rates. The average distance

between the warped seizures was then taken as the dissimilarity mea-

sure. As such, for each subject, we obtained a 'seizure dissimilarity'

matrix, which captures the pairwise dissimilarity between the subject's

seizure evolutions.

2.11 | Association between seizure dissimilarity &
IMF seizure distance

Finally, we related how seizure evolutions changed over time (quanti-

fied using seizure dissimilarity) with fluctuations seen in the continu-

ously recorded iEEG (quantified using IMF seizure distances). In

subjects with at least six recorded seizures, we investigated if IMF sei-

zure distances were associated with seizure dissimilarity. For every

subject, we used a linear regression framework, where the seizure dis-

similarity was the response variable and the IMF seizure distances

were the explanatory variables. The observations were the entries of

the seizure dissimilarity matrix and IMF seizure distance matrix. As

each matrix was symmetric, we only used the upper/lower triangular

elements. We also included the EMD residue signal distances, and

temporal distances of seizures (how far apart in time each pair of sei-

zures occurred) as additional explanatory variables. The response, as

well as the explanatory variables, were standardised individually

before fitting the model.

We performed a variable selection step for our analysis, as the

number of explanatory variables (i.e., M + 2) was relatively large. We

used LASSO (Least Absolute Shrinkage and Selection Operator;

Tibshirani, 1996), which is a sparse shrinkage method. Linear regres-

sion coefficients were calculated based on least squares, subject to

the L1 penalty. The LASSO also accounted for any collinearity issues

between variables. As we were interested in detecting positive rela-

tionships between the response variable (as these were distances) and

the explanatory variables, we used a constrained positive LASSO; that

is, coefficients were constrained to be nonnegative. For the LASSO,
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the tuning parameter λ was selected using a 10-fold cross validation

method from a range of values λ¼10�3,10�2:95…,101:95,102 (see

Supporting information Figure S6.0.1).

After selecting a small number of explanatory variables, an ordi-

nary least squares regression was performed for each subject to

obtain R2 and 95% confidence intervals for the coefficients.

2.12 | Statistical analysis

To assess if the level of explanatory power of the best model selected

for each subject has occurred by chance, we performed two separate

tests of statistical significance for the adjusted R2. Both test yielded

very similar results and are shown in Supporting information

Section S4.

In the first test, we randomly selected seizure onset times by gen-

erating a sample from the uniform distribution on the interval (0, T)

over 500 iterations. The size of the sample was equal to the number

of annotated seizures for each iteration. Then, keeping the randomly

picked seizure onset times unsorted, we obtained for each one of

them new IMF seizure distance matrices and performed the LASSO

and linear regression, as described in the previous section, leaving the

response variable unchanged. Finally, we calculated the adjusted R2

for each iteration. Across all iterations, the adjusted R2 values were

used to estimate the distribution of the test statistic used in the per-

mutation test. P-values were then calculated as the percentage of

adjusted R2 values that were larger in the permutation distribution.

Statistical significance was determined based on a significance level

of 5%.

In the second test, we permuted the order of the seizures without

permuting the seizure timing over 500 iterations. We then performed

the LASSO and subsequent steps as in the first test.

2.13 | Data and code availability

The long-term iEEG recordings for all subjects are available at http://

ieeg-swez.ethz.ch/ under the section 'Long-term Dataset and Algo-

rithms' (Burrello et al., 2019).

Initial signal processing was performed using Matlab version

2019a and Matlab's built-in functions. NMF and MEMD were

implemented using the following publicly available functions:

• Nonnegative matrix factorisation was conducted using the

NNSVD-LRC function from https://sites.google.com/site/

nicolasgillis/code (Atif et al., 2019).

• Multivariate empirical mode decomposition was applied using code

from http://www.commsp.ee.ic.ac.uk/�mandic/research/emd.htm

(Rehman & Mandic, 2010).

For the remainder of the analysis and the construction of all figures,

we used Python version 3.5. Either standard functions obtained from

published libraries supported by Python were used or custom code

written in Python. The main functions used in the analysis are listed

below:

• Hilbert transform: scipy.signal.hilbert

• LASSO: sklearn.linear_model.Lasso

• k-fold cross-validation: sklearn.model_selection.kFold

• Multiple Linear Regression: statsmodels.api.ols

Our analysis code and data (post processing) can be found on

https://dx.doi.org/10.5281/zenodo.5798022.

3 | RESULTS

We analysed fluctuations in band power for 18 subjects with focal

epilepsy. We investigated if fluctuations on specific timescales were

driven by particular iEEG frequency bands or spatially localised activ-

ity. We then explored if these temporal fluctuations were associated

with how seizures change within subjects.

3.1 | iEEG band power patterns fluctuate on
different timescales

After extracting band power in the main frequency bands (δ, θ, α, β, γ)

in 30 s nonoverlapping sliding windows for each iEEG channel

(Figure 1a,b), we performed dimensionality reduction using nonnega-

tive matrix factorisation (NMF) approach. NMF effectively grouped

channels and frequency bands to form components that represent

specific band power patterns. Weights for channels and frequency

bands in each component are shown as columns in matrix W,

Figure 1c. The expression coefficients of these components at each

time point was then given by the H matrix, which essentially yielded a

time series for each component (Figure 1d). The weight represented a

subject-specific pattern of EEG band power activity across channels,

and the strength of expression of this pattern at any given time point

was given by the expression coefficients. In short, the set of coeffi-

cient time series (rows in H) indicated the fluctuations of subject-

specific EEG spectral patterns over time.

For each subject, we then used Multivariate Empirical Mode

Decomposition (MEMD) to determine the different fluctuations on

different timescales for each NMF coefficient time series. Figure 2a

shows the MEMD results for a single NMF component in example

subject ID06, yielding 15 Intrinsic Mode Functions (IMFs) and a resi-

due signal. Faster IMFs (e.g., IMF1, 2 and 3) are often thought to con-

tain noise, but might also reflect genuine fluctuations in the initial

signal, such as cyclic alternating pattern (Parrino, Grassi, &

Milioli, 2014). For simplicity, we retained all IMFs for the subsequent

main results and refer the reader to Supporting information Section S7

for a more detailed analysis of noisy IMFs based on permutation test.

Using the instantaneous frequency and amplitude through the

Hilbert transform, we obtained the marginal spectral densities of each

IMF in each dimension. Figure 2b shows the marginal spectral
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densities averaged across all dimensions for each IMF (blue lines) for

example subject ID06. Some distinct peaks are seen especially in the

slower IMFs, for example, IMF13 (at cycle length of ≈ 1 day), IMF14

(at cycle length of ≈ 3.3 days), IMF9 (cycle length ≈ 3 h), IMF8 (cycle

length ≈ 1.6 h), etc. Note that both EMD and MEMD essentially act

as dyadic filter banks (Flandrin, Rilling, & Goncalves, 2004; Ur

Rehman & Mandic, 2011; Wu & Huang, 2004); thus, the dyadic pat-

tern seen in the faster IMFs is not surprising. Supporting information

Section S7 shows the marginal spectral densities corrected for poten-

tial noise fluctuations.

As expected from previous literature (Baud et al., 2018; Karoly

et al., 2016), we found that all subjects displayed circadian band

power fluctuations (Figure 2c). The presence of these circadian

fluctuations helps validate our approach for extracting relevant

timescales in interictal fluctuations. Meanwhile, fluctuations on

other timescales were more subject-specific in cycle length. For

10 out of 18 subjects (ID01, ID02, ID07, ID08, ID09, ID11, ID12,

ID13, ID17 and ID18) the circadian fluctuation had the highest den-

sity (Figure 2d). For six subjects (ID03, ID04, ID05, ID14, ID15 and

ID16) the circadian fluctuation was slightly lower in density, as the

highest density was seen in slower or faster IMFs. For two subjects

(ID06 and ID10) the circadian fluctuation did not feature in the top

three highest densities, but a peak at 1 cycle per day can still be

observed in ID06 (Figure 2c).

3.2 | All iEEG frequency bands contribute to the
circadian IMF

Following the observation of a circadian fluctuation in all subjects, we

assessed the contribution of each iEEG frequency band to the circa-

dian IMF. We first determined the circadian IMF, which was IMF

13 in example subject ID06 (Figure 3a). We then calculated the rela-

tive power in each dimension of the IMF, each of which corresponded

to an NMF component. For example, in subject ID06, the majority of

its power (54%) was concentrated in dimension 1 (Figure 3a). We also

noted that the circadian fluctuation did not follow the same phase in

all dimensions of the IMF, potentially indicating the presence of multi-

ple processes fluctuating on a circadian timescale. Since we are inter-

ested in the overall contribution of each frequency band to the

circadian cycle, we decided to assess the contribution of different fre-

quency bands over all dimensions next.

From the dimensionality reduction step, we had already obtained

the weights across all iEEG frequency bands and channels (matrix W,

see Figure 3b). For each NMF component, we computed the weight

of each frequency band by summing the weights of that frequency

band across all channels (Figure 3c). Finally, a sum weighted by the

relative power in the IMF over all dimensions was obtained rep-

resenting the relative contribution of each frequency band to the IMF.

For most subjects, δ band power contribution was slightly higher com-

pared to the other frequency bands for the circadian IMF. However,

other frequency bands also contributed to the circadian IMF in most

subjects (Figure 3d).

3.3 | Subsets of channels contribute to multidien
band power fluctuations

Within each frequency band we also investigated the contribution of

each channel to an IMF. Specifically, we investigated if the contribu-

tions were heterogeneous across channels. We used the Gini index as

a measure of spatial heterogeneity, where 0 (1) indicates a completely

homogeneous (heterogeneous) channel contribution for each IMF.

Figure 4 shows the distribution of Gini indices of all IMFs in the δ

band across all subjects, where IMFs are grouped by the IMF peak fre-

quency. Results for other iEEG main frequency bands are similar and

shown in Figure S5.0.1. Overall, the Gini indices are low for all IMFs,

indicating that IMFs are not driven by a small group of channels. How-

ever, there is a clear tendency for long-term (multidien) trends to dis-

play a higher Gini index, indicating that a subsets of channels may

contribute more to those.

3.4 | Band power IMF fluctuations are associated
with seizure dissimilarity in most subjects

As the final part of our analysis, we investigated if these fluctuations

on different timescales influenced, or modulated, changes in seizure

evolutions over time in individual subjects. Particularly, we previously

showed that seizure network evolutions change over time in every

subject, and that these changes could be explained by hypothetical

circadian or longer timescale modulators (Schroeder et al., 2020).

Hence, we explored if the subject-specific fluctuations represented by

the IMFs were associated with changes in seizure evolutions.

For each IMF in each subject, we first determined their

corresponding seizure IMF Euclidean distance matrix (Figure 5a,b). For

example, in subject ID06's IMF6, we calculated the Euclidean distance

of every time point to the time point of the first seizure (Figure 5a)

across all dimensions. By reading out all the Euclidean distances to all

the other seizure time points, we obtained the first row of the seizure

IMF Euclidean distance matrix (Figure 5b). The same process was

repeated for all other seizures in this subject. This distance matrix had

dimensions of number of seizures by number of seizures and repre-

sented how different the IMF state was for each seizure pair.

By using the same techniques as in (Schroeder et al., 2020), we

obtained a seizure dissimilarity matrix, which expressed the dissimilar-

ity of each pair of seizure evolutions through the space of network

dynamics (Figure 5c,d). The seizure dissimilarity matrix thus quantified

how much each pair of seizures differed within a subject. By relating

the set of seizure dissimilarities to the corresponding set of IMF

Euclidean distance, we investigated if there was an association

between changes in seizure evolutions and interictal band power fluc-

tuations (Figure 5e).

To generalise this approach to all IMFs in a subject, we fitted a

multiple linear regression model, where the sets of seizure IMF dis-

tances (derived from different IMFs) were explanatory variables and

the seizure dissimilarity was the response variable (Figure 6a). We also

included the EMD residue signal and temporal distance between
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seizures (i.e., how far apart in time each seizure pair occurred) as

explanatory variables to model fluctuations of longer timescales than

the recording time. The observations were pairs of seizures. After

LASSO variable selection and linear regression, the estimated regres-

sion coefficients for example subject ID06 are shown in Figure 6c. For

this particular subject, the strongest explanatory effect (as measured

by the standardised regression coefficients, also know as beta-

weights) was seen in the EMD residue signal followed by some faster

IMFs (IMF [Cycle length]: IMF3 [4 min], IMF4 [7.5 min], IMF5 [15 min]

and IMF6 [26 min]). According to the model, 67.42% of the variability

in seizure dissimilarities was explained by explanatory variables

(i.e., adjusted R2 = 0.6742).

Across subjects, we fitted the multiple linear regression model

only for subjects with at least six seizures, resulting in eight subjects

with analysed seizure evolutions. Out of the eight subjects, six had an

adjusted R2 around or above 0.6 (Figure 6d). Figure S4.1.1 additionally

shows that the adjusted R2 values would have not occurred by chance

in any subject except for ID10. For six out of eight subjects, circadian

IMFs were also part of the explanatory variables (Figure 6d). Ultradian

IMFs also tended to remain as explanatory variables in the models for

all subjects. Temporal distance between seizures remained as an

explanatory variable in three subjects, and the residue signal also

remained as an explanatory variable in three additional subjects. Over-

all, a subject-specific combination of different fluctuations was pro-

vided a good explanation of seizure variability in most subjects.

Note that band power fluctuations are not expected to trivially

correlate with how seizures change, as (i) the seizure network evolu-

tions changes are detected on a finer timescale (seconds) using a

functional network measure of the time series rather than a spectral

property; (ii) seizure onset network patterns (as measured by func-

tional networks) are also expected to differ substantially from pre-ictal

network patterns (Shah et al., 2019); (iii) the impact of seizures on the

band power fluctuation are most likely to be limited to one or few

30 s windows and hence also likely to be limited to the fastest IMF

only. In Supporting information Section S3, we show that the band

power without being decomposed into different timescales does not

explain how seizures change, indicating that our results did not arise

from trivial associations between seizure evolutions and their

corresponding interictal periods. In Supporting information Section-

S8.1, we also reproduced our results using the pre-ictal (one 30 s win-

dow ahead of the seizure) band power fluctuations, which were not

impacted by seizure evolutions.

4 | DISCUSSION

We analysed fluctuations in subject-specific iEEG band power pat-

terns over time and found that these patterns fluctuate over a

wide range of timescales (from minutes to days), including a strong

circadian fluctuation in most patients. A subject-specific combina-

tion of these fluctuations provided a good explanation (adjusted

R2 ≥ 0.6) for how seizure EEG spatio-temporal evolutions change

from one seizure to the next within the same subject. Based on

these findings, we suggest that band power fluctuations in contin-

uously recorded EEG may be a marker of modulators of seizure

activity.
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Fluctuations on various timescales of the continuous EEG have

been reported in several studies using iEEG recordings. The preva-

lence of a strong circadian rhythm in EEG patterns has long been

known (Aeschbach et al., 1999; Cummings, Dane, Rhodes, Lynch, &

Hughes, 2000; Scheich, 1969; Smyk & van Luijtelaar, 2020; Spencer

et al., 2016). Weaker ultradian (more than 1 cycle per day) rhythms

have been reported in long-term EEG band power (Chapotot, Jouny,

Muzet, Buguet, & Brandenberger, 2000; Kaiser, 2008) and functional

connectivity (Mitsis et al., 2020). Subject-specific multidien (multi-day,

i.e., <1 cycle per day) rhythms have also been detected in for example,

the rate of interictal epileptiform activity (Baud et al., 2018; Karoly

et al., 2016), and the variance and autocorrelation of EEG signals

(Maturana et al., 2020). In agreement, we observed the circadian cycle

in all subjects and additional fluctuations on ultradian and multidien

timescales that were subject-specific.

These fluctuations of EEG features on different timescales most

likely reflect biological processes. However, the mapping from EEG

biomarkers to underlying time-varying processes is incomplete. Vari-

ous hypotheses exist regarding the interpretation of these EEG fluctu-

ations (Bernard, 2021; Karoly et al., 2021; Rao, Leguia, Tcheng, &

Baud, 2021), and their possible drivers (Badawy, Freestone, Lai, &

Cook, 2012; Karoly, Rao, et al., 2021; Meisel et al., 2015; Payne

et al., 2021; Rakers et al., 2017) include hormonal and metabolic

cycles, changes in antiepileptic medications, and external influences

such as the weather. In this study, we therefore took a subject-

specific data-driven approach that allowed us to detect any prominent

fluctuations, regardless of their subject-specific source. Future study

will explore a wider range of EEG biomarkers and elucidate the exact

mapping between different fluctuations and the underlying physiolog-

ical or pathological processes.
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seizure evolutions over time between each pair of seizures. (e) Scatter plot of seizure dissimilarity and the seizure IMF distance (Spearman's
correlation, ρ = 0.58)
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Additionally, we make two observations about band power fluc-

tuations on different timescales. First, we saw that different fre-

quency bands appeared to contribute a similar amount to the

circadian fluctuation of iEEG band power, although subtle subject-

specific patterns of contribution are also noted. However, our analysis

was performed across all dimensions of our data. The different dimen-

sions of the IMF can display phase and amplitude differences

(e.g., Figure 3a), indicating that different circadian fluctuations (with

different phases) exist in each subject, as has been reported before

(Aeschbach et al., 1999). Future study may wish to investigate the fre-

quency contributions to different dimensions of IMFs and also relate

those IMFs to other physiological variables such as body temperature

or plasma melatonin (Aeschbach et al., 1999).

The second observation is that slower (multi-day fluctuations, and

slow trends) tended result from changes in subsets of channels,

whereas faster (circadian and ultradian) fluctuations tended to arise as

a more equal contribution from all channels. A limitation in our analy-

sis is that iEEG provides limited spatial coverage and the electrode
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F IGURE 6 A combination of IMF seizure distances on different timescales can explain seizure dissimilarity in most subjects in a multiple
regression model. (a) Standardised seizure dissimilarity matrix (response variable). Only the lower triangle of the symmetric matrix is shown,
where each entry serves as an observation. (b) Explanatory variables: The matrix on the left shows the standardised temporal seizure distance.
Each entry corresponds to the absolute time difference between seizures. The remaining matrices are standardised seizure IMF distance matrices.
(c) Coefficient estimates (black dots), based on ordinary least squares regression for subject ID06, with lines indicating 95% confidence intervals.
Only five explanatory variables were left after performing variable selection based on constrained LASSO. (d) Summary across subjects basedon
Ordinary Least Squares (OLS) models with explanatory variables obtained by the constrained LASSO. Top: Bar chart of the adjusted R2. Red stars
indicate p values ≤0.05. Bottom: Scatter plot indicating the OLS coefficient estimates for the residue, temporal distance (when these variables
remained in the model), together with explanatory IMFs and their corresponding IMF peak frequency for each subject. For visualisation, we
converted the peak frequency to cycle length
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layout is patient-specific, making it difficult to compare patterns of

band power fluctuations across subjects. To fully uncover the spatial

and frequency band contributions to each dimension of each IMF, we

suggest that future study should consider the spatial location of iEEG

channels and perform an iterative combination of dimensionality

reduction and empirical mode decomposition to find components and

their contributions for each IMF. From a clinical perspective, informa-

tion on the spatial coverage and location of the electrodes would fur-

ther allow us to investigate the overlap of the location of these

temporal fluctuations with the epileptogenic zone in focal epilepsies.

We applied empirical mode decomposition (EMD) to derive band

power fluctuations on different timescales. EMD is a popular data-

driven adaptive method with applications on broad range of scientific

topics, such as geology (Battista, Knapp, McGee, & Goebel, 2007),

hydrology (Hu & Si, 2013) and neuroscience (Huang et al., 2013; Rojas

et al., 2013) among many others. It is suitable for extracting fluctua-

tions on different timescales without assumptions of local stationarity,

linearity, or specific basis functions, and for these reasons preferable

for our application. Since EMD does not require a basis function to

identify different timescales of fluctuations, it also does not generate

harmonics (as in Fourier or Wavelet-type approaches) of fluctuations,

making the decomposed cycles easier to interpret. However, EMD

also has some limitations. Most notably, the IMFs' timescales of fluc-

tuations may overlap, which is known as 'mode mixing' (Ur Rehman &

Mandic, 2011). EMD may also struggle to distinguish two distinct fluc-

tuations that have very similar periods, and they may be merged into

one IMF. Ongoing developments (Deering & Kaiser, 2005; Li, Wang, &

Zhao, 2015; Xue, Zhou, Xu, Zhu, & Li, 2015) in this area may over-

come these limitations. Future study should explore how to capture

nonstationary (Kaplan et al., 2005), nonlinear (Stam, 2005) and poten-

tially hierarchical (Vidaurre, Smith, & Woolrich, 2017) time-varying

properties of the continuously recorded EEG.

Our main goal was to investigate if there is an association

between variability in seizure evolutions and fluctuations in long-term

iEEG band power. Changes in seizure evolutions can be quantitatively

described using seizure dissimilarity, which captures how different

any pair of seizures are in a given subject in terms of their seizure net-

work evolutions (Schroeder et al., 2020). Previous study has also

shown that fluctuations in seizure evolutions were well-explained by

processes incorporating Gaussian noise, circadian, and/or slower time-

scales of changes in most subjects (Schroeder et al., 2020). In agree-

ment with this study, we found that circadian or multidien

fluctuations contributed strongly in most subjects in explaining seizure

dissimilarity. In three subjects (ID04, ID06, ID12), the residue signal

also contributed to the explanation, indicating that fluctuations on

longer periods than the recording durations also played a role. Inter-

estingly, we also found many faster (ultradian) fluctuations as explana-

tory variables in most subjects. These fluctuations could be

contributing explanatory power through what previously was mod-

elled as noise (Schroeder et al., 2020). However, there may also be a

true biological fluctuation underpinning the explanation; faster fluctu-

ations in the EEG have also been reported for example, in the cyclic

alternating pattern (Parrino et al., 2014). With larger datasets using

more seizures recorded over a longer period, future study should

investigate ultradian contributions carefully and assess if noise would

perform as well as the cumulative ultradian contributions.

While fluctuations in long-term iEEG band power can explain sei-

zure dissimilarity fairly well, this association should not be interpreted

as causal evidence. The observed band power fluctuations can be

understood as signatures of multiple biological processes, which could

directly dictate seizure evolutions or be co-modulated by the same

upstream processes as the seizure evolutions. Our data cannot distin-

guish these cases. Additional fluctuations that are not captured by

iEEG band power may also explain changes in seizure evolutions, and

a more detailed analysis of the exact fluctuations and the differences

in specific seizure features may be more informative. Interestingly,

band power fluctuations did not account for all the seizure variability

in most subjects. The highest adjusted R2 was around 0.8 and the

unexplained variability based on the models suggests that there are

additional factors, or possibly a level of stochasticity, that impact sei-

zure evolutions. Nevertheless, to make our findings clinically useful,

for example, as a predictive model of upcoming seizure evolutions or

seizure severity, neither causality nor completeness of the predictors

is required. Our results indicate that a predictive model of seizure evo-

lutions is possible with continuously recorded features such as iEEG

band power, and this model should achieve good predictive perfor-

mance in the majority of subjects.

To improve predictive performance, other factors could be con-

sidered in future, for example, the anti-epileptic drug (AED) level at

any given time or additional EEG features. Specifically, it is well-

known that AED changes and withdrawal can change the severity and

evolutions of seizures. For example, bilateral tonic–clonic seizures are

more prevalent when AED levels are reduced (Pensel et al., 2020).

AEDs have further been shown to impact inter- and peri-ictal brain

activity (Badawy, Macdonell, Jackson, & Berkovic, 2009; Meisel

et al., 2015), making it an important feature to consider. In this study,

we did not incorporate information regarding drug doses, but future

studies may wish to investigate how AED levels impact iEEG band

power (Arzy et al., 2010), in combination with their potential explana-

tory power for seizure evolution changes. However, it is unlikely that

AEDs are the sole driver of changing seizure characteristics, such as

seizure occurrence (Karoly et al., 2021) and seizure evolution

(Schroeder et al., 2020). Notably, prior studies on canine epilepsy

showed that various seizure cycles (circadian, weekly and monthly)

exist even in the absence of anti-epileptic medication (Gregg

et al., 2020). In future study, incorporating personalised medication

records could unravel the behaviour of seizure rhythms with respect

to changes in drugs and/or doses. Any multi-way association between

continuously recorded brain activity, seizure evolutions, and treat-

ments (such as AEDs) has the potential to introduce entirely new

treatment strategies. If, for example, particular interictal EEG signa-

tures predict more severe seizures, and these signatures are also

influenced by AED dose, then one can hypothesise that responsively

adapting AED dose according to these interictal signatures might

decrease seizure severity. If this hypothesis can be verified, then on-

demand drug-delivery systems programmed to respond to patient-
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specific interictal signatures could become the next generation of epi-

lepsy treatments (Carney, Stanley, & Talathi, 2014; Manganaro,

Loddenkemper, & Rotenberg, 2017; Ramgopal, Thome-Souza, &

Loddenkemper, 2013).

In a more general context, our study is another contribution to

the wider literature of explaining ictal features from interictal EEG

features or hypothesised circadian/multidien rhythms. For example,

studies have established that there is often a subject-specific relation-

ship between fluctuations of interictal EEG features and the timing of

ictal events (Baud et al., 2018; Karoly et al., 2016; Leguia et al., 2021;

Maturana et al., 2020; Mitsis et al., 2020). Interestingly, we found no

evidence of an association between band power fluctuations of the

interictal EEG and seizure occurrence (data not shown). Seizures were

not more likely to occur during particular phases of particular IMFs in

most subjects in our data set. This finding is in agreement with a pre-

vious study (Mitsis et al., 2020) that reported functional network fluc-

tuations, rather than band power fluctuations, to be more predictive

of seizure timing. Future study should investigate temporal fluctua-

tions in a range of EEG features, such as band power (Cummings

et al., 2000), functional connectivity (Mitsis et al., 2020), high fre-

quency oscillations (Gliske et al., 2018), variance and autocorrelation

(Maturana et al., 2020). Apart from seizure timing, our study has

shown that band power fluctuations on different timescales do

explain changes in seizure evolutions. Future study should explore this

avenue further to illuminate the exact processes and timescales that

modulate or dictate the various aspects of a seizure.

Finally, our study contributes to the growing literature of alterna-

tive treatment approaches in epilepsy that predict and react to the

temporal changes of the disease. Most prominently, predicting when

seizures happen has been an active and re-invigorated area of

research for many years (Cook et al., 2013; Freestone, Karoly, &

Cook, 2017; Karoly et al., 2017; Stirling, Cook, Grayden, &

Karoly, 2021). Our study further contributes to being able to predict

seizure dynamics and evolutions and thus also seizure severity and

symptoms. Additionally, the aforementioned (slow) fluctuations in

EEG features we and others investigate may also serve as biomarkers

that can track treatment response, and therefore open the gateway to

on-demand treatment options (Bernard, 2021; Carney et al., 2014;

Karoly, Rao, et al., 2021; LeiteG�oesGitai, de Andrade, dos Santos,

Attaluri, & Shetty, 2019; Potruch, Khoury, & Ilan, 2020; Ramgopal

et al., 2013). The association we investigated between how seizures

change and slow fluctuations in EEG features therefore serves as a

vital link to make the leap between treatment outcome (improved sei-

zure symptoms/severity) and the given intervention that can be

tracked with slow fluctuations in EEG features.

In conclusion, fluctuating interictal EEG features may not only

correlate with seizure timing, but also with seizure evolutions on mul-

tidien, circadian and ultradian timescales. In the future, it may be pos-

sible to use these temporal patterns of EEG fluctuations to predict

seizure evolutions. Prediction of various seizure features, including

seizure evolution and seizure severity is a critical unmet need for peo-

ple with epilepsy. If successful, it would open up new opportunities

for therapeutics and maximising quality of life.
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