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Abstract

Among different post-translational modifications (PTMs), one of the most important one is

the lysine crotonylation in proteins. Its importance cannot be undermined related to different

diseases and essential biological practice. The key step for finding the hidden mechanisms

of crotonylation along with their occurrence sites is to completely apprehend the mechanism

behind this biological process. In previously reported studies, researchers have used differ-

ent techniques, like position weighted matrix (PWM), support vector machine (SVM), k near-

est neighbors (KNN), and many others. However, the maximum prediction accuracy

achieved was not such high. To address this, herein, we propose an improved predictor for

lysine crotonylation sites named iCrotoK-PseAAC, in which we have incorporated various

position and composition relative features along with statistical moments into PseAAC. The

results of self-consistency testing were 100% accurate, while the 10-fold cross validation

gave 99.0% accuracy. Based on the validation and comparison of model, it is concluded

that the iCrotoK-PseAAC is more accurate than the previously proposed models.

1. Introduction

In all the living organism, the cells contain the chromosomes having the stored information,

which deals with the normal body functions. Specifically, chromosomes contain DNA (Deoxy-

ribonucleic acid), the polymer of deoxyribonucleotides [1]. Almost 80–90% of the DNA is con-

sidered as junk, whose exact functioning is not identified yet; but for the rest, it has been

discovered. Although, the complexity of the Genomic sequences within the chromosomes fol-

lows highly patterned and efficiently organized methodology, the main function of the DNA is

to replicate and encode the body proteins [2]. These body proteins are formed by unwinding

of the DNA by semi-conservative methods. Both strands of DNA encode its signals to the Mes-

senger RNA (mRNA) by the process of transcription. It is followed by the translation, in which

protein sequence is transmitted to the transfer ribonucleic acid (tRNA). At the end, the tRNA

terminates the process by joining amino acids over the ribosome (organelle) and forming
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protein exactly according to the gene sequence. After this translation, post-translational modi-

fication can take place, which can either activate or inactivate the function of that protein [3].

Crotonylation is a reversible post-translational modification process, which usually takes

place over lysine [4] residues of a protein. It holds immense importance, with respect to its var-

ious effects on the body’s metabolism, genetic expressions and multiple diseases i.e. carcino-

mas and malignancies etc. [5]. Lysine is an essential amino acid with a basic side chain and a

product of putrefaction in the gut. The chemical structure of the lysine contains a carboxylic

group, amino group, hydrogen and a basic R group, attached to the central carbon of the

amino acid backbone [6].

Up till now, a couple of computational based techniques have been proposed for the predic-

tion of lysine crotonylation sites in proteins. According to a theory that both crotonylated pep-

tides and non-crotonylated peptides are produced by particular mechanisms, Huang and Zeng

[7] proposed an automated predictor, named CrotPred, for the prediction of histone crotony-

lation sites in proteins. Later on, Qiu et al. [8] provided a mechanism for the identification of

lysine crotonylation sites, which utilized position weight amino acid composition, to identify

CrotoK sites using a support vector machine (SVM) algorithm. Notwithstanding, the prescient

accuracies of CrotPred and Qiu’s technique achieved just 79.41% and 71.69%, individually.

The prediction accuracy of the over two techniques is as yet not much high. It ought to likewise

be noticed that the over two techniques [8] did not provide good accuracy results. Later on, Ju

et al. proposed CKSAAP_CrotSite to identify lysine crotonylation sites with an accuracy of

98.11% [9] and Qiu et al. proposed iKcr-PseEns to identify lysine crotonylation sites in histone

proteins with an accuracy of 94.49% [10].

The efficiency of the previous research processes lacks the relative positioning and composi-

tion information which holds immense importance, with two basic goals; to make the relevant

theoretical study and to give scientist an easier layout for research purpose. In order to achieve

these goals, a 5-steps rule [11–18] should be employed, as used by the researchers in the past

[13, 19–22]. These steps include (i) collection of a standardized dataset, (ii) mathematical for-

mulation of features and association with biological target classes, (iii) training of predictor via

operational algorithm, (iv) objective evaluation and validation of results, and (v) implementa-

tion of webserver for proposed predictor. Although the credibility of the methods has been

improved successively still its upper limit could touch the satisfactory value. We, herein, pro-

pose a predictor named iCrotoK-PseAAC which aims to identify CrotoK sites with improved

efficiency than previously reported methods, using PseAAC and Chou’s 5-steps rule.

2. Materials and methods

In the following section, the primary three portions of the 5-steps rule are being discussed. The

methodology is being presented in the flowchart in Fig 1.

Using graphic approaches to study biological and medical systems can provide an intuitive

vision and useful insights for helping analyze complicated relations therein as shown by the

eight master pieces of pioneering papers from the then Chairman of Nobel Prize Committee

Sture Forsen [23, 24], and many follow-up papers [25–29]. They are very useful for in-depth

investigation into the topic of the current paper, and we will use them in our future efforts.

2.1. Benchmark dataset

Chou’s peptide formulation [30] was used for an accurate elaboration of samples, which had

generally utilized in computational biology and bioinformatics; for example, in predicting the

signal peptide cleavage sites [31], nitrotyrosine sites [32], methylation sites [33], hydroxylysine

and hydroxyproline sites [34], lysine ubiquitination sites [35], protein-protein binding sites
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[36], phosphorylation sites [37, 38], lysine succinylation sites [39], and, numerous lysine PTM

sites [40].

Collection of benchmark dataset was performed from Universal Resource of Protein (Uni-

Prot). A query was applied to database using advanced search options and the sequences with

PTM/Processing annotations were chosen. In modified residue field, ‘crotonyllysine’ phrase

for positive samples was used. For negative data, a converse query was used. Thus, by these

searches, 2665 positive and 868 negative datasets were filtered out. Redundancy and duplica-

tion from dataset was removed by using CD-HIT webserver [41] with a threshold of 0.6. The

reduced dataset was used to extract sites from each sequence of positive and negative set, and a

subsequence of length 41 was extracted for all positive and negative sites. Experiment was

repeated for other lengths, i.e. 21 and 61, however, best results were achieved for 41. Before

proceeding to the next step, we have removed the unnecessary information like some of the

special characters and notations (B, J, O, U, X and Z) and spaces from the dataset of positive

and negative samples of protein. Thus, a total of 378 positive and 500 negative samples were

achieved.

Stated by Chou’s scheme [30], the CrotoK site-having peptide sample can be usually defined

as

PxðKÞ ¼ R� xR� ðx� 1Þ � � �R� 2R� 1KRþ2 � � �Rþðx� 1ÞRþx ð1Þ

Importance of amino acidK is shown by emphasizing the symbol using double strike, the

subscript ξ is a number ranging [-ξ, +ξ] which include both positive and negative numbers

excluding 0, R−ξ gives the -ξ-th upstream amino acid between the range, the R+ξ the +ξ-th gives

the downstream amino acid other than the R−ξ, etc. The (2ξ + 1)-tuple peptide sample PxðKÞ
can be more arranged in further two classes as shown in Eq (2).

PxðKÞ 2
Pþ
x
ðKÞ; for the CrotoK

P�
x
ðKÞ; for non � CrotoK

(

ð2Þ

Where Pþ
x
ðKÞ indicate the positive CrotoK sites withK at mid, while P�

x
ðKÞ indicate the non-

CrotoK sites, and the mark 2means “a member of” in a group of sets.

Data-collection for benchmarks was based on two types of the dataset, one was used for

training which we called training dataset and the other dataset was used for testing which we

called testing dataset. There is no compelling reason to isolate a benchmark dataset into two

datasets if you have used either of jackknife or subsampling using k-fold cross validation

(where k = 5 or k = 10) because the results were generated using different folds [13, 21]. In this

research, the value of ξ was 20 which was then put in the equation (2ξ+1) which equals to 41

Fig 1. Three steps of methodology.

https://doi.org/10.1371/journal.pone.0223993.g001
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characters in the subsequence using Eq (2). As needs are, the benchmark dataset for this inves-

tigation can be accumulated into S as shown in Eq (3).

Where Sþ have 378 positive samples, S� have 500 negative samples while [ is denoting

“union” in a group of hypotheses. As per user’s convenience, the 378 + 500 = 878 example

sequences are given in S1 File [42].

S ¼ Sþ [ S� ð3Þ

2.2. Sample formulation

Due to the recent advancement in the biological computation because of the increase in the

biological sequence, one of the popular problems is to compute the biological sequences using

a discrete model or vector by the keeping the actual sequence intact.

Since all the conventional machine learning algorithms deal with the vectors and not

directly with the sequence samples [43], so pseudo amino acid composition or PseAAC [44]

was then created to solve such problems. With the creation of PseAAC or Chou’s PseAAC [45,

46], the field of biomedicine and drug development industries started to use it [47, 48] and

almost every area of study in the field of computational proteomics [49–51] took interest in

it. Due to its rapid and sudden popularity, many open source software [45, 52] were developed

to generate the various sequences of the PseAAC. Due to the increasing popularity of the

PseAAC, several webservers [53] were created to generate different DNA/RNA sequence and

has proven itself to be very useful in the field of computational genomes [54]. Pse-in-One [55]

was developed to generate any number of desired feature vectors according to the user’s

focuses for both DNA/RNA and protein/peptide sequences.

As indicated by Eq (3) and formulated in PseAAC, the sample sequences of the peptide in

S1 File are extracted as suggested in [30]

Pʂ¼7ðKÞ ¼ ½Ӑ1Ӑ2 � � �ӐO�
T

ð4Þ

Where Ă1Ă2� � �ĂO will be characterized by how to extricate valuable features from samples of

a peptide sequence, and T is the transpose administrator.

The UniProt database provides number of ways to extract the required data. During this

study the data was extracted by parsing XML files generated by UniProt as a result of query

that search for all proteins containing the required modified residue. Different values of O

were tried in order to find the most optimal one. Extensive trials of experimentation and prob-

ing showed that O = 20 yielded best results. Hence the benchmark data was formed using 20

residues at either terminals of the crotonylation site. Subsequently, the benchmark dataset con-

tains peptide sequences of length 41 as given in S1 File can be rearranged to the accompanying

simpler to deal with frame and their reduction is shown in Eq (5).

P ¼ R1;R2;R3 � � �R19;R20;R21 � � �R39;R40;R41 ð5Þ

Where R21 is the modified residue K and Ri for (i = 1, 2, . . . 41; i 6¼ 21) can be any of the 20

native amino acids or the dummy code X as discussed before. For further clarification, 20

native amino acids were given numerical values ranging from 1 to 20 with respect to the alpha-

betic order of their letter code and remaining 21 dummy amino acids were given the numeric

values ranging from 21 to 41.

2.2.1. Site vicinity vector (SVV). There are various remaining sites which are similar to

Post-Translational Modification (PTM) in the chain of polypeptide and there exist many

characteristics that channel us towards the modification. Other than the previously discussed

characteristics, the other neighboring residues of a site are also important in which PTM is
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PLOS ONE | https://doi.org/10.1371/journal.pone.0223993 November 21, 2019 4 / 15

https://doi.org/10.1371/journal.pone.0223993


observed [56]. The sequence which contains the potential PTM residue site from the primary

sequence of the protein is known as Site Vicinity Vector (SVV).

Following is the primary sequence having the potential PTM site with its surrounding resi-

dues and in Eq (6) it is denoted as

P ¼ ½m1 . . . mx� 2; mx� 1; mx; mxþ1; mxþ2; . . . ::mn� ð6Þ

Sub-sequence of the primary sequence is SVV which is represented as

S ¼ ½mx� k . . . mx� 2; mx� 1; mx; mxþ1; mxþ2; . . . ::mxþk� ð7Þ

After thorough experiments, the result shows that the minimum constant value best suited

for k is 20 in our specific scenario. Each characteristic in SVV shows the specific amino acid

already known, out of given 20 amino acids in which a unique numerical value are assigned to

each amino acid ranging from 1 to 20.

2.2.2. Calculation of statistical moments (SM). Statistical moment approach is utilized

to consider the quantitative explanation for benchmark dataset of protein sample sequence to

define the dimensions and components of Eq (6). To keep the crucial information safe regard-

ing the protein samples’ sequence order, as it is necessary that the benchmark dataset of pro-

tein samples have the amino acid residues to be in a specific order. Different types of factors

were considered while gathering the information of protein samples using different variables

such as order of moments in which some of the moments for data evaluation and some for

peculiarity of data and some for orientation from enormous amount of gathered protein sam-

ples and some of them were elaborated by the mathematicians using distributions and polyno-

mial functions [13, 21, 37, 38, 56–65].

We have calculated Hahn moments by using Hahn polynomial, raw moments by using

probability distribution of benchmarked dataset of protein samples and central moments

using mean, variance and asymmetry of information and these are computed for iCrotoK

-PseAAC predications. Their results are scale variant [63], whereas the central moment is both

scale variant and vicinity variant [63, 65] and the results computed in raw moments of mean,

variance and asymmetry are then further used in the calculations of the central moment.

Moments of the scale variants are not used, and each method describes the qualified values

[66, 67] of the data in 2 dimension (2D) square matrix P (in which rows and columns are same

and denoted as m) with dimension m x m as written in Eq (8) and accommodate all of the pro-

tein samples residues in our proposed methodology.

P11 P12 . . . P1m

P12 P22 . . . P2m

..

. ..
. ..

.

Pm1 Pm2 . . . Pmm

6
6
6
6
6
6
6
6
4

7
7
7
7
7
7
7
7
5

ð8Þ

Now the generated square matrix P from Eq (8) is passed to the function ω which trans-

formed that P matrix into P’. This can be mathematically written as P0 = ω(P)) with the 3rd

degree of statistical moments (means rows and columns should not exceed 3 from the

moments matrix P) and then the newly generated matrix P’ is used by Hahn moment, which

speeds up our calculation. The property of P’ being a square matrix made Hahn moment

orthogonal in which the inverse propriety was preserved and could be converted back to P
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using the inverse function of discrete Hahn moment as shown in Eq (9).

Hu;z
n r;Mð Þ ¼ ðM þ Z � 1ÞnðM � 1Þn �

Xn

i¼0
ð� 1Þ

i ð� nÞið� rÞið2M þ uþ z � n � 1Þi
ðM þ z � 1ÞiðM � 1Þi

�
1

�i!
ð9Þ

The pochhammer symbol and the gamma operator is applied in (9) are described in [56,

67]. The normalized orthogonal Hahn moments calculation was performed using Eq (10)

hrs ¼
XM� 1

a¼1

XM� 1

b¼1
@rsH

~u;z
r ðb;MÞH

~u;z
s ða;MÞ; n ¼ 0; 1; 2; 3 . . .M � 1 ð10Þ

Highly imported information is conserved by central moments which is related to the vari-

ance, asymmetry and means of the sample proteins and its calculation is carried out using Eq

(11).

Irs ¼
Xk

a¼1

Xk

b¼1
ða � �xÞrða � �yÞs@ab ð11Þ

In the end, benchmark dataset of samples protein’s information is gathered using the calcu-

lation of raw moments through distribution probability as shown in Eq (12)

Mrs ¼
Xk

a¼1

Xk

b¼1
arbs@ab ð12Þ

Raw moment’s degree is r+s and M00, M01, M02, M10, M11, M20, M12, M21, M03 and M30 of

3rd degree is mediated here.

2.2.3. Calculations of position relative incidence matrix (PRIM). The primary sequence

plays a vital role in calculating the hidden patterns from the sequence of the protein. The posi-

tional information of the protein benchmarked dataset and the residues in it play a key role in

central mathematical paradigm of the model and 20x20 matrix is formed by using quantization

of relative positional information of the residues in the amino acid and we called it HPRIM.

HPRIM ¼

H1!1 H1!2 � � � H1!j � � � H1!1

H2!1 H2!2 � � � H2!j � � � H2!20

H
..
.

i!1
H

..

.

i!2
� � � H

..

.

i!j � � � H
..
.

i!20

H
..
.

N!1
H

..

.

N!2
� � � H

..

.

N!j � � � H
..
.

N!20

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð13Þ

In Eq (13) i represents the specific row number and j represents the specific column which

contains the sum of the first appearance of the ith residue with respect to the jth relative posi-

tion and it generates 400 coefficients which then reduced to 30 generated coefficients by using

the statistical moments [56].

2.2.4. Calculations of reverse position relative incidence matrix (RPRIM). The HRPRIM

is calculated using the reverse of protein samples instead of using the actual ones which we

have used in HPRIM, so that we can be able to find out the ambiguities in the samples of pro-

teins, the matrix is shown in Eq (14).

HRPRIM ¼

H1!1 H1!2 � � � H1!j � � � H1!1

H2!1 H2!2 � � � H2!j � � � H2!20

H
..
.

i!1
H

..

.

i!2
� � � H

..

.

i!j � � � H
..
.

i!20

H
..
.

N!1
H

..

.

N!2
� � � H

..

.

N!j � � � H
..
.

N!20

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð14Þ
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The HRPRIM gives the same amount of dataset but generates the different values and gener-

ates the same number of coefficients as HPRIM in Eq (14) does and which can be reduced the

same way we reduced HPRIM [13, 21, 56].

2.2.5. Determination of frequency vector (FV). The vector containing the frequencies of

all the residues of the protein in the benchmark dataset and we called it frequency vector

which has the property to sustain the compositional and distributional information regarding

the samples of the protein sequence. FV is shown in Eq (15).

FV ¼ ½f1; f2; f3; f4; f5; ::; f20� ð15Þ

Where each fi holds the frequency by the alphabetic order of each residue of amino acid in the

sequence.

2.2.6. Determination of accumulative absolute position incidence vector (AAPIV).

The cumulative frequency distribution of the residues of amino acids in protein polypeptide

chain related to the composition of the protein is known as accumulative absolute position

incidence vector (AAPIV) and it only holds the information of absolute position thus the

information regarding the relative position is lost. A vector of 20 elements is then formed (as

shown in Eq (18) which formed based on primary structure given in Eq (16) where each ele-

ment in this vector represents the sum of ordinal values of its occurrences of respective residue

at p1, p2, . . ., pn locations within the primary structure as shown in (17).

aip1
; . . . ; aip2

; . . . ; aipn ð16Þ

mi ¼
Xn

k¼1
pk ð17Þ

AAPIV ¼ fm1:m2; . . . :; m20g ð18Þ

2.2.7. Determination of reverse accumulative absolute position incidence vector (RAA-

PIV). Similarly, 20 elements of reverse accumulated absolute position incidence vector

(RAAPIV) is formed (as shown in Eq (20)) by simply reversing the primary structure of the pth

residue (as shown in Eq (19)).

aipn; . . . ; aipðn� 1Þ
; . . . ; aip1

ð19Þ

RAAPIV ¼ fm01:m
0
2; . . . :; m020g ð20Þ

2.3. Prediction model

Billions of neurons are present in the human brain, which works by taking in the information,

processing it and then passing further for its functioning. Each time, patterns are being learned

and information is extracted which is used to act against situations and things with no specific-

ity. ANN (Artificial Neural Network) is a system, based on technique like the human brain.

Information is being learned from various situations and patterns. Later on, it uses intercon-

nect neurons to works in problem-solving. A number of neurons take the input and previous

information, along with patterns are used. There are two working modes of ANN, the first one

is the training mode, in which ANN is being trained on provided data and information is

extracted from that set of data and learn. The second one is using or working, it’s on working

mode; like neurons provide input and best match for output is extracted using available infor-

mation [68, 69] and taught patterns as shown in Fig 2.
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For this prediction model, ANN is implemented with back propagation methods, to reduce

the error. For the specific and standard dataset, feature extraction was conducted and feature

vector consisted of central, Hahn, and raw moments of sequence matrix, RPRIM and PRIM;

FV, SVV, RAAPIV and AAPIV. The information linked to the position of proteins and repre-

sentation was protected and saved in the form of final Feature Vector (FV) and these were

total of 194. IFM (Input Feature Matrix) was made using all these FV and each row in IFM

shows the FV related to every sample of the specific benchmark dataset. For each sample out-

put, OM (the Output Matrix) was produced using all these output labels of input from IFM.

ANN was being trained using both OM and IFM, OM to reduce the error by back propagation

method and IFM as input [70, 71] as shown in Fig 2.

The neural Network was trained and tested using the Python version 3.4 along with web

application framework Flask.

3. Results and discussion

3.1. Estimated accuracy

During the production of any new model, objective evaluation of its rate is one of the most

important objectives. In order to justify the evaluation of the model, two questions must be

catered. 1) What type of metrics should we use to review the quality of prediction model? 2)

What are the various test methods that can be used for score metrics?

Fig 2. The architecture of ANN for the proposed prediction model.

https://doi.org/10.1371/journal.pone.0223993.g002
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3.2. Formulation of metrics

Following are the four different evaluation metrics, used to evaluate the precision of the pre-

diction model. (1) Acc to estimate the prediction model’s overall accuracy, (2) Sn for the sensi-

tivity of the prediction model, (3) Sp for the specificity of the prediction model, (4) MCC for

the stability of the prediction model to access the accuracy and quality of the prediction model,

various conventional metrics which have been used frequently in literature, are no more bene-

ficial, because of lack in insightfulness and difficulty faced by the biologist in understanding it.

Particularly for the Mathew’s Correlation Coefficient (MCC), which is highly significant in

illustrating the stability of the prediction model. Conveniently, various symbols have been an

introduction to study protein signal peptides by Chou [72], A set of four intuitive equation

were derived [13, 21, 73] as follows in Eq (21).

Sensitivity ðSnÞ ¼ 1 �
Nþ
�

Nþ
0 � Sn � 1

Specificity ðSpÞ ¼ 1 �
N �
þ

N �
0 � Sp � 1

Accuracy ðAccÞ ¼ 1 �
Nþ
�
þ N �

þ

Nþ þ N �
0 � Acc � 1

MCC ¼
1 �

Nþ
�

Nþ
þ

N �
þ

N �

� �
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illustrates the number of the incorrectly predicted non-crotonyllysine sites as crotonyl-

lysine sites. N− represents the number of the correctly predicted non- crotonyllysine sites. Fur-

thermore, N+ presents the number of the correctly predicted crotonyllysine sites. Nþ
�

represents the number of the incorrectly predicted crotonyllysine sites as non- crotonyllysine

sites.

From Eq (21), it can be seen that when Nþ
�
¼ 0 it means that Sn = 1, because not a single

crotonyllysine site is predicted as the non- crotonyllysine sites. If Nþ
�
¼ Nþ, then Sn = 0, as all

the crotonyllysine sites are incorrectly predicted as non- crotonyllysine sites. Additionally, if

N�
þ
¼ 0, then the specificity is Sp = 1, which means none of the single non- crotonyllysine site

is incorrectly predicted as a crotonyllysine site; while if we have N�
þ
¼ N� , then the specificity

is Sp = 0 as all the non- crotonyllysine sites. If Nþ
�
¼ N�

þ
¼ 0, it shows that not a single non-

crotonyllysine site in the negative dataset and crotonyllysine site in the positive dataset incor-

rectly predicted, and it provides us with the Acc = 1 and MCC = 1; if we have N�
þ
¼ N� , and

Nþ
�
¼ Nþ, it shows that all the non-crotonyllysine sites in the negative dataset and all the croto-

nyllysine sites in the positive dataset are incorrectly predicted, and it provides us with the

Acc = 0 and MCC = −1. Whereas, if Nþ
�
¼ Nþ=2 and N�

þ
¼ N� =2 then it will provide us with

the Acc = 0.5 and MCC = 0, leaving us with doubt, whether it is non- crotonyllysine site or cro-

tonyllysine site. Overall, Eq (21) illustrates the explanation of sensitivity, specificity, overall

accuracy in relation to MCC [74, 75].

These perceptive metrics have been adapted and reported by various modern publications

(see, e.g. [76–79]. In Eq (21) the set of defined notations can only successfully function for

binary labelled data, like whether the predicting site is crotonyllysine or non- crotonyllysine.

In case of multi-label prediction, the problem is completely different, which becomes more

general in biomedicine [80] and computational biology [81], so required a different type of

metrics [82].
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3.3. Self-consistency testing

On iCrotoK-PseAAC, self-consistency test was implemented which is to use the same bench-

mark dataset to first train and then test the proposed model [73]. When true positive (TP)

value is already familiar, then such a data is generally used. In the following Table 1, results are

shown, which provides the predicted and actual classification compiled by the proposed

computational model. It describes the overall presentation of the proposed systems.

3.4. Testing via 10-fold cross-validation

Authentic datasets are not available always for validation of model, thus, in that case, cross-val-

idation is chosen to develop the exception that the proposed model is predicting accurately

[73].

During the cross-validation, k is considered as constant when the disjoint k-fold dataset is

achieved after breaking up. Testing is executed k-times for each and every partition after train-

ing and accuracy is computed for each of the reiterations. In the end, the average or mean of

all the accuracies is recorded as cross-validation. For both positive and negative data samples,

the same technique was correlated. To make the subsets for k = 10, a casual selection was con-

ducted as compared to the other methods of validation. Table 2 reports the 10-fold cross-vali-

dations results for iCrotoK-PseAAC.

3.5. Comparative analysis

Different techniques have reported different results but our methodology has improved the

accuracy, specificity but reduced the sensitivity and also improved the Mathew’s Co-relation

Coefficient. The results were compared with iKcr-PseEns [10] and CKSAAP_CrotSite [9] pre-

dictor, the most recent method for predicting crotonyllysine sites. In Table 3 the results of all

the four matrices Sn, Sp, Acc, and MCC are depicted, signifying that anticipated predictor. It is

Table 1. Self-consistency testing results for iCrotoK-PseAAC.

Predictor Accuracy Metrics

Accuracy (%) Specificity (%) Sensitivity (%) MCC

iCrotoK-PseAAC 100 100 100 1

https://doi.org/10.1371/journal.pone.0223993.t001

Table 2. 10-fold cross-validation results for iCrotoK-PseAAC (average of 10 folds).

Predictor Accuracy Metrics

Accuracy (%) Specificity (%) Sensitivity (%) MCC

iCrotoK-PseAAC 99.17 99.53 99.40 0.98

https://doi.org/10.1371/journal.pone.0223993.t002

Table 3. Comparative analysis of methods.

Predictor Accuracy Metrics

Accuracy (%) Specificity (%) Sensitivity (%) MCC

iKcr-PseEns [10] 94.49 95.27 90.53 0.81

CKSAAP_CrotSite [9] 98.11 99.17 92.45 0.9283

iCrotoK-PseAAC 99.17 99.53 99.40 0.98

https://doi.org/10.1371/journal.pone.0223993.t003
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observed that the proposed predictor performs better in terms of accuracy, specificity, and sen-

sitivity as compared to the previously reported methods using independent data set.

4. Webserver

Development of a webserver which is user-friendly; is the last 5-step rule. Publicly accessible

and user-friendly webserver provides the future directions for making prediction methods and

computational tools which will be more useful practically as demonstrated in the recent publi-

cations [13, 19, 21, 22, 73, 83, 84]. Specifically, these useful and practical webservers have an

increasing effect on medical sciences, leading medicinal chemistry into an unequalled revolu-

tion [48], thus, efforts will be made to construct a webserver for the prediction model reported

in this paper.

5. Conclusion

Among different post-translational modifications (PTMs), one of the most important ones is

lysine crotonylation in proteins. The initial and crucial step is to identify crotonylation occur-

rence in protein along with their sites to fully understand the mechanism behind these biologi-

cal processes. The rigid and imbalanced nature of dataset of protein-peptide makes it difficult

to understand and time-consuming which affects the precision of the prediction model. We

weren’t able to get efficient results of sensitivity yet, like accuracy, specificity and MCC. So, the

essential demands of computational methods to predict the sites of Crotonylation are highly

justified. Our proposed model, iCrotoK-PseAAC which used statistical moments and position

relativity to increase the accuracy of the site prediction of lysine Crotonylation. Our predictor

model has used SVV, SM, FV, PRIM, RPRIM, AAPIV and RAAPIV (as we discussed above) to

compute the accuracy, sensitivity, specificity and MCC. The results of independent dataset

testing were 99% accuracy, 89.1% sensitivity, 99.4% specificity and 0.98 MCC. Since our major

emphasis was on increasing the accuracy of sites prediction of lysine Crotonylation, which we

have achieved.
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