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Simple Summary: The Ras-Raf-MEK-ERK signaling pathway is responsible for regulating cell
proliferation, differentiation, and survival. Overexpression and overactivation of members within the
signaling cascade have been observed in many solid and blood cancers. Research often focuses on
targeting the pathway to disrupt cancer initiation and progression. We aimed to provide an overview
of the pathway’s physiologic role and regulation, interactions with other pathways involved in cancer
development, and mutations that lead to malignancy. Several blood and solid cancers are analyzed
to illustrate the impact of the pathway’s dysregulation, stemming from mutation or viral induction.
Finally, we summarized different approaches to targeting the pathway and the associated novel
treatments being researched or having recently achieved approval.

Abstract: The mitogen-activated protein kinase (MAPK) pathway, consisting of the Ras-Raf-MEK-
ERK signaling cascade, regulates genes that control cellular development, differentiation, prolifera-
tion, and apoptosis. Within the cascade, multiple isoforms of Ras and Raf each display differences in
functionality, efficiency, and, critically, oncogenic potential. According to the NCI, over 30% of all
human cancers are driven by Ras genes. This dysfunctional signaling is implicated in a wide variety
of leukemias and solid tumors, both with and without viral etiology. Due to the strong evidence
of Ras-Raf involvement in tumorigenesis, many have attempted to target the cascade to treat these
malignancies. Decades of unsuccessful experimentation had deemed Ras undruggable, but recently,
the approval of Sotorasib as the first ever KRas inhibitor represents a monumental breakthrough.
This advancement is not without novel challenges. As a G12C mutant-specific drug, it also represents
the issue of drug target specificity within Ras pathway; not only do many drugs only affect single
mutational profiles, with few pan-inhibitor exceptions, tumor genetic heterogeneity may give rise to
drug-resistant profiles. Furthermore, significant challenges in targeting downstream Raf, especially
the BRaf isoform, lie in the paradoxical activation of wild-type BRaf by BRaf mutant inhibitors.
This literature review will delineate the mechanisms of Ras signaling in the MAPK pathway and its
possible oncogenic mutations, illustrate how specific mutations affect the pathogenesis of specific
cancers, and compare available and in-development treatments targeting the Ras pathway.

Keywords: Ras signaling; leukemia; ATLL; MEK; ERK; viral oncogenesis; solid tumors

1. Introduction

The MAPK cascade is a vital cellular network, which regulates apoptosis, develop-
ment, differentiation, and proliferation (Reviewed in [1,2]). The network causes cellular
changes through modulating gene expression. It achieves these alterations by integrating
signaling induced receptor-ligand interactions, phosphorylation cascades, and modulation
of transcription factor activities. Much progress has been made in understanding the role
of MAPK signaling in cancer, which has resulted in the development of targeted therapies
aimed at curbing aberrant MAPK signaling [3]. There are three main cascades in the
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mammalian MAPK family: classical MAPK (ERK), C-Jun N-terminal kinase (JNK), and
p38 kinase [4]. The classical MAPK family involves the Ras-Raf-MEK-ERK cascade of
proteins [5]. Many cancers have mutations in the classical MAPK cascade that contribute
to unregulated cellular division. Studying the pathway’s normal physiology has allowed
therapies to be developed that are able to treat malignancies by differential targeting of
proteins implicated in the MAPK/ERK cascade (Figure 1). Notably, Ras, the master reg-
ulator of the MAPK pathway, is inherently associated with the development of cancer.
This has recently (2020) been described in detail [6]. Once thought to be untargetable,
recent breakthroughs in allele-specific covalent inhibitors have opened new doors for
cancer therapy [7]. Downstream from Ras, all Raf isoforms enhance the catalytic activity of
Mitogen activated protein kinase/ERK kinase (MEK1) but have differing efficacy. BRaf is
generally shown to be the most effective at inducing MEK activation, and ARaf is shown
to be the least effective [8,9]. However, in targeting BRaf, scientists have found the chal-
lenge of paradoxical activation and aberrant signaling independent of Ras activation [10].
Additionally, p21-activated kinases 1 (PAK1) phosphorylate MEK1 to increase associa-
tion with Raf proteins, allowing c-Jun N-terminal kinase/stress-activated protein kinase
(JNK/SAPK) cross-pathway enhancement of the MAPK cascade [11]. MEK1 activates its
sole downstream target, extracellular-signal-regulated kinases 1,2 (ERK1/2) by phospho-
rylation of threonine and tyrosine residues [12]. ERK has over 200 targets within the cell
that contribute to proliferation, differentiation, cell survival, and other diverse cellular
processes. The length and degree of ERK signaling plays an important role within the cell.
Sustained moderate ERK signaling over many hours downregulates anti-proliferative
genes which prevent cell-cycle progression from G0/G1 into S phase. This allows the
expression of cellular signals to promote progression including cyclin D1 [13–15]. In con-
trast, transient higher levels of ERK signaling induce CDK-inhibitor protein expression,
including p21 and p27, halting the cell-cycle progression [15–17].

Figure 1. The MAPK cascade. Once a ligand binds the tyrosine kinase receptor, it self-phosphorylates [18]. This creates
binding sites for Shc and Shp2. GRB2 can associate with either and then recruit SOS [19,20]. SOS is a guanine exchange



Cancers 2021, 13, 5059 3 of 35

factor for Ras and induces the exchange of GDP for GTP [21]. Now active Ras will dimerize and bind Raf [21].
After activating Raf, GTPase activating proteins (GAP) will hydrolyze the GTP to GDP to return Ras to its resting in-
active state [22]. The active Raf dimers will recruit MEK [23], which then activates ERK [3]. ERK interacts with Importin
7 at the nuclear envelope to facilitate its entry through the nuclear pore complex into the nucleus [24,25]. Once inside, it
phosphorylates multiple transcription factors to alter gene expression in the cell and induce proliferation and survival [26].

Another important process that contributes to malignancy is viral oncogenesis, which
is believed to comprise 12% of all clinically observed cancers and involves similar dys-
regulation of these conserved growth and signaling pathways [27]. There are several
viruses known to be oncogenic in humans, including Epstein–Barr virus (EBV), hepatitis
B and C viruses (HBV/HCV), human T-cell leukemia virus type 1 (HTLV-1), and human
papillomaviruses (HPV). Although distinct, these viruses share the similar characteristic of
modulating host cellular processes to proliferate and propagate themselves or to avoid im-
mune detection and clearance from the body [28–30]. We have been investigating HTLV-1
infection, pathology, and associated adult T-cell leukemia/lymphoma (ATLL) [31–37].

Targeting the Ras signaling pathway has been a longstanding challenge, frustrating
the efforts of scientists for decades with the Ras protein itself even being considered
undruggable [7]. However, recent breakthroughs in MAPK/ERK pathway inhibitors
have led to the approval of a novel, mutation-specific drug that directly inhibits Ras.
Sotorasib is a first of its kind KRas G12C mutant targeting anti-cancer therapy and is
currently approved for the treatment of non-small cell lung cancer (NSCLC) (Clinical Trial
NCT03600883). Meanwhile, Sorafenib, the first FDA approved drug to treat HCC, is one of
the only approved targeted drug therapies for advanced HCC, targeting Raf. However,
challenges remain in the specificity of drugs to mutational profiles. Resistance easily
arises due to tumor genetic heterogeneity, exacerbated by a lack of pan-Ras noncovalent
inhibitors, and other factors [38–41]. Downstream, the challenge of paradoxical activation
of the pathway by Ras-Raf inhibitors must also be addressed [10]. In this review, we have
examined the role Ras-Raf signaling plays in the pathology of leukemias/lymphomas and
solid tumors by compiling the current understanding of this signaling network in various
cancers. The role of Ras-Raf signaling will also be discussed in the context of currently
available therapies and ongoing clinical trials.

2. Activation of Ras and Raf Proteins

The master regulator of the classical MAPK cascade is the Ras protein, which is
encoded by three genes, NRas, HRas, and KRas. These genes produce four active iso-
forms sharing a highly conserved structure and a unique C-terminal hypervariable region.
These distinct C-terminal variations result in different post translational modifications that
create different Ras isoforms with distinct efficacy, cellular distribution and functional-
ity [42]. To localize to the plasma membrane where it can recruit Raf, all four Ras isoforms
require post-translational modification after synthesis. A tetrapeptide signal at the carboxyl
terminus, the CaaX box, serves as the motif recognized by farnesyl transferase (FTase)
to initiate these changes (Figure 2) [43,44]. Once anchored onto the plasma membrane,
signaling through Ras can be induced by via cytokine receptors, tyrosine kinase receptors,
and G-protein-coupled receptors (GPCRs).
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Figure 2. Post translational farnesylation of Ras protein. The first modification is prenylation, prefer-
entially performed by farnesyl transferase (FTase) [44]. This is initiated after recognition of the CaaX
box on Ras’s C-terminus by FTase. Alternatively, the KRas-4B and NRas isoforms can be acted on
by geranylgeranyl transferase 1 (GGTase1) if FTase is inhibited [43,45]. The farnesyl and geranylger-
anyl moieties add enough hydrophobicity to enable Ras insertion into the endoplasmic reticulum
membrane. Ras converting enzyme (Rce1) performs a final cleavage of the CaaX residues before
isoprenylcysteine carboxyl methyltransferase (Icmt) adds a carboxymethyl group [44]. The final
processing and transfer to the plasma membrane is isoform specific. Due to the farnesyl tail and a
five amino acid sequence motif (Lys- Ser- Lys-Thr-Lys) in the C-terminus region, KRas-4B is directly
chaperoned to the membrane by phosphodiesterase delta (PDEδ) [43,46,47]. Lacking the necessary
motif, all other isoforms enter the Golgi apparatus for reversible palmitoylation by palmitoyl trans-
ferase. From the Golgi apparatus, HRas and NRas are trafficked to the plasma membrane on motile
vesicles [48]. KRas-4A is trafficked by a poorly understood Golgi- independent route depending
on mitochondrial function and class C vacuolar protein sorting (vps) proteins [49]. Afterwards, all
isoforms associate with the membrane through their respective two-point anchors: the farnesyl modi-
fication and polybasic region of six lysines for KRas4b and the palmitoyl and farnesyl modifications
for the other isoforms [50].

2.1. Ras Activation by the Tyrosine Kinase, Interleukin (IL) Receptors, and G-Protein
Coupled Receptors

Tyrosine kinase and interleukin receptors utilize the same mechanism to interact
with the Ras cascade. After cytokine binding, subsequent receptor dimerization allows
transphosphorylation by the clustering Janus kinase 2 (JAK2) proteins bound to both β

chains [51]. At high cytokine concentrations, adaptor protein Shc’s src homology 2 domain
(SH2) binds to these phosphorylated tyrosine residues. While it lacks inherent catalytic
function, Shc serves as a phosphorylated anchor for growth factor receptor bound protein
2 (Grb2) to bind. Grb2 then associates with son of sevenless (SOS), a guanine nucleotide
exchange factor (GEF) for Ras [51–54].
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Grb2 can also associate with src homology region 2 domain-containing phosphatase
2′s (Shp2) [55] (Figure 3). This protein acts as a scaffolding protein, serving as a link to
tyrosine kinase receptors via its two SH2 domains and Grb2 at its C terminus tail. It also
has protein tyrosine phosphatase domain, which inactivates several negative regulators of
the MAPK pathway [56]. Shp2′s dephosphorylation releases additional Grb2 molecules
from sequestration by Sprouty family 1–2 proteins [57,58]. It also dephosphorylates Ras’
docking sites of RASA, a Ras GTPase activating protein (Ras-GAP) that accelerates the
hydrolysis of Ras’ bound GTP. By preventing RASA’s binding, Ras-GTP accumulates and
propagates its effects longer [59,60]. Shp2 also indirectly affects Ras’s signaling through
the Src family kinases (SFK), cytosolic protein tyrosine kinases that play roles in cell pro-
liferation and survival. Src proteins have two tyrosine sites that play a role in regulation.
Auto dephosphorylation of Tyr416 contributes to Src activation, while Tyr527 phospho-
rylation by C-terminal Src kinase (Csk) is inhibitory [61]. Before it can inhibit SFKs, Csk
activity is determined by the docking protein Paxillin and the Csk binding protein (Cbp).
CBP is also known as the phosphoprotein associated with glycosphingolipid-enriched
microdomains (PAG). When Shp2 is recruited by Gab1, it prevents the docking of Csk by
dephosphorylating paxillin and Cbp/PAG. Csk molecules then dissociate from SFKs and
allow them to propagate ERK signaling [62–64].

Figure 3. The roles of src homology region 2 domain-containing phosphatase 2 (Shp2) in the Ras-Raf-MEK-ERK pathway.
Shp2 is a GRB2 scaffolding protein that anchors it to tyrosine kinase receptors [56]. Additionally, Shp2 dephosphorylates
Sprouty family proteins to release sequestered GRB2 molecules [57,58]. It also dephosphorylates Ras docking sites of RASA,
a Ras GTPase activating protein (Ras-GAP) that accelerates the hydrolysis of Ras bound GTP [59,60]. This allows more
active Ras-GTP molecules to accumulate instead of being converted to inactive Ras-GDP. After being recruited by Gab1,
Shp2 can also dephosphorylate the binding sites of Paxillin and the Csk binding protein/phosphoprotein associated with
glycosphingolipid-enriched microdomains (Cbp/PAG). This prevents the docking of C-terminal Src kinase (Csk) on Src
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family kinases (SFKs) and inhibits its activity by phosphorylating Tyr527 [61–64]. When active, SFKs initiate a signaling
pathway through phospholipase C γ (PLCγ), diacylglycerol (DAG) and calcium. This results in the recruitment of the Ras
guanine nucleotide exchange factor RasGRP1, directing it to the Golgi to activate intracellular Ras molecules [65,66].

At basal signaling levels, Ras proteins are bound to GDP and impeded from inter-
acting with its effectors. When SOS is activated, it facilitates Ras’ exchange of GDP for
GTP, resulting in an activated Ras confirmation. [43,46,67]. While SOS is ubiquitously
expressed throughout the body to act downstream as part of receptor coupling, there are
two additional guanine exchange factors (GEFs) that are tissue specific and facilitate the ac-
tivation process. Both additional GEFs are distributed in the central nervous system [68,69].
Ras protein-specific guanine nucleotide releasing factor 1 (Ras-GRF1) is also expressed in
the pancreas [70], while Ras-GRF 2 is additionally expressed in T-Cells [71,72].

While Ras has some slow intrinsic GTPase ability, its signal is usually terminated in
conjunction with GTPase activating proteins [22,73]. Ras GAPs catalyze the hydrolysis of
the bound GTP, accelerating the process by a factor of 105 [74,75]. By ending the signaling
driving the MAPK pathway, these tumor suppressors prevent unlimited and unregulated
cell proliferation and other cellular outcomes downstream of Ras [76,77]. Some of the
most studied members of this family include neurofibromin and DAP2IP [76]. Whether
GAP’s loss of function occurs through germline or somatic mutations [78], proteasomal
degradation [79] or epigenetic silencing [80,81], the resulting proliferation of cells by
prolonged Ras signaling are recognized in having a role in many cancers including lung [82],
prostate [83,84], and hepatocellular cancers [85,86].

Ras molecules have also been shown to cluster together on different microdomains of
the plasma membrane. Inactivated HRas-GDP isoforms have an affinity for lipid rafts on the
plasma membrane near its triggering receptors and GEFs [67,87]. Lipid rafts are transient
nanoscale clusters of protein and cholesterol within the plasma membranes. These liquid-
ordered regions form around the HRas isoforms, partly due to the deep insertion of the
palmitoyl moieties into the bilayer resulting from the GDP-induced confirmation [88].
Once GDP is exchanged for GTP, activated HRas’ conformational change induces changes
in the N terminal catalytic domain and the hypervariable linker domain [89]. These changes
decrease the extension of the palmitoyl moiety and release HRas-GTP from the liquid-
ordered region. HRas-GTP enters a new liquid-disordered microdomain which allows for
preferential interaction with the scaffolding protein Galectin-1 (Gal-1) as well as interaction
with Raf and other subsequent signaling proteins [88,90]. Gal-1 is a known regulator
of Ras nanoclustering specific to HRas. When Ras nanoclusters begin to recruit effector
proteins, it induces Raf dimerization. Gal-1 binds to the Ras-binding domain on two Raf
molecules, stabilizing the Raf dimer and conveying stability of Ras dimers and the whole
nanocluster. While Gal-1 is specific to H-Ras, other scaffolds for the other isoforms include
galectin-3, nucleophosmin and caveolae [21]. Due to the lack of palmitoylation motifs,
KRas proteins have their own nonoverlapping, cholesterol-independent liquid-disordered
microdomains. These clusters, like KRas signaling, are actin dependent [87]. NRas localizes
to the borders of liquid ordered/liquid disordered microdomains as the GTP bound state
preferentially localizes to cholesterol sensitive clusters [88,91]. These patterns of clustering
and microdomain association have been a recent interest of research, as these patterns are
suggested to play a role in determining how each isoform has a distinct function and sig-
naling throughout the body. Where they cluster facilitates interactions with their activators,
scaffolds and substrates, as well as with other Ras molecules to promote the dimerization
that supports coupling with Raf. It can also determine the susceptibility of each isoform to
different modifications. Differences in the microenvironments has been shown to determine
that HRas and NRas can be targeted for ubiquitination signaling, allowing them to be
transported to endosomes’ signaling network [92]. As the microdomains of Ras are better
mapped and understood, they will provide more understanding on the regulation of Ras
and how mutations in distinct isoforms may affect tissues differently.
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Recently, there has been a renewed interest in mapping the pathways of G-protein
coupled receptors (GPCRs) and their roles in tumorigenesis. Many neuropeptides, in-
cluding galanin, neurotensin, and gastrin-releasing peptide, have been found to stimulate
proliferation and survival of small cell lung carcinoma cells through GPCR activation
of ERK activity [93]. Each peptide signals through their specific GPCR, and several
GPCR groups interact directly with the Ras-Raf-ERK-MAPK pathway as illustrated in
Figures 4 and 5. In various cell types, the effects differ depending which α-subunit isoform
is utilized. Gαs induces adenylyl cyclase to produce the second messenger cAMP, trigger-
ing both protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac-1).
Downstream, this can modulate the activity of Raf proteins: increased BRaf activity or
inhibition of c-Raf action [94–96]. In adrenal medullary cells, Gαs signals through cAMP,
PKA and Rap-1 potentiates the effects of growth factors and supports differentiation into
sympathetic neurons [97]. In comparison, Gαi subunits have the opposite effect by deac-
tivating adenylyl cyclase and decreasing the amount of cAMP present [94]. Winitz et al.
showcased Gi activation of CRaf-MEK-ERK in fibroblasts with the acetylcholine muscarinic
m2 receptor [98] (Figure 5). Additionally, the βγi subunits of these receptors, as well as
the Gq GPCR family, can have additional effects in some cells through the activation of
phospholipase C-β (PLCβ), which will lead to the activation of the Raf-MEK-ERK pathway
to induce chemotaxis and proliferation. Della Rocca et al. found that stimulation of α1B
or α2A adrenergic receptors triggered these pathways to cause a rapid 5–10-fold increase
in ERK phosphorylation. This activation relies on the phospholipase C, calmodulin, Pyk2
and Src pathways and suggested that fibroblasts, ovary cells and neuroblastoma cells
used this mechanism for cellular proliferation [99]. Bγ subunits have also been shown
to cause the accumulation of GTP-bound Ras proteins, prolonging their signals [100].
Furthermore, constitutively active Gq receptor’s Gα14 subunits have been shown to in-
crease the formation of GTP-bound Ras and the downstream phosphorylation of ERK in
hepatocellular carcinoma cells [101]. G protein-coupled receptors are also part of chemokine
and environment-sensing axes that are being researched as possible drug targets in B-cell
lymphomas as well as prostate and ovarian cancers [95,102–105]. In addition to direct
activation of the Ras-Raf pathway, some GPCRs have also been shown to mediate and
increase the interaction between the scaffolding protein 14-3-3 and CRaf to increase CRaf
signaling [106].
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Figure 4. G protein-coupled receptor subunits Gαq and Gβγi interaction with the Ras-Raf pathway. G-proteins are
heterotrimeric guanine nucleotide binding proteins with α-, β-, and γ-subunits. When a ligand binds to the extracellular
portion of the receptor, it confers a guanine nucleotide exchange factor confirmation that induces the α-subunit to exchange
its bound GDP to GTP. This causes the α-subunit to disassociate from the receptor and βγ- subunit. Both the α and βγ

subunits effect changes in the cell, before the α subunit hydrolyzes the GTP and returns the receptor complex to its inactive
state [94,95,107,108]. Both αq and βγi activate phospholipase C-β (PLCβ) to create the second messengers of diacylglycerol
(DAG) and inositol-1,4,5-triphosphate (IP3) through the hydrolyzation of phosphatidylinositol 4,5-bisphosphate (PIP2) [109].
DAG activates PKC, which directly phosphorylates and activates Ras proteins [110,111]. IP3 stimulates the calmodulin
pathway and Pyk2 kinase by way of inducing calcium release from the endoplasmic reticulum [112]. The resulting
phosphorylation provides the base for Shc anchoring and recruitment of Ras’ guanine exchange factor complex [113].
Both DAG and IP3 play a role in allosterically controlling CalDAG-GEF1, a guanine exchange factor for Rap1 [94,114].
Once Rap1 has exchanged its bound GDP for GTP, it can activate BRaf in the place of Ras [115]. Furthermore, βγi activates
phosphoinositide 3-kinase (PI3K), which augments cell signaling from tyrosine kinase receptors to increase Dynamin II [116],
an additional anchor for Shc and Ras’ GEF complex [117–119].
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Figure 5. G-protein-coupled receptor subunits Gαs and Gαi interaction with the Ras-Raf pathway. When activated by a
ligand, the GPCR is induced to exchange its bound GDP for GTP, freeing the α subunit to act on the cell. αs acts on adenylyl
cyclase (AC) to increase the production of the second messenger cAMP from ATP [120]. In turn, cAMP activates Epac-1 [121]
and protein kinase A [120]. Epac-1 and C3G, a downstream molecule from PKA, are guanine-nucleotide exchange factors
for Rap-1 and induce the exchange of GDP to GTP to activate it [121,122]. Both activate Rap-1, which can modulate the
activity of BRaf [115]. Protein Kinase A has other mechanisms of action as well. It can directly prevent the activation of
CRaf through phosphorylation. Both activate Rap-1, which can modulate the activity of BRaf [115]. Protein kinase A has
other mechanisms of action as well. It can directly prevent the activation of CRaf through phosphorylation [123]. It also
activates a Ras GEF, RasGRF1, to start the MAPK cascade in certain cells [124]. In contrast, αi inhibits adenylyl cyclase and
produces opposite effects. It also activates a Ras GEF, RasGRF1, to start the MAPK cascade in certain cells [124]. In contrast,
αi inhibits adenylyl cyclase and produces opposite effects.

2.2. Activation and Regulation of Raf Protein

The classical MAPK cascade continues with the activation of the serine/threonine
kinase Raf. There are three Raf isoforms that can be activated: ARaf, BRaf, and CRaf (also
called Raf-1). All three isoforms share a similar conserved two-lobe structure connected
by an oscillating hinge. These structures can be further broken down into the Ras-binding
domain (RBD), the cysteine-rich domain (CRD) and an acidic N-terminus (NTA) on the
N-terminal side as well as a serine/threonine-kinase domain and 14-3-3 binding motif on
the C-terminal side. The intervening hinge region has a second conserved region (CR2)
with another 14-3-3 recognition site [125,126]. The CRD domain is a conserved C1 domain,
or a small domain found in many proteins that are activated at the membrane [126].
Despite this similarity, each isoform has varying activity levels and roles throughout
the cell.
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Before activation, or in non-dividing cells, Raf’s N-terminus docks onto and auto-
inhibits the kinase region to prevent any activity [127]. This autoinhibition is stabilized by
the regulatory 14-3-3 proteins [126]. These are phosphoserine/phosphothreonine binding
proteins with two Raf binding sites. In the inactive state, 14-3-3 binds to both the C-terminus
and the CR2 site in the intervening hinge motifs of a single Raf molecule. [128–131]. To facil-
itate 14-3-3 binding, the CR2 site is phosphorylation by several different enzymes, including
protein kinase A (PKA) [23,132], AKT [133,134], AMPK [135–137] serum/glucocorticoid
regulated kinase (SGK) [128] and LATS1 [138]. All parts of this inactivating bundle are
oriented by the CRD domain at the center of the complex. This positions active site of
the C-terminal kinase domain to point outwards from the bundle and coordinate with
Raf’s substrate, MEK. Both Raf and MEK remain inactive as their alpha helical domains
are still displaced, but have their active sites aligned around an ADP molecule [126].
Additionally, the CRD domain is prevented from interacting with the cellular mem-
brane [139].

To switch confirmations, the Raf protein must first be recruited to the plasma mem-
brane. An anchored and activated Ras will bind to the RBD of Raf with nanomolar affinity
due to hydrogen bonding and electrostatic interactions to form an extended β sheet struc-
ture. There is an inherent flexibility around this binding, allowing the Raf molecules to
rotate to enter better positions. After this binding, the CRD domain is released from the
autoinhibition complex. A zinc finger motif forms between the RBD, the CRD and the
short five amino acid linker region between them, allowing the two domains to interact
directly with each other and as one extended structure [139,140]. The CRD domain will
then also creates a large hydrophobic interface with Ras to stabilize its interaction with
Raf. The hydrophobic portions of CRD will also contact the bilayer’s phospholipids to
anchor the complex with the membrane [139]. Furthermore, the release of CRD exposes
the phosphorylated serine regulatory site in the CR2 region of Raf. Protein phosphatase 1
(PP1) and the leucine rich repeat scaffold protein SHOC2 removes the phosphorylation,
disrupting the inhibitory interaction with 14-3-3 [141–145]. This dichotomy between the
phosphorylation of the CR2 site acts as a valuable regulation point for Raf activity and
allows many other pathways throughout the cell to feedback and influence Raf regula-
tion. Further stabilization is due to the Ras clustering. Clustering close together allows
nearby Raf molecules to dimerize [146]. The dimerization allows the autophosphorylation
of the pair’s NTA motifs and activation loop segment on the C-lobe [146,147]. This is
further supported when 14-3-3 binds to the C-terminal phosphoserine sites (Ser621 on Raf-1
and Ser729 on B-Raf) of both Raf proteins to strengthen the dimerization and promote
Raf activity.

2.3. Ras-Raf-MEK-ERK Pathway Interaction with p53

In addition to the transcription factors that ERK targets, the Ras-Raf-MEK-ERK path-
way interacts with several other key cellular pathways to mediate mitogenic signaling.
To keep cells dividing, the activation of the classical MAPK cascade prevents the acetylation
of p53′s DNA binding domain. Without this acetylation, p53 has decreased transcriptional
activation of cyclin-dependent kinase inhibitor p21, effectively blocking the p53/p21 axis
that would induce cell cycle arrest [148,149]. Additionally, inactivation of the p53/p21
cascade can induce cell division through the Raf-MEK-ERK cascade independent of Ras
activation [148,149]. When Drosten et al. knocked down expression of p53 or p21 in Rasless
cells, they observed proliferation and an activation of the Raf-MEK-ERK signaling pathway,
as seen by increased phosphorylation of MEK and ERK. However, proliferation was not
seen in cells lacking Raf, MEK or ERK. They therefore hypothesized that there was a p53-
dependent feedback loop that decreased the activity of the Raf-MEK-ERK pathway [148].
In tumorigenesis, this inactivation could be due to lost p53 expression, a common muta-
genic step in many cancers. Drosten’s hypothesis suggests that these common mutations
remove negative feedback on cellular proliferation signals induced by the Raf-ERK-MEK
pathway. This could explain some tumors’ continued proliferation despite DNA dam-
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age [150]. Furthermore, activating mutations of ERK can lead to cisplatin resistance in
cancer when paired with inactivating p53 mutations [151]. This pair of mutations also
often coexists in pancreatic cancer [152] and colon cancer [153].

Other research suggests that the two cascades interact through human double minute-
2 protein (Hdm2), which inhibits p53 by sequestration to repress its transcriptional activity.
Hdm2 also acts as an E3 ubiquitin ligase to promote nuclear export and degradation of
p53 [154]. Once activated by ERK, Ets transcription factors bind to the promoter region of
Hdm2, increasing its expression and ultimately causing the degradation of p53. In many
cancers, p53 function is lost due to inactivating mutations, an overexpression of Hdm2 [153]
or a decrease in p14ARF antagonization of Hdm2′s ubiquitin ligase activity [155]. In some
tumor development, Ras mutations may increase Hdm2 levels enough to block p53 from
inducing apoptosis or arresting growth in the face of DNA damage. This could induce the
radiation resistance found in some tumors [153]. Physiologically, the classical MAPK path-
way can be activated by hormones, growth factors, and differentiation factors. In malignant
cells, additional activation can be due to aberrant function resulting from chromosomal ab-
normalities, genetic mutations, overexpression of upstream receptors, or innate mutations
of the Ras-Raf-MEK-ERK pathway proteins themselves [156].

3. Ras-Raf Pathway Mutations

A major source of dysregulation for the MAPK-ERK pathway is the mutations affecting
the proteins of the pathway. These mutations generally affect Ras and Raf and result in
regulatory dysfunction that contributes to oncogenesis [157,158]. Therefore, it is important
to discuss the frequency of these mutations and how they contribute to abnormal signaling.

3.1. Ras Mutations

Ras mutations are present in between 15 and 30% of cancers [159,160] and often result
in pathway hyperactivation [161]. The frequency of these mutations and the location of
each mutation are specific to each type of cancer [157,161]. Blood cancers commonly have
NRas and KRas mutations (Table 1), whereas the majority of solid organ tumors with Ras
mutations (Table 2), including colorectal and pancreatic cancers, generally only have KRas
mutations. These KRas mutations are found at much higher rates than Ras mutations in
blood cancer overall [160]. Depending on the Ras isoform subtype, there are hotspots for
mutation that are unique: KRas is most commonly G12 mutated, and NRas and HRas are
most commonly Q61 mutated, although HRas has an abundance of G12 and G13 mutations
as well [160]. Mutations in these regions are oncogenic because they disrupt interactions
between the Ras protein and GTP-ase activating proteins (GAPs) [22]. GAPs promote
GTP hydrolysis and therefore functionally inactivate Ras. Without GAP-catalyzed GTP
hydrolysis, Ras can remain active in the absence of an upstream signal and can contribute
to oncogenesis. Loss of GAP function has been associated with neurofibromatosis and a
series of cancers, including lung, hepatocellular, and prostate cancers [22,76,162].

Table 1. Various blood cancers with Ras-Raf mutations.

Blood Cancer Ras-Raf Pathology General Treatment Protocol 5-Year Survival References

Myelodysplastic
Syndromes

NRas, KRas mutation
in 7–48% of patients.

Use of erythropoietin
stimulating agents to mitigate
symptoms. Allogeneic stem

cell transplant for higher risk
patients.

29% [163–167]

Acute Myeloid
Leukemia

NRas, KRas mutations
in 10–27% of de novo

patients.

Induction via cytarabine and
the addition of an

anthracycline for patients
followed by consolidation.

24% [167–170]
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Table 1. Cont.

Blood Cancer Ras-Raf Pathology General Treatment Protocol 5-Year Survival References

Acute Lymphoblastic
Leukemia

NRas, KRas mutations
in 5–22% of patients.
BRaf mutations have
been found in infants

and children with acute
B and T-cell

lymphoblastic
leukemia.

Small sample found
~21% of ALL patients
with BRaf mutations.

Induction using vincristine,
corticosteroids, L asparaginase,

and an anthracycline for
patients followed by

consolidation.

Between 30 and
45% [171–174]

Chronic
Myelomonocytic

Leukemia

NRas, KRas mutations
in 30–50% with CMML.
Subset of patients with

CMML-1 presented
BRaf mutations (~7%).

Lack of consensus about a
treatment that markedly

expands overall survival rate.
Hypomethylating agents have
shown some promise and are

approved by the FDA for
CMML. Allogeneic stem cell
transplantation regarded as

only curative treatment.

18.5% [175–179]

Chronic Myeloid
Leukemia

NRas mutations in up
to 1/3 of atypical CML.
Chronic CML patients
present up to 17% of
Ras mutations, up to

58% of acute CML
patients have Ras

mutations.

Standard treatment involves
the use of tyrosine kinase

inhibitors in sequence.
61% [166,169,180,181]

Table 2. Various solid cancers associated with Ras-Raf mutations.

Solid Cancer Ras-Raf Pathology General Treatment
Protocol 5-Year Survival Rate References

Pancreatic
Adenocarcinoma

KRas mutations in up
to 90% of patients. BRaf

mutation in 14% of
patients.

Surgical resection
and/or chemotherapy. less than 5%. [166,182–185]

Melanoma

Ras mutations in up to
36% of patients. BRaf

mutations in 27–70% of
patients.

Surgical resection.
Chemotherapy and

novel targeted
therapies, including

BRaf inhibitors, may be
used when surgical

resection is not
possible.

91%. [169,186–189]

Non-Small Cell Lung
Cancer

KRas mutations in
22–36% of patients.
BRaf in ~2 to 5% of

patients.

Surgical resection
and/or chemotherapy. 25% [190–195]

Colorectal Cancer

KRas mutations in
40–60% of patients.

BRaf mutation in 18%
of patients.

Surgical resection
and/or chemotherapy. 65% [169,187,196,197]
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Table 2. Cont.

Solid Cancer Ras-Raf Pathology General Treatment
Protocol 5-Year Survival Rate References

Seminoma KRas, NRas mutations
in 7–40% of patients.

Radical orchiectomy
with subsequent
chemotherapy.

86.4% [166,198–200]

Bladder Cancer

HRas, NRas mutations
shown in up to 80% of
patients, although Ras

mutations generally
considered present in

10% of patients.

Immunotherapy
and/or chemotherapy,

with radical cystectomy
after invasion of

muscle.

80.8% [201–204]

Hepatocellular
Carcinoma

NRas mutations in 30%,
KRas mutations in 1.6%

of patients. BRaf
mutations in 14% of

patients.

Surgical resection, liver
transplantation, and/or

chemotherapy.
15% [156,166,187,205,206]

Ovarian Cancer

KRas mutation in 13.7%
of patients. BRaf

mutations in 4–30% of
patients

Cytoreductive surgery
followed by

chemotherapy.
40% [187,188,207,208]

Renal Cell Carcinoma Ras mutations in up to
13% of patients.

Tyrosine kinase,
m-TOR, and VEGF
inhibitors. Other

targeting therapies
including

immunotherapy are
used as well.

Between 92.5 and 12%
depending on
localization.

[166,209–211]

The type of oncogenic cell expressing the Ras mutant can also drive mutations on
the MAPK pathway. Some Ras mutants transform healthy cells more aggressively into
malignant cells or to appear at earlier stages of malignancy [212]. Complicating the situation
further, the missense mutations in the Ras codon hotspots have also been shown previously
to result in different interactions with other proteins [157,213]. With many variables
affecting how a specific Ras mutant behaves, researchers have found that response to
pharmacological intervention can depend on the mutation subtype and currently the data
suggest that new forms of treating cancer via Ras targeting may require distinct treatment
methods [212]. As for how these mutations can be induced, Ras oncogenes have been
known for decades to occur in rats treated with carcinogens [214]. The type of mutagen
introduced has been shown to induce varying Ras mutant subtypes [157]. The type
of mutagen introduced has been shown to induce varying Ras mutant subtypes [157].
Tissue exposure to mutagens drives some of the differences in mutational frequency seen
in Ras mutant subtypes. This exposure does not explain why a tumor of a tissue may
have Ras isoforms with different mutant subtypes (e.g., a tumor with HRas favoring 61
codon mutations but KRas 12 codon mutations). Work has been done showing that local
tissue signaling networks may be responsible for a particular kind of Ras mutation and
that certain co-mutation events involving KRas play a role in the specific location of the
KRas mutation [215]. Ras isoforms have been shown to differ in DNA damage but not
repair rates, with codon 12 binding better to carcinogens on KRas compared with HRas and
NRas [157,216]. In addition to increased binding of carcinogens, KRas was shown to be
more at risk for damage from UV radiation than NRas. This is despite NRas having a high
frequency of mutation in malignant melanoma, a cancer associated with UV light exposure,
and is due to the higher prevalence of thymine–thymine sites in the KRas gene [216].
KRas’s higher susceptibility to chemical and UV mutagenesis may explain why it is more
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frequently seen in cancers, although more work is needed to understand why certain
codons may be preferentially mutated in Ras isoforms.

3.2. Raf Mutations

Raf mutations affecting the serine/threonine kinase contribute to a series of devel-
opment disorders and are thought to contribute to approximately 8% of cancers [158,217].
Hundreds of missense mutations have been found affecting the Raf gene that result in
various degrees of hyperactivation and downstream activation of ERK, resulting in onco-
genesis [188]. Of the three Raf isoforms, ARaf, BRaf, and CRaf, BRaf is the isoform more
commonly mutated in cancer [217]. The location of the mutation on BRaf has a large effect
on its ability to increase activity several fold over wild type, as mutations in the activation
loop and phosphate binding loops impair their inhibitory interactions leading to an active
conformation of the Raf protein [217,218]. The V600 location on BRaf is the most important
location for mutations on this protein, with mutations occurring here in 92% of oncogenic
forms of BRaf [218]. Basal kinase activities as high as 480-fold occur depending on the
mutant form with V600D, V600E, V600K, and other similar mutants having some of the
highest basal kinase and phosphorylated ERK levels [187,218]. Alternate mutations other
than V600E at the same location were shown to have higher or similar kinase activity,
however the glutamate replacement requires a single base substitution and is therefore
seen at higher rates in cancers. Various mutants with locations outside of the 600 amino
residues have been found that lower rates of kinase activity. It is thought that there may
need to be a varied activation of the BRaf protein due to the fact that overactivation of ERK
leads to senescence [188].

3.3. MEK and ERK Mutations

Mutations in MEK and ERK are less studied but have been noted in developmental
disorders and in both naturally occurring neoplasms and in response to BRaf inhibitors
as a mechanism for resistance when treating cancers such as melanoma [219–222]. ERK,
although often overactive due to abnormal upstream activity, is rarely mutated in can-
cer [223]. MEK and ERK mutations are not nearly as common as Ras and Raf muta-
tions, however they are vital to understanding mechanisms of resistance. This impor-
tance can be seen with the use of Raf inhibitors for cancers such as melanoma, which
results in brief clinical improvement, but often ends with patients developing resistance
through genetic and nongenetic processes [221]. Depending on the location of the mutation,
MEK1 and MEK2 mutations have been shown to reduce BRaf and/or MEK inhibition by
dabrafenib and trametinib, respectively [220,221,224]. ERK mutations that are clinically
relevant have been seen in response to ERK and Raf inhibitors and are thought to medi-
ate drug resistance [225,226]. Mutations were found that obstruct proper ERK inhibitor
binding, resulting in ERK catalytic activity despite inhibitor treatment. ERK mutation
mediated resistance was circumvented using MEK inhibition, suggesting that resistance
due to mutations of ERK in response to various MAPK/ERK inhibitors may be super-
seded through combination therapy targeting multiple proteins in the pathway [225,226].
Combined inhibition using various MAPK/ERK inhibitors also superseded MEK and NRas
mutations and therefore represents an avenue for cancer therapy [220]. Experimentally
derived and naturally observed ERK mutations are reviewed in [223].

4. Ras-Raf Signaling in Various Types of Cancers

Aberrant signaling in the MAPK cascade holds significant weight in the development of
lymphomas and solid tumors. Disruptions in signaling may be from a variety of causes not
limited to genetic predispositions, as demonstrated in cases of virally associated cancers such
as adult T-cell leukemia/lymphoma, Burkitt’s lymphoma, and hepatocellular carcinoma.



Cancers 2021, 13, 5059 15 of 35

4.1. Leukemia/Lymphoma

Adult T-cell leukemia/lymphoma (ATLL) is an aggressive T-cell neoplasm character-
ized by the clonal expansion of lymphocytes, which displays monoclonal integration of
the human T-cell leukemia virus type 1 (HTLV-1) provirus [227,228]. HTLV-1 was initially
found in a patient cell line diagnosed with cutaneous T-cell lymphoma in 1979 and is
known as the first human retrovirus to be discovered [229,230]. HTLV-1 proviral integra-
tion into the host chromosome is believed to drive many of the observed consequences
of genomic instability and disruption of genome integrity [231,232]. The transformation
of T-cells present in patients with ATLL is almost certainly dependent on the activities of
Tax1 protein in infection/disease progression. However, it is suggested that Tax depen-
dence is only required early during infection as Tax1 is rarely detected in the leukemic
cells of ATL patients [228,231]. Tax1 is the HTLV-1 viral, trans-activator protein that has
pleiotropic effects in activating and dysregulating cellular processes involved in growth
and immunosurveillance and has been extensively studied regarding its activities as a
tumor initiator in ATL [233,234]. Tax1 overexpression performed in cancer cell lines (breast,
colon, and hepatoma) resulted in increased proliferation as quantified by MTT assay [235].
Additionally, protein analysis by Western blot demonstrated an increase in phosphorylation
of all the members in the Ras-Raf pathway, suggesting Tax1-mediated augmentation of
signaling in driving proliferation [235]. A crucial effect of Tax-mediated dysregulation is
increased cellular proliferation through activation of MAPK. A whole-genome integration
study conducted on a cohort of 370 ATL cases revealed numerous genomic alterations,
such as activating mutations, gene fusions, and insertion/deletions [236]. These alterations
overlap with genes that are targeted by and known to interact with Tax1 during HTLV-1
infection. A different study analyzing Ras signaling found that Tax1 expression resulted in
increased Ras-GTP levels and increased phosphorylation of ERK, and that this correlated
with an anti-apoptotic state. Apoptotic resistance was overcome when a Ras farnesylcys-
tein mimetic (FTS, S-farnesylthiosalicyclic acid) was used in Tax 1-expressing cells, which
also resulted in decreased levels of Ras-GTP and phosphorylated ERK, suggesting that
the Ras-Raf-MEK-ERK signaling pathway partially contributes to apoptosis resistance in
ATL [237].

Burkitt’s leukemia/lymphoma (BL) is a subtype of non-Hodgkin’s lymphoma (NHL)
that is diagnosed as an aggressive neoplasm of B lymphocytes [238]. BL can be categorized
into three types, endemic, sporadic, or immunodeficiency-related, and is characterized by
a high rate of proliferation and apoptosis. For the endemic BL, infection or association with
the Epstein–Barr Virus (EBV) is always observed, whereas it is only observed in 25–40% of
cases of sporadic and immunodeficiency-related BL [239,240]. The defining feature of BL
across all subtypes is the translocation of the oncogene MYC into proximity with either the
immunoglobulin heavy or light chain, which results in continuous MYC expression that is
believed to drive the high proliferation rate [241,242]. As such, the development of methods
to target MYC has seen preclinical and clinical attention and represents an important future
avenue to pursue in the treatment of BL [243,244]. The use of chemotherapy is effective
in treating pediatric BL, however, caution is taken when treating adults due to the risk of
tumor lysis syndrome [239]. Although the role of MYC in driving BL oncogenesis has been
well characterized, the importance of other oncogenes such as those in the MAPK cascade
is not as well researched. A study that analyzed the genomes of BL patients at primary
diagnosis and at relapse detected mutations within the MAPK pathway, specifically in
NRas [245]. While MYC mutations were also found in patients at primary diagnosis, the
detection of NRas mutations at relapse suggests that dysregulation of MAPK can provide
therapeutic resistance in patients undergoing chemotherapy.

4.2. Solid Tumors

Liver cancer was the fourth most common cause of cancer related death worldwide in
2020, with the vast majority being hepatocellular carcinoma (HCC) [246]. HCC is usually
observed in patients with preexisting liver conditions, such as cirrhosis or chronic hepatitis
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B or C viral infections [247]. Common treatment modalities include surgical resection,
liver transplantation, trans-arterial chemoembolization, radiation, ablation, and systemic
therapies, including sorafenib [246,247]. This is an aggressive and lethal cancer often
diagnosed at an advanced stage, and there is a need to develop additional therapeutics.
HBV infection, the leading driver of HCC worldwide, induces mutations in tumor protein
p53 and activation of oncogenic signaling [248]. The MAPK-ERK signaling pathway
is highly active (50–100%) in most observed HCC cases, however, mutations of Ras or
Raf genes are rarely observed in humans [206,249]. The lack of Ras-Raf mutations in
HCC suggests that there is either improper upstream signaling or that there is a lapse in
MAPK/ERK inhibition and regulation which results in overactive signaling.

The Ras-Raf pathway is known to play a critical role in HCC. Several members in
the MAPK-ERK pathway are overexpressed in HCC. CRaf and MEK were found to be
heavily upregulated in both cirrhosis and carcinoma, and CRaf was found to be heavily
phosphorylated in nearly all cirrhosis and carcinoma samples tested by Hwang et al. [250].
Overexpression of Ras, MEK, and particularly CRaf were associated with worse prognostic
outcomes [251]. The upregulation of Raf in HCC is consistent with previous work showing
that it is key in tumor growth and angiogenesis in many different solid cancers and with
data showing that Raf inhibition disrupts these two processes in HCC [251]. Additionally,
a study comparing MEK1/2 levels between tumor and healthy HCC cells, found that only
tumor cells showed high phosphorylated MEK1/2 levels and that an increased expression
of MEK1 in HCC tumor cells lead to more growth in vivo and resistance to apoptosis in
response to MEK inhibitor U0126 [252]. This study and others have also found increased
ERK activation, which mediates upregulation of important factors in cell growth and
proliferation and correlated with tumor size [252–254].

Pancreatic adenocarcinoma (PAC) is classified as a malignant neoplasm of the ductal
or acinar cells in the pancreas and is generally diagnosed through endoscopic ultrasound
and/or other imaging modalities [255]. With surgical and adjuvant therapy resulting
in very low survival rates, alternative forms of treatment are required to produce better
prognoses (Table 1). Mutations of the KRas gene are very common in PAC with a fre-
quency of over 90% reported in cancer cells and are associated with a poor prognosis [256].
KRas has been shown to be required for sustained tumorigenic growth in advanced PAC,
with loss of KRas expression leading to tumor regression [257]. KRas-induced activation of
ERK, the main effector of the MAPK-ERK pathway, is thought to be responsible for a host
of tumorigenic properties including tumor cell chemoresistance, invasion of pancreatic
tumors, and the proliferation of pancreatic tumor cells [256]. KRas has been shown to be
required for sustained tumorigenic growth in advanced pancreatic carcinoma, with loss of
KRas expression leading to tumor regression [257]. In addition, KRas works with a series
of other pathways to induce transformation, evade cell death or suppression of growth,
and other malignant processes as reviewed in [256]. Although KRas mutations have been
shown to be sufficient in transforming pancreatic cells into premalignant cell lines that can
transition into PAC, there are patients who harbor KRas mutations displaying premalignant
cell lines that never develop PAC. This indicates that although KRas is important in driving
initial stages in PAC, other mutations may be needed in concert to develop PAC [258].
CRaf is important for both the initiation of KRas-driven PAC and progression, while BRaf
is seemingly only required for late-stage PAC progression [259].

Non-small cell lung cancer (NSCLC) makes up 85% of lung cancer cases and com-
prises three main types of lung cancer: adenocarcinoma, squamous cell carcinoma, and
large cell carcinoma. Treatment generally involves surgical resection with or without
adjuvant therapy, however most diagnoses of NSCLC are made after metastasis where
5-year survival rates are approximately 6%, indicating a need for an alternative form of
treatment [260]. KRas mutations and elevated KRas expression, as mentioned previously,
are associated with driving forward metabolic activity associated with tumors (such as
increased reliance on glucose, increased energy needs, increased TCA cycle activity, etc.)
and previous research has shown similarities in metabolic activities between lung ade-
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nocarcinoma mouse models and human NSCLC tumor cells [261,262]. KRas mutation
frequency and type can vary with lifestyle habits such as smoking [263]. The G12C muta-
tion is associated with smoking tobacco use in patients with NSCLC [263]. Additionally,
non-smokers and light smokers show fewer KRas mutations than heavy smokers and show
a higher rate of the G12D mutation than the G12C mutation commonly seen in smokers and
NSCLC generally [264]. There are conflicting reports concerning whether KRas mutations,
including subtype (G12C, G12D, etc.) influence the survival outcome of NSCLC patients.
Some reports have KRas mutations associated with poorer outcomes in NSCLC patients,
especially those in early stages, going as far as finding that NSCLC patients with G12C
and G12V KRas mutants had significantly reduced progression-free survival compared
with those with G12D mutations or WT KRas [265,266]. Other reports, however, find that
mutations, including those different in subtype, have no significant survival difference
including during adjuvant chemotherapy [266–268].

In NSCLC and colorectal cancers (CRC), the KRas mutation has been linked to an
increased expression in PD-L1, an immune checkpoint protein expressed in tumor cells
that interacts with the PL1 receptor on T-cells as a method of avoiding immune-mediated
cell death [269,270]. The MAPK-ERK pathway is known to both directly and indirectly
result in the phosphorylation and inhibition of tristetraprolin, a protein that binds PD-L1
mRNA leading to its degradation [269]. An additional method by which the MAPK-
ERK pathway mediates immune subversion is through the ability of KRas mutant tumor
cells to generate suppressive T regulatory cells by secreting IL10 and TGFβ1 [271]. Mod-
ulation of antitumor immune responses occurs in other cancers with mutations in the
MAPK-ERK pathway. Most notably, in BRaf mutant cancers like melanoma or CRC,
immunosuppressive cytokines are upregulated inhibiting the release of inflammatory cy-
tokines by dendritic cells and recruiting cells that downregulate antitumor responses [272].
Cancer-associated fibroblasts are among the cells mediating immunosuppression, and in
BRaf mutant melanoma they have been found to upregulate PD-L1 aiding in immune eva-
sion [273]. BRaf mutations have also been shown to reduce CD8+ T-cell tumor recognition
and induce internalization of major-histocompatibility complex molecules in melanoma
tumor cells [274,275]. Therefore, in patients with KRas and BRaf mutant cancers, immune
checkpoint blockade has presented as an additional avenue of treatment to consider and
has even produced positive results in patients with these mutations [276,277].

BRaf mutations are found in a smaller subset of NSCLC patients with the majority
harboring V600E mutations and in adenocarcinomas [278]. In NSCLC mouse models, it
has been found by various studies that CRaf was required for proper tumor initiation but
not BRaf, as total ablation of BRaf but not CRaf allowed oncogenesis in KRas G12D and
G12V mutant mice [279,280]. Additionally, depletion of CRaf but not BRaf in KRas mutant
mice resulted in an inhibition of downstream ERK phosphorylation, an additional finding
emphasizing the role of CRaf in KRas-driven cancer [281].

5. Targeting of Ras-Raf Signaling in Cancers

Exploring the role of MAPK signaling in the development of various cancers is vital
in identifying potential therapeutic targets. Several MAPK signaling inhibitors relevant
to cancer therapy have been compiled in Table 3. Upstream of Ras, SOS is a novel tar-
get for inhibiting the Ras protein. Several inhibitors have been manufactured including
BI-3406 and BI 1701963 which bind to SOS and disrupt its interaction with Ras [282].
Preclinical research has shown that co-delivering SOS and MEK inhibitors counteracts
the MEK resistance that is commonly seen after prolonged delivery of MEK inhibitors.
There are multiple clinical trials testing BI 1701936 in solid cancer patients with and without
KRas mutations. These trials involve the use of BI 1701963 in combination with differ-
ent MAP/ERK protein inhibitors including KRas and MEK inhibitors (NCT04111458;
NCT04975256; NCT04835714). Another novel target upstream of Ras is SHP2. Multiple
phase I clinical trials using SHP2 inhibitors RMC-4630 and TNO155 are underway tar-
geting KRas mutant NSCLC and other forms of cancer such as head and neck carcinoma
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(NCT04000529; NCT04330664; NCT03634982) [282]. Phase I clinical trials show that SHP2
inhibitors are tolerated well and reduced tumor volume in a subset of KRas G12C mutant
NSCLC when combined with KRas inhibition [283]. Additional trials are being undertaken
combining SHP2 inhibitors with other MAPK protein inhibitors, including the MEK in-
hibitor cobimetinib (NCT03989115; NCT03634982) [283]. SHP2 inhibitor BBP-398 is also
being studied as a monotherapy in patients with advanced solid cancer without the BRaf
V600E mutation (NCT04528836).

Table 3. Inhibitors of MAPK cascade in active clinical trials.

Inhibitor Notes Clinical Trials Targeted Cancers

BI 1701963 Binds SOS1 protein, inhibiting
its activation of KRas

NCT04111458, NCT04975256,
NCT04835714 Lung, colon, and lung cancer

RMC-4630 Selective inhibitor of Shp2,
indirectly inhibiting KRas

NCT03634982, NCT03989115,
NCT04916236

Pancreatic, colorectal, and
non-small cell lung cancer

TNO155 Selective inhibitor of Shp2,
indirectly inhibiting KRas

NCT04330664, NCT04292119,
NCT04000529

Lung, head and neck,
esophageal, gastrointestinal and

colorectal cancer

BBP-398 Selective inhibitor of Shp2,
indirectly inhibiting KRas NCT04528836 Advanced solid tumors

Sorafenib

Inhibitor of multiple
intracellular and cell surface

kinases such as CRaf and BRaf
that are involved in tumor cell
signaling, angiogenesis, and

apoptosis

NCT01730937, NCT03518502,
NCT01371981

Liver and thyroid cancer,
leukemias

Sotorasib
(AMG 510)

KRas inhibition specific to
G12C mutation

NCT03600883, NCT04303780,
NCT04933695 Non-small cell lung cancer

MRTX849 KRas inhibition selective to
the G12C mutation NCT04793958, NCT04685135 Non-small cell lung and

colorectal cancer

JAB-21822 KRas inhibition selective to
the G12C mutation NCT05009329, NCT05002270 Non-small cell lung and

colorectal cancer

GFH925 KRas inhibition selective to
the G12C mutation NCT05005234 Advanced solid tumors

LY3537982 KRas inhibition selective to
the G12C mutation NCT04956640

Non-small cell lung, colorectal,
endometrial, ovarian, and

pancreatic cancer

Tipifarnib
(R115777)

Farnesyltransferase inhibitor
that prevents

post-translational processing
of Ras proteins. Prevents Ras

from membrane binding

NCT03496766, NCT04997902,
NCT03155620

Non-small cell lung and head
and neck cancer, non-Hodgkin

lymphoma

Rigosertib

Targets mutated Ras pathway
in leukemia by interacting

with effectors proteins
containing Ras binding

domains

NCT04263090, NCT04263090,
NCT03786237

Myelodysplastic syndrome,
non-small cell lung cancer, and

squamous cell carcinoma

Trametinib
(GSK1120212)

Non-ATP-competitive
inhibitor of MEK1/2.

FDA approved, suggested to
use in combination with BRaf
inhibitors due to resistance.

NCT03340506, NCT04940052,
NCT02101788

Non-small cell lung, thyroid,
ovarian and peritoneal cancer,

melanoma
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Table 3. Cont.

Inhibitor Notes Clinical Trials Targeted Cancers

Mirdametinib
(PD0325901)

MEK1/2 inhibitor (derivative
of CI-1040)

NCT02022982, NCT03905148,
NCT04923126

Ovarian, endometrial,
pancreatic, thyroid, and

non-small cell lung cancer,
melanoma, glioma

Selumetinib
(AZD6244)

Highly selective,
non-ATP-competitive MEK1

inhibitor.

NCT04576117, NCT03705507,
NCT03705507

Non-small cell lung cancer,
glioma, leukemia

Binimetinib
(MEKTOVI; MEK162)

Highly selective,
non-ATP-competitive

MEK1/2 inhibitor.

NCT04657991, NCT02928224,
NCT03843775

Colorectal cancer, melanoma,
and other BRaf mutant

malignancies

RO5126766
(CH5127566)

Selective Raf/MEK1/2
inhibitor

NCT02407509, NCT03875820,
NCT04720417

Non-small cell lung, ovarian,
and colorectal cancer, multiple

myeloma, melanoma

HL-085 Selective MEK1 inhibitor NCT03973151, NCT03990077,
NCT03781219

Non-small cell lung cancer,
melanoma, and BRaf mutant

solid cancers

Ulixertinib
(BVD-523)

ATP-competitive, reversible
inhibitor of ERK1/2

NCT04145297, NCT03417739,
NCT04488003

Gastrointestinal cancers,
melanoma, and BRaf mutant

solid cancer

Ras itself has been considered as a target for cancer therapy. However, due to the
difficulty in targeting Ras, contemporary efforts focused on targeting other proteins in
the MAPK-ERK pathway despite Ras, particularly KRas, having high rates of oncogenic
mutations in multiple cancers, especially PAC [259]. Indirect methods of targeting Ras
include the use of farnesyltransferase inhibitors, which inhibit proteins that result in Ras’s
localization to the cell membrane. Tipifarnib has shown efficacy in multiple phase II trials
for acute myelogenous leukemia and myelodysplastic disorders but has not shown success
in targeting advanced PAC [284,285]. Tipifarnib has also recently been designated as a
breakthrough therapy by the FDA for HRas mutant head and neck squamous cell carcinoma
after positive results from a phase II clinical trial and has shown preclinical activity in
HRas mutant thyroid cancer cell lines [286,287]. Additional clinical trials are underway
using tipifarnib for HRas mutant NSCLC and head and neck squamous cell carcinoma
(NCT03496766; NCT04997902). While significant challenges arise in targeting specific KRas
oncoproteins, breakthroughs in targeting the KRas G12C mutant have yielded the approval
of Sotorasib as treatment for NSCLC [40]. These drugs represent the newest attempt at
targeting the MAPK-ERK pathway, and approval of Sotorasib marks the first successful
case of covalent Ras inhibition [38]. Although this new avenue of therapeutics presents
with much optimism, KRas G12C inhibitor resistance has already been seen in preclinical
models [38–41]. Genetically heterogenous tumors with mutations untargetable by G12C-
specific drugs will inevitably develop resistance once the selective pressure of a drug
treatment is exerted. To exacerbate the issue of resistance, tumors which lack dependency
on KRas signaling may have intrinsic resistance, demonstrated by continued viability of
tumor cells despite complete ablation of KRas signaling [288]. Researchers have explored
additional explanations and have found that the mesenchymal cancer cell phenotype,
which has been previously associated with a lower reliance on KRas for tumorigenic
processes, instead relies on PI3K signaling, mediating resistance to G12C inhibitors [41].
These inhibitors are also specific for the G12C mutation which limits their use as this
mutation is not common in several cancers including PAC (~1%), where the G12D and
G12V mutations are markedly more common [289]. In accordance with discovery of the
G12C inhibitor, there have been recent successful attempts at developing a rudimentary
KRas G12D inhibitor that showed efficacy in cell-based assays and may point toward an
additional method of treatment for KRas-driven cancers in the future [290].
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Looking beyond targeting Ras directly, BRaf inhibitors developed to target the popular
V600E mutant (vemurafenib, dabrafenib, etc.) have been pursued for their disruption of
the MAPK-ERK pathway in cancers with BRaf-driven cancers, including BRaf mutant
melanoma and NSCLC [193]. These inhibitors, however, have been ineffective in KRas-
driven cancer [259,291,292]. An issue that can arise with use of Raf inhibitors alone is
paradoxical activation. This was seen clinically when a patient with KRas mutant NSCLC
was treated with vemurafenib and showed signs of a tumor flare indicative of paradoxical
activation that may occur when weakly inhibiting Raf kinases [293]. Raf inhibitors were
developed to avoid paradoxical activation by also targeting Raf dimers (e.g., LXH254,
LY3009120, PLX8394, etc.) [259]. These have resulted either in high toxicity or were un-
able to inhibit CRaf, the particular Raf isoform important in the initiation of PAC [259].
Pan-Raf inhibitors are currently undergoing investigation for various solid tumors, aiming
to avoid paradoxical activation. Sorafenib, a potent oral inhibitor of CRaf and BRaf, as well
as several tyrosine kinases have been approved for advanced
HCC [247,250,252,294–296]. There are several issues with the use of sorafenib as a monother-
apy for advanced HCC. HCC commonly does not respond to sorafenib due to the het-
erogeneity of HCC cells [297–299]. When HCC does respond, the clinical benefit of the
drug is limited to stabilizing HCC and resistance is also commonly seen after 6 months
of treatment [297–299]. Synergistic regimen featuring sorafenib codelivery with many
therapeutic drugs that are not MAPK/ERK inhibitors have been investigated for advanced
HCC and include Artesunate, an antimalarial drug that suppresses angiogenesis and cell
proliferation in HCC cell lines [300]. Artesunate is responsible for the creation of reactive
oxygen species that contribute to increased apoptosis and, in the process, create phospho-
rylated ERK and STAT3 that concomitant sorafenib delivery reduces greatly, ultimately
leading to reduced tumor growth [300]. Alternatively, sorafenib has been used alongside
various compounds that inhibit the PI3K-AKT-mTOR pathway [299,301,302].

Downstream of Raf, MEK inhibitors have been developed to impede the MAPK-
ERK pathway. Although effective for melanoma alongside codelivery of BRaf inhibitors,
MEK inhibitors have generally also failed to treat PAC despite preclinical successes [259].
MEK inhibition has been hampered by two main issues, toxicity, specifically ocular toxicity,
and resistance [258]. Drug resistance to MEK inhibitors that develops after prolonged
use is thought to limit its effectiveness [303]. Mutations increasing MEK1 activation and
bolstering resistance to MEK inhibitors have been shown to develop in colon cancer cell
lines and even in a patient with resistant melanoma that developed after MEK inhibitor
use [303]. Intratumor genetic heterogeneity has also been shown to develop in response
to MEK inhibitor delivery in pancreatic cancer cell lines and may contribute to the lack-
luster results of MEK inhibitor use in clinical trials for patients with advanced PAC [304].
In addition, efforts to inhibit MEK have notably led to the removal of negative feedback
against upstream receptor tyrosine kinases, resulting in continued Ras signaling despite
MEK inhibition that may also contribute to resistance [305]. This issue is not isolated to
MEK inhibitors as similar treatment evasion has been reported for G12C inhibitors, with
tyrosine kinase blockade overcoming newly developed resistance, hinting that a potentially
similar mechanism of evasion may exist for G12C inhibitors [288]. Raf inhibitors developed
to avoid paradoxical activation by also targeting Raf dimers (e.g., LXH254, LY3009120,
PLX8394, etc.) have resulted either in high toxicity or a lack of inhibition of CRaf, the
particular Raf isoform important in the initiation of PAC [259].

Following MEK, ERK1/2 is thought to contribute to resistance to Raf and MEK in-
hibitors through loss of ERK feedback inhibition and subsequent ERK reactivation [306].
ERK1/2 feedback inhibition occurs via phosphorylation of proline rich regions on MEK
that reduce MEK1 activity and interrupt activating phosphorylation and protein binding
for MEK1/2 [307]. In addition, phosphorylated ERK levels have been associated with
worse outcomes in patients with PAC [308]. Looking at preclinical models where resis-
tance was developed in response to BRaf or MEK inhibitors, ERK inhibition was shown
to be effective against resistant tumor cells [309,310]. Targeting PI3K and/or mTOR ef-
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fector proteins downstream of KRas, has been an alternative route apart from targeting
the MAPK-ERK protein pathway that is synergistic with combined MAPK/ERK inhibi-
tion and similar to ERK inhibition and has overcome resistant cancer cell lines [311,312].
Additionally, immune checkpoint blockade via the inhibition of PD1, a protein expressed
on T-cells that can be manipulated by tumor cells in order to avoid immune activity, has
also led to reduced resistance to MEK inhibitor trametinib and there are currently mul-
tiple Phase I and II trials combining MAPK/ERK inhibitors with PD1/PD1L inhibitors
in patients with KRas G12C NSCLC (NCT03600883; NCT03600701; NCT02902029) [270].
The use of autophagy inhibitors alongside ERK inhibitors, as in the case of combining MEK
and PDEδ inhibitors, has also shown enhanced antitumorigenic activity [308,312–315].
ERK inhibition, shown to upregulate PAC tumor cell reliance on autophagy and downregu-
late dependence on other metabolic processes, worked synergistically with hydroxychloro-
quine to inhibit growth in preclinical models of PAC [313]. ERK reactivation is often seen
in EGFR inhibitor resistant NSCLC tumors, and therefore ERK1/2 inhibitors can be used as
a part of a multidrug regimen to improve the effectiveness of these inhibitors representing
another innovative use for ERK inhibitors [316,317]. There are concerns about the efficiency
of delivering ERK inhibitors due to possible off-target toxicities and solubility problems,
similar roadblocks shared by MEK inhibitors [318]. To solve these issues, there are efforts
to deliver SCH779284 and other ERK inhibitors alongside standard chemotherapeutics
more efficiently using nanoparticles [318].

6. Conclusions and Future Perspectives

The Ras-Raf-MEK-ERK pathway is a critical component of cell cycle control, exert-
ing strict regulation over proliferation and differentiation. Mutations within this highly
conserved signaling pathway have proven to be key drivers of numerous human blood
and solid cancers. As key regulatory points within the MAPK pathway, Ras and Raf exist
as multiple isoforms with different characteristics regarding activity and involvement in
oncogenesis. Thus, targeting Ras signaling has been a topic of discussion and research.
Most notably, a recent breakthrough in the approval of Sotorasib as a KRas G12C inhibitor
has ignited hope in what was previously considered an undruggable target. In addition,
there are a plethora other KRas G12C inhibitors in clinical trials for NSCLC and CRC such
as JAB-21822, GFH925, LY3537982, and most notably MRTX849 which is leading with
phase III trials (Table 3). Other novel targeting involving the MAPK-ERK pathway include
SOS inhibitors, particularly BI 1701963 which is undergoing phase I/II clinical trials, and
Shp2 inhibitors (Table 3). However, challenges remain in mutational subgroup specificity
leading to drug resistance by tumor genetic heterogeneity, and a need for pan-inhibitors
remains. Furthermore, downstream challenges may arise in paradoxical activation by
MAPK/ERK inhibitors, highlighting the necessity of continued research to circumvent
these challenges.

Alternatively, nutraceuticals are under-researched and interact with MAPK pathway.
Silibinin and Curcumin have been used with sorafenib and have interacted synergistically
to inhibit tumor growth in HCC preclinical models [319,320]. Silibinin as a monother-
apy has inhibited tumor cell proliferation, metastatic potential, ERK1/2 phosphorylation,
and levels of downstream cyclin proteins [319,321–323]. Meanwhile, Curcumin, one of
many plant-derived polyphenols, has been investigated for use in multiple cancers and
pathologies, including HBV-induced HCC, due to its antioxidant, antiviral, and anticancer
functions [324,325]. Further research is needed to study the use of plant-derived com-
pounds for use with and without other MAPK/ERK inhibitors. Other novel methods of
targeting the Ras-Raf pathway include chimeric antigen receptor T-cell therapy, which
involves the use of modified T-cells that recognize antigens specific to KRas mutant cancer
cells and induce T-cell response independent of the usual processing and presentation
by antigen presenting cells [326]. There is currently an active phase I/II clinical trial
using G12V-specific T-cell therapy for pancreatic cancer (NCT04146298). Additional meth-
ods using the body’s immune system include peptide vaccines that work by inducing
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an immune response to a synthetic peptide associated with tumor cells that are pro-
cessed and presented by class I and class II major histocompatibility complex molecules.
There are two phase I clinical trials using KRas-targeted peptide vaccines: one prophylac-
tically for patients at risk of developing pancreatic cancer and the other in patients with
resected microsatellite stable pancreatic or colorectal cancer (NCT05013216; NCT04117087).
Lastly, vaccines using mRNA instead of peptides are being adopted for use against cancer
and have a series of improvements over peptide vaccines including the ability to encode
entire tumor antigens, resulting in greater epitope presentation to T-cells and stimulating a
larger T-cell response [327]. The mRNA vaccine mRNA-5671 targets mutant KRas tumor
cells and is in a phase I clinical trial for patients with advanced or metastatic NSCLC, PAC,
and CRC (NCT03948763).

Furthermore, there are certain types of cancers that have not been thoroughly inves-
tigated in regards to the role played by the MAPK/ERK pathway such as acute myeloid
leukemia (AML) and acute lymphoblastic leukemia (ALL), hematologic malignancies that
are differentiated by clonal proliferation of either myeloid or lymphocytic cells, respec-
tively. More work is needed to elucidate the involvement of Ras signaling in AML and ALL.
The same is true for HPV infection and its associated cervical, oral, anal, and other cancers.
Similarly, while the involvement of the Ras-Raf pathway is increasingly understood in
ATLL and BL, no treatments targeting it exist for these cancers. While much progress
has been made in targeting MAPK/ERK signaling and the growing body of knowledge
surrounding Ras-Raf involvement in oncogenesis yields great potential, substantial efforts
must be made to translate these targets into safe, efficacious treatment for a wide variety
of cancers.
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Abbreviations

MAPK Mitogen-activated protein kinase
ATLL Adult T-cell leukemia/lymphoma
HTLV-1 Human T-cell lymphotropic virus type 1
ERK Extracellular signal-regulated kinase
JNK c-Jun N-terminal kinase
EBV Epstein–Barr virus
HBV Hepatitis B virus
HCV Hepatitis C virus
HPV Human papillomaviruses
GDP Guanosine diphosphate
GTP Guanosine triphosphate
Ras-GRF Ras protein-specific guanine nucleotide releasing factor 1
FTase Farnesyl transferase
GGTase1 Geranylgeranyl transferase 1
Rce1 Ras converting enzyme
Icmt Isoprenylcysteine carboxyl methyltransferase
PDEδ Phosphodiesterase delta
GPCR G-protein-coupled receptors
IL Interleukin
JAK2 Janus kinase 2
SH2 Src homology 2 domain
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Grb2 Growth factor receptor bound protein 2
SOS Son of sevenless
GEF Guanine nucleotide exchange factor
Gal-1 Galectin-1
EGFR Epidermal growth factor receptor
PKA Protein kinase A
PLCβ Phospholipase C-β
RBD Ras-binding domain
PAK p21-activated protein kinase
PKC Protein kinase C
BL Burkitt’s lymphoma
NHL non-Hodgkin’s lymphoma
HCC Hepatocellular carcinoma
NSCLC Non-small cell lung cancer
PAC Pancreatic adenocarcinoma
CRC Colorectal cancer
Shrp2 Src homology region 2 domain-containing phosphatase 2
Csk C-terminal Src kinase
SFKs Src family kinases (SFKs)
Epac-1 Exchange protein directly activated by cAMP
PLCγ Phospholipase C-γ
PAG Phosphoprotein associated with glycosphingolipid-enriched microdomains
PP1 Protein phosphatase 1
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