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Abstract: Understanding the potential association between the urbanization process and regional
water shortage/pollution is conducive to promoting the intensive utilization of local water resources.
In this study, the water footprint model was used to estimate water utilization status in terms of both
water quantity (virtual water footprint (VWF)) and water quality (grey water footprint (GWF)) in the
Beijing–Tianjin–Hebei region (China) during 2004–2017. Their potential coordination relationship
with the local urbanization process represented by the gross domestic product (GDP), population
(POP), and built-up area (BA) was examined using the Tapio decoupling model. The results showed
that from 2004 to 2017, (1) VWF in Beijing and Tianjin showed non-significant decreasing trends, with
reductions of 1.08 × 109 and 1.56 × 109 m3, respectively, while that in Hebei showed a significant
increasing trend, with an increase of 5.74 × 109 m3. This indicated a gradually increasing water
demand in Hebei and decreasing demand in Beijing and Tianjin. In all three regions, the agricultural
sector accounted for a relatively high proportion of VWF compared to other sectors. (2) GWF in
Beijing, Tianjin, and Hebei all showed declining trends, with reductions of 2.19 × 1010, 2.32 × 1010,
and 1.66 × 1011 m3, respectively, indicating considerable local water quality improvement. The
domestic sector contributed as the main component of GWF in Beijing, while agriculture was the main
contributor in Hebei. The major contributor in Tianjin transitioned from the domestic (before 2015) to
the agricultural sector. (3) We found good coordination between VWF and GDP in all three regions, as
their local economic development was no longer overly dependent on water consumption. However,
the expansion of urban built-up area or population would bring about accelerated depletion of water
resources. (4) GWF in the three provinces showed good coordination with GDP, POP, and BA in most
years, implying that the development of urbanization no longer strongly caused the pollution of
water resources. In sum, policymakers should focus on improving agricultural irrigation efficiency
and residents’ awareness of water conservation, so as to gradually achieve sustainable water resource
management in the BTH region.

Keywords: Beijing–Tianjin–Hebei; water footprint; urbanization; decoupling analysis

1. Introduction

Water is an important strategic resource for maintaining ecological balance and pro-
moting economic development [1]. From 2004 to 2017, China’s water consumption and
wastewater discharge increased by 4.96 × 1010 and 2.18 × 1010 m3, respectively [2]. Water
shortage and pollution have become serious environmental security issues that hinder
China’s socioeconomic development [3]. Meanwhile, rapid urbanization development
would further bring about huge pressure on regional water security. (1) Urban population
explosion, as well as the prosperous development of industry and commerce, exacerbates
water consumption [4–6]. (2) Excessive pollutant discharge from the industrial, domestic,
and agricultural sectors triggers serious water pollution problems and further aggravates
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the shortage of available water resources [5,7]. The crisis of water resources has become
a non-negligible “bottleneck” of regional sustainable socioeconomic development [7,8],
which thus attracts the attention of numerous scholars to this hot topic [9].

Previously, official water withdrawal data were commonly used for indicating regional
water consumption [10,11]. However, the water content embedded in products and services
(virtual water) was often ignored when measuring regional water consumption [12]. How-
ever, virtual water accounts for a significant proportion of global water consumption [13],
and it is only by considering this portion of water utilization that we can better reflect the
regional water consumption. The concept of water footprint (WF) has been introduced as
an effective approach for regional water resources research in recent years [14]. WF allows
for water resource utilization assessment from the perspectives of both water quantity and
quality [10,15]. Thus, the virtual water footprint (VWF) can indicate the quantity of water
consumption, including the water content used in the production processes of different
regions (e.g., country [16], urban agglomeration [8], basin [17], city [17], etc.), industrial sec-
tors (e.g., agriculture [6,18], import/export trade [19], etc.), or products (e.g., crops [20,21],
social infrastructure [22], etc.) [6]. Numerous studies have been carried out to evaluate
regional water consumption using the VWF model. Long et al. [23] calculated the VWF of
four provinces in Northwest China in 2000, and found that the VWF was a realistic mea-
surement of the consumption and utilization of water resources. Islam et al. [19] calculated
both the direct water consumption and virtual water footprints in five Australian cities,
and found that the per capita VWF was 8–10 times higher than that of the direct water
consumption in all case cities. El-Marsafawy and Mohamed [24] estimated the agricultural
VWF in Egypt to assess the general water consumption during the growth phase of crops.
In addition, the concept of grey water footprint (GWF) has been proposed as an indicator
of water pollution induced by pollutants such as nitrogen and phosphorus [25,26]. GWF
evaluates the degree of water pollution by considering the amount of fresh water needed
to dilute the water pollutants to meet certain water quality standards [27,28]. It has been
found that the regional GWF is higher than the VWF, which indicates that water quality
issues would lead to more serious water stress than water quantity consumption [29–31].
The neglect of the GWF would thus lead to an underestimation of the regional water assess-
ment. Corredor et al. [32] applied GWF analysis in an artisanal mining region in Colombia,
and found that higher water pollution pressure was associated with dumping of suspended
solids containing mercury. Chini et al. [33] found significant seasonal variation in water
pollution based on estimating the GWF from thermoelectric power plants in the USA.
Chen et al. [34] estimated the water quality situation of the irrigated region of Yinchuan
(China) using the GWF model and revealed its potential driving factors. Feng et al. [28]
quantified the GWF in China from 2003 to 2018, and concluded a continuous deterioration
of the surface water quality.

Generally, previous VWF and GWF studies have mostly focused on topics such as
regional water environment sustainability [35], driving [17,35], regional transfer, etc. [36,37].
Most found that the WF would be affected by the regional economy, population, and other
socioeconomic factors, indicating that the urbanization process has a certain influence on
regional water resource utilization [4,38]. Thus, it is necessary to consider the potential
constraining effect of urbanization on local water resources [4]. For example, Wang et al. [10]
used the WF model to measure water stress in 31 Chinese provinces, and they found
a significant spatial correlation between regional water stress and industrial structure.
Nayan et al. [39] assessed the impact of urbanization on water resources in the Hyderabad
metropolitan region (Pakistan), and found significant overexploitation of groundwater in
commercial and high-rise residential regions. Salerno et al. [40] modeled the impact of
climate change and urbanization on water quality in Northern Italy, showing that both
climate change and urbanization would lead to severe deterioration of surface water
quality. Li et al. [4] found that urbanization indicators—such as per capita GDP, and the
proportions of secondary and tertiary industry—posed significant impacts on regional
water scarcity. Based on the above, a deep understanding of the relationship between
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urbanization and water resource utilization is crucial to the formulation of regional water
resources policies and the promotion of regional sustainable development [4]—especially
from the WF perspective.

Addressing these issues, this study selected the Beijing–Tianjin–Hebei (BTH) region in
China as the case area, and estimated both the water quantity and quality utilization states
of the study region during 2004–2017 using the WF model. Then, gross domestic product
(GDP), population (POP), and built-up area (BA) were selected as the urbanization indica-
tors to explore their potential coordination with WF by using the Tapio decoupling analysis.
The objectives of this research consisted of the following three main aspects: (1) assessing
the water utilization status of the BTH region; (2) exploring the coordination relationship
between the regional water utilization status and urbanization; and (3) providing a scientific
basis and reference for promoting the synergy regulation and sustainable management of
regional water resources.

2. Study Area

The BTH region (located within 36◦03′ N to 42◦40′ N and 113◦27′ E to 119◦50′ E, with
a total area of ~218,000 km2) includes three provincial administrative regions—Beijing,
Tianjin, and Hebei [41]—as shown in Figure 1. The three regions share similar climatic
conditions and integrated water resource systems [41]. According to the China Water
Resources Bulletin in 2017 [42], the total water resources in the BTH region accounted for
only 0.6% of China’s water resources, while its wastewater discharge reached 6.8%. In the
same year, the region’s population reached 1.10 × 106 (~8% of China), and contributed
8.8% of the whole country’s GDP [43]. As a region with a dense population and a high
degree of socioeconomic development, the BTH region is confronting serious water scarcity
and pollution issues [44–46]. However, there is a significant imbalance in the urbanization
levels in Beijing, Tianjin, and Hebei. Beijing and Tianjin are two of the most developed
areas (i.e., provincial-level municipalities) in China, while Hebei shows a much lower
socioeconomic development level by comparison [13]. In 2017, the urbanization ratio
(i.e., the proportion of the urban resident population to the total resident population of
the region) in Beijing and Tianjin reached 86.5% and 82.9%, respectively, while in Hebei it
was only 55%. Specifically, Hebei (with 11 prefecture-level cities) occupied ~3 times the
population size of Beijing, but shared almost the same GDP [47]. With the advancement
of regional integration in the BTH region, it is crucial to realize the synergy and equitable
utilization of water resources, as well as joint prevention and control of water pollution, in
the context of the different urbanization levels of the three areas [18].
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Figure 1. The geographical location of the study area.

3. Methodology

The general workflow of this study is illustrated in Figure 2. (1) Based on the statistical
yearbook data of the BTH region, the year-by-year water resource characteristics were
quantified by VWF and GWF analysis. (2) The Tapio decoupling model was used to
investigate the coordination relationship between the WF and urbanization indicators.
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Figure 2. The research framework of this study. VWFa: agricultural virtual water footprint, VWFi:
industrial virtual water footprint, VWFd: domestic virtual water footprint, VWFe: ecological virtual
water footprint, VWFim: imported virtual water footprint, VWFex: exported virtual water footprint.
GWFa: agricultural grey water footprint, GWFi: industrial grey water footprint, GWFd: domestic
grey water footprint.

3.1. Data Sources

VWF included six sections (Figure 2): agricultural (GWFa), industrial (VWFi), domes-
tic (VWFd), ecological (VWFe), imported (from another region) (VWFim), and exported
(to another region) (VWFex) [35,48]. (1) Agricultural products were divided into two cat-
egories: crops and livestock products. Calculation of VWFa required the annual crop
production and livestock breeding data, which were obtained from the local statistical
yearbooks [43,49,50] and the China Regional Economic Statistical Yearbook [51]. By referring
to related studies [35,52,53], 10 types of typical agricultural products in the study region
were chosen, and their related virtual water values are listed in Table 1. (2) VWFi, VWFd,
and VWFe are calculations of the industrial, domestic, and ecological water consumption,
which were obtained from the China Statistical Yearbook [54] and the China Water Resources
Bulletin [42]. (3) VWFim and VWFex can be treated as the virtual water volume in the
import and export trade in the BTH region (i.e., the trade volume multiplied by the water
consumption amount per CNY 10,000 (the Chinese currency) of GDP), and the data on
both can be acquired from the China Statistical Yearbook [54].

Table 1. Virtual water per unit of crop products and livestock products (m3/kg) [35,52,53].

Products Virtual Water Content

Grain 1.13
Cotton 4.40

Oil plants 3.97
Fruit 0.82

Vegetables 0.10
Pork 2.21
Beef 12.56

Mutton 5.20
Poultry 3.65

Eggs 3.55
Dairy 1.90

GWF included three sections (Figure 2): agricultural (GWFa), industrial (GWFi), and
domestic (GWFd) [34,48]. (1) GWFa required the annual amount of nitrogen fertilizer (N)
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applied to crops in each region, which were acquired from the China Environmental Statistical
Yearbook [2] and local statistical yearbooks [43,49,50]. (2) GWFi and GWFd required the data
on chemical oxygen demand (COD) and ammonia nitrogen (AN), as well as associated
wastewater discharges from the industrial and domestic sectors. These were obtained from
the China Environmental Statistical Yearbook [2].

In addition, three indicators were chosen to represent the process of urbanization in
the study region, including GDP (for economic urbanization), population (for demographic
urbanization), and built-up area (for spatial urbanization). All of these indicators were
obtained from the China Statistical Yearbook [54] and local statistical yearbooks [43,49,50].

Considering the accessibility of all of the abovementioned data in Beijing, Tianjin, and
Hebei, the period for obtaining the data involved in this study was set to 2004–2017.

3.2. Virtual Water Footprint Analysis

VWF indicates the amount of actual water consumed in the products and services
required to sustain the normal life of a regional group under certain physical conditions of
living standards, which can be estimated as follows [35,48]:

VWF = VWFa + VWFi + VWFd + VWFe + VWFim −VWFex (1)

where VWF is the virtual water footprint (m3), which indicates the total quantity of water
consumed in the study area in a year (m3); VWFa is the agricultural virtual water footprint,
which expresses the amount of water consumed in agricultural production in the study
area in a year (m3), and consists of two components—the amount of water used in the
production of crop products, and the amount of water used in the production of livestock
products—and is calculated by multiplying the virtual water content per unit of agricultural
product [16,48]; VWFi is the industrial virtual water footprint (m3), which represents the
amount of water used for industrial production; VWFd is the domestic virtual water
footprint (m3), which expresses the amount of water used for domestic use; VWFe is the
ecological virtual water footprint (m3), which represents the amount of water used for
ecological purposes; VWFim is the imported virtual water footprint (m3), which indicates
the virtual water imported from other regions (m3); and VWFex is the export virtual water
footprint (m3), which represents the virtual water exported from the study area (m3).
VWFim and VWFex are calculated by multiplying the total amount of import and export
trade in each region by the water consumption per CNY 10,000 of GDP. Since all other
economic indicators are expressed in CNY, the total amounts of import and export trade
should be converted from USD (USA dollars) to CNY [35].

3.3. Grey Water Footprint Analysis

GWF is defined as the quantity of fresh water required to assimilate pollutant loads
to achieve the specific environmental water quality standard [29,34], and it is an effec-
tive indicator for quantitatively evaluating the impact of human activities on freshwater
systems [55]. It includes the main sources of water pollution in three sectors: agricultural,
industrial, and domestic [26,28,34].

3.3.1. Agricultural Grey Water Footprint

GWFa is the amount of fresh water required to carry water pollutants caused by
agricultural activities (e.g., livestock manure, livestock house cleaning, fertilizer, and
pesticide use) [34]. According to previous studies [25,56], agricultural water pollution is
mainly caused by nitrogen (N), including the usage of nitrogen fertilizers and pesticide
spraying, etc. Accordingly, the estimation model is as follows:

GWFa =
αN

Cmax −Cnat
(2)

where GWFa is the agricultural grey water footprint (m3); α is the rate of nitrogen fertilizer
entering the water (%), and the national average nitrogen fertilizer inflow rate of 7% is
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chosen for calculation, based on previous studies [34,48]; N is the annual amount of nitro-
gen applied to the crop (kg); Cmax is the standard concentration of pollutant water quality
(kg/m3)—with reference to the Environmental Quality Standards for Surface Water of the
People’s Republic of China [57], this paper adopts the 3rd level (of a total of 5 levels) as
the minimum requirement for wastewater pollution control, with the maximum allow-
able nitrogen concentration of 1 mg/L—and Cnat is the natural concentration of water
(kg/m3), which is the concentration of water pollution under natural conditions without
any anthropogenic interference, and is usually assumed to be 0 [8,26,48].

3.3.2. Industrial Grey Water Footprint

GWFi is the amount of fresh water required to carry the water pollutants caused
by industrial production activities [34]. According to the China Environmental Statistical
Yearbook [2], COD and AN are the main pollutants discharged from industrial wastewater;
thus, this study used COD and AN as the key components to calculate GWFi [8,48]—the
estimation model is as follows:

GWFi = max(GWFi(COD), GWFi(AN)) (3)

GWFi(j) =
Li(j)

Cmax −Cnat
− IWD (4)

where GWFi is the industrial grey water footprint (m3); according to Hoekstra’s grey water
footprint theory [26], GWFi is determined by the most critical pollutants in industrial
wastewater, as the maximum GWFi(j) based on COD or AN (j represents COD and AN);
Li(j) denotes the annual discharge of category j pollutants in industrial production (kg);
IWD is the total annual discharge of industrial wastewater in the study area (m3); Cmax
denotes the pollutant water quality standard concentration, which is 20 mg/L and 1 mg/L
for COD and AN, respectively [26]; Cnat denotes the concentration of water pollution under
natural conditions without any anthropogenic influence—based on the Water Footprint
Assessment Manual [26], the natural water concentrations of COD and AN are 0 mg/L and
0.015 mg/L, respectively.

3.3.3. Domestic Grey Water Footprint

GWFd is the amount of fresh water required to carry the wastewater pollutants
discharged from the domestic activities [34]. Both domestic and industrial wastewater
discharge are point source pollution, and are mainly contributed by COD and AN [48],
which can be estimated in the same way as for GWFi:

GWFd = max(GWFd(COD), GWFd(AN)) (5)

GWFd(j) =
Ld(j)

Cmax −Cnat
−DWD (6)

where GWFd is the domestic grey water footprint (m3); GWFd(j) is GWFd based on COD or
AN (j represents COD and AN); Ld(j) denotes the annual discharge of category j pollutants
in domestic production (kg); DWD is the total annual discharge of domestic wastewater in
the study area (m3); and Cmax and Cnat denote the water quality standard concentration and
natural water concentration of pollutants, respectively, and the values of each parameter
are the same as those of GWFi [26].

Accordingly, the total GWF (m3) of the study area can be determined by combining
the GWFa, GWFi, and GWFd. The calculation formula is as follows:

GWF = GWFa + GWFi + GWFd (7)

3.4. Temporal Analysis of the Water Footprint

The Mann–Kendall (MK) test is a statistical nonparametric rank correlation method
that has been widely used for detecting the monotonic time-series trends in environmental
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elements such as precipitation, runoff, temperature, and water quality [58]. The MK test
does not require samples to follow a certain distribution, and is not disturbed by a few
outliers; thus, it overcomes the restrictions on the form of series distribution restrictions,
and is computationally convenient [59,60]. Therefore, the MK method was chosen to
analyze the temporal trend of the WF in this paper. The calculation formula is as follows:

Sgn(Xb − Xa)


= 1, if Xb − Xa > 0
= 0, if Xb − Xa = 0
= −1, if Xb − Xa < 0

(8)

S =
n−1

∑
a=1

n

∑
b=a+1

Sgn(Xb − Xa) (9)

Var(S) =
n(n− 1)(2n + 5)−∑m

a=1 ta(ta − 1)(2ta + 5)
18

(10)

ZMK =


S−1√
Var(S)

, if S > 0

0, if S = 0
S+1√
Var(S)

, if S < 0
(11)

where Sgn is the sign function; Xa and Xb denote the WF data in years a and b, respectively;
n is the number of data points during 2004–2017; the positive (negative) value of the statistic
S indicates the upward (downward) trend of the series [60]; Var(S) is the variance function
of the statistic S; m is the number of groups containing equal data within the data series; ta
is the number of equal data within a group; and ZMK is the standardized statistic.

In the MK test, the significance level is assumed to be α. When |ZMK| ≥ Z1−α/2, the
original hypothesis of no trend does not hold, and it is considered that there is an upward
or downward trend in the series [61]. When ZMK > 0, it indicates an upward trend in the
series, and when ZMK < 0, it indicates a downward trend in the series. When |ZMK| ≥ 1.28,
it means that the confidence level is greater than 90%; when |ZMK| ≥ 1.64, it means hat the
confidence level is greater than 95%; and when |ZMK| ≥ 2.32, it means that the confidence
level is greater than 99%.

3.5. Decoupling Analysis

Decoupling is a situation in which the total consumption of material energy does not
increase with economic growth, but decreases during economic development [48]. The
decoupling theory originated in physics [62], but then was introduced to the environmental
field to describe the potential relationship between economic development and resource
consumption or environmental pressure [63]. In this paper, the Tapio model was chosen to
analyze the decoupling state between WF and the urbanization process to evaluate their
potential coordination relationship [3].

The Tapio decoupling model is expressed as follows:

D =
∆WF
∆SD

=
WFt+1 −WFt

WFt
/

SDt+1 − SDt

SDt
(12)

where D indicates the decoupling index between ∆WF and ∆SD; ∆WF represents the
change rate of the WF, including VWF (∆VWF) and GWF (∆GWF); ∆SD is the change rate
of urbanization indicators, including the GDP (∆GDP), population (∆POP), and built-up
area (∆BA); and t + 1 and t denote year t + 1 and year t, respectively. The Tapio model
divides the decoupling states into three categories and eight subcategories according to the
three critical decoupling index values of 0, 0.8, and 1.2 [63,64]. Figure 3 and Table 2 show
the details of each decoupling state.
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Table 2. The meaning of each decoupling state.

Decoupling States Meaning

Strong decoupling
(SD)

Urbanization is accelerating while water consumption
(wastewater discharge) is decreasing. At this time, there is
the best coordination relationship between urbanization and

water utilization.

Weak decoupling
(WD)

The increase in the pace of water consumption (wastewater
discharge) is smaller than that of urbanization. At this time,

there is a better coordination relationship between
urbanization and water utilization.

Recessive decoupling
(RD)

The decrease in the pace of water consumption (wastewater
discharge) is greater than that of urbanization.

Strong negative decoupling
(SND)

Urbanization is decreasing while water consumption
(wastewater discharge) is increasing.

Weak negative decoupling
(WND)

The decrease in the pace of water consumption (wastewater
discharge) is smaller than that of urbanization.

Expansive negative decoupling
(END)

The increase in the pace of water consumption (wastewater
discharge) is greater than that of urbanization.

Expansive coupling
(EC)

The increase in the pace of water consumption (wastewater
discharge) is approximately equal to that of urbanization.

Recessive coupling
(RC)

The decrease in the pace of water consumption (wastewater
discharge) is approximately equal to that of urbanization.
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4. Results
4.1. Virtual Water Footprint Analysis

The estimated VWF details in Beijing, Tianjin, and Hebei are shown in Figure 4.
The results show that the multiyear (2004–2017) average VWF of Beijing, Tianjin, and
Hebei was 1.09 × 1010, 9.54 × 109, and 1.19 × 1011 m3, respectively. From the temporal
perspective (Table 3), the VWF of Beijing and Tianjin showed non-significant downward
trends from 2004 to 2017, decreasing by 9.5% (from 1.13 × 1010 to 1.03 × 1010 m3) and 8.5%
(from 1.07 × 1010 to 9.75 × 109 m3), respectively. In contrast, Hebei showed a significant
increasing trend, with a 4.9% increase in VWF from 1.18 × 1011 to 1.23 × 1011 m3. In terms
of the per capita VWF, the three provincial regions differed significantly, as Hebei showed
the largest average value (1661.0 m3/person), while Tianjin and Beijing showed relatively
lower values of 763.73 and 577.6 m3/person, respectively. From 2004 to 2017, the per capita
VWF in all three regions decreased, from 759.7 to 467.7 (Beijing), 1045.3 to 648.7 (Tianjin),
and 1733.6 to 1670.7 m3/person (Hebei).
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Table 3. Mann–Kendall test results for virtual water footprint (VWF) during 2004–2017: α indicates
the significance level; “Yes” or “No” indicates whether there is a monotonic trend (+: increasing trend
with ZMK > 0; −: decreasing trend with ZMK < 0).

Province ZMK Trend (α = 10%) Trend (α = 5%) Trend (α = 1%)

Beijing −0.547 No No No
Tianjin −0.766 No No No
Hebei 2.189 Yes (+) Yes (+) No
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Figure 5 shows the proportion of each VWF component in the BTH region. It can
be seen that there was some similarity in the composition of the VWF of the three case
regions. The agricultural sector was the main contributor to VWF, with an average share
of 59% (6.48 × 109 m3), 81% (7.71 × 109 m3), and 94% (1.13 × 1011 m3) in Beijing, Tianjin,
and Hebei, respectively. The domestic sector was the smallest part of the VWF, accounting
for less than 5% in all three provinces, but compared with 2004, it had increased by 11%
(1.17 × 109 m3), 6% (0.47 × 109 m3), and 1% (0.62 × 109 m3) in Beijing, Tianjin, and Hebei,
respectively, in 2017. There were also significant differences between the three regions. In
addition to the agricultural sector, the import and domestic sectors were the second- and
third-largest contributors to VWF in Beijing, accounting for 27% (2.94 × 109 m3) and 15%
(1.35× 109 m3), respectively, and VWFim in Beijing had highest proportion among the three
areas. Tianjin’s import and export sectors were the second- and third-largest contributors
to VWF, accounting for 24% (2.27 × 109 m3) and 17% (1.60 × 109 m3), respectively, and
VWFex had the highest proportion among the three provinces. Except for agriculture, the
contribution of the other sectors in Hebei Province was very small, accounting for no more
than 6%.
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4.2. Grey Water Footprint Analysis

The estimated GWF details in Beijing, Tianjin, and Hebei are shown in Figure 6. The
results show that the multiyear (2004–2017) average GWF of Beijing, Tianjin, and Hebei was
1.59, 2.24 × 1011, and 1.60 × 1011 m3, respectively. From the temporal perspective (Table 4),
the GWF of Beijing and Hebei showed non-significant (p > 0.1) downward trends from 2004
to 2017, decreasing by 67.6% (from 2.19 × 109 to 7.08 × 109 m3) and 27.4% (from 1.66 to
1.21 × 1011 m3), respectively. Meanwhile, Tianjin showed a significant (p < 0.05) downward
trend, with a 76.6% decrease in GWF from 2.32 × 1010 to 5.42 × 109 m3. In terms of the per
capita GWF, the three regions differed significantly, as Hebei showed the largest average
value (2248.0 m3/person), while Tianjin and Beijing showed relatively lower values of
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1802.3 and 860.7 m3/person, respectively. From 2004 to 2017, the per capita GWF in all
three regions decreased, from 1466.6 to 322.9 (Beijing), 2665.0 to 384.7 (Tianjin), and 2439.3
to 1627.3 m3/person (Hebei).

Int. J. Environ. Res. Public Health 2022, 19, 6793 12 of 20 
 

 

ble 4), the GWF of Beijing and Hebei showed non-significant (p > 0.1) downward trends 

from 2004 to 2017, decreasing by 67.6% (from 2.19 × 109 to 7.08 × 109 m3) and 27.4% (from 

1.66 to 1.21 × 1011 m3), respectively. Meanwhile, Tianjin showed a significant (p < 0.05) 

downward trend, with a 76.6% decrease in GWF from 2.32 × 1010 to 5.42 × 109 m3. In terms 

of the per capita GWF, the three regions differed significantly, as Hebei showed the 

largest average value (2248.0 m3/person), while Tianjin and Beijing showed relatively 

lower values of 1802.3 and 860.7 m3/person, respectively. From 2004 to 2017, the per cap-

ita GWF in all three regions decreased, from 1466.6 to 322.9 (Beijing), 2665.0 to 384.7 

(Tianjin), and 2439.3 to 1627.3 m3/person (Hebei). 

 

Figure 6. Grey water footprint (GWF) and per capita GWF of the BTH region. 

Table 4. Mann–Kendall test results for grey water footprint (GWF) during 2004–2017. 

Province ZMK Trend (α = 10%) Trend (α = 5%) Trend (α = 1%) 

Beijing −2.628 Yes (−) Yes (−) Yes (−) 

Tianjin −0.985 No No No 

Hebei −2.628 Yes (−) Yes (−) Yes (−) 

Figure 7 shows the proportion of each GWF component in the BTH region from 

2004 to 2017. Distinct differences in the composition of the GWF were seen in the three 

case regions. The agricultural sector was the main contributor to GWF in Beijing, with an 

average share of 68% (1.10 × 1010 m3), and the change in GWF during the study period 

was mainly related to GWFd. The industrial sector in Beijing contributed the least to 

GWF, accounting for 2% (0.41 × 109 m3) on average. The main contributor to GWF in 

Tianjin was the domestic sector before 2015, with an average share of 47% (1.14 × 1010 m3), 

and the agricultural sector after 2015, with an average share of 40% (7.7 × 109 m3). The 

agricultural sector was the main contributor to GWF in Hebei, accounting for an average 

of 67% (1.06 × 1011 m3), which was also the largest among the three provinces. The do-

mestic and industrial sectors contributed relatively little to the GWF of Hebei, with an 

average proportion of 23% (3.77 × 1010 m3) and 10% (1.68 × 1010 m3), respectively, and the 

GWFd was the smallest among the three provinces. 

Figure 6. Grey water footprint (GWF) and per capita GWF of the BTH region.

Table 4. Mann–Kendall test results for grey water footprint (GWF) during 2004–2017.

Province ZMK Trend (α = 10%) Trend (α = 5%) Trend (α = 1%)

Beijing −2.628 Yes (−) Yes (−) Yes (−)
Tianjin −0.985 No No No
Hebei −2.628 Yes (−) Yes (−) Yes (−)

Figure 7 shows the proportion of each GWF component in the BTH region from 2004 to
2017. Distinct differences in the composition of the GWF were seen in the three case regions.
The agricultural sector was the main contributor to GWF in Beijing, with an average share
of 68% (1.10× 1010 m3), and the change in GWF during the study period was mainly related
to GWFd. The industrial sector in Beijing contributed the least to GWF, accounting for 2%
(0.41× 109 m3) on average. The main contributor to GWF in Tianjin was the domestic sector
before 2015, with an average share of 47% (1.14 × 1010 m3), and the agricultural sector after
2015, with an average share of 40% (7.7 × 109 m3). The agricultural sector was the main
contributor to GWF in Hebei, accounting for an average of 67% (1.06 × 1011 m3), which was
also the largest among the three provinces. The domestic and industrial sectors contributed
relatively little to the GWF of Hebei, with an average proportion of 23% (3.77 × 1010 m3)
and 10% (1.68 × 1010 m3), respectively, and the GWFd was the smallest among the
three provinces.
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4.3. Decoupling Analysis
4.3.1. Decoupling of the Virtual Water Footprint and Urbanization

Figure 8 represents the decoupling state of VWF with urbanization indicators in the
BTH region from 2004 to 2017. In most years, the relationship between VWF and GDP in
Beijing, Tianjin, and Hebei was decoupled (SD and WD, all >12 years). For VWF and POP,
more than half of the years (8 years) in Beijing were in a decoupling state (SD and WD),
with 5 years of negative decoupling (END and SND). In contrast, Tianjin was dominated by
the decoupling state (SD, WD, and RD), with only a quarter of the years as coupling (EC)
and negative decoupling (END). The decoupling states of VWF and POP in Hebei were
dominated by negative decoupling (END, 8 years). In terms of the coordination relationship
between VWF and BA, the decoupling results in Beijing indicated that the states were not
stable, and there were multiple states of decoupling (SD and WD) and negative decoupling
(END and SND). The VWF and BA in Tianjin and Hebei were decoupling (SD and WD) for
about 10 years.

4.3.2. Decoupling of the Grey Water Footprint and Urbanization

Figure 9 presents the decoupling state of GWF with urbanization indicators in the BTH
region from 2004 to 2017. The decoupling results showed that the urbanization indicators
and GWF were decoupling (SD and WD) in most years in the BTH region, and there
were obvious similarities between the three provinces. In most years, the relationship
between GWF and GDP in three provinces was decoupling (SD and WD, all >12 years). The
most stable decoupling state was in Hebei province (all 14 years were decoupling states).
For GWF and POP, 10 years in Beijing had decoupling states (SD and WD), with 3 years
of negative decoupling (END and SND). Tianjin was dominated by a decoupling state
(SD and WD), with three years of negative decoupling (END) and one year of coupling
(RC). The decoupling states of VWF and POP in Hebei were dominated by decoupling
(SD, 8 years), with 3 years of negative decoupling (END). In terms of the coordination
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relationship between GWF and BA, the decoupling results indicated that the stability of
the decoupling state decreased in the following order: Hebei, Tianjin, and Beijing. In
addition to the decoupling states, Beijing, Tianjin, and Hebei had four years, three years,
and two years of negative decoupling states (END and WND in Beijing; END in Tianjin
and Hebei), respectively.
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SD: strong decoupling, WD: weak decoupling, RD: recessive decoupling, EC: expansive coupling,
RC: recessive decoupling, END: expansive negative decoupling, WND: weak negative decoupling,
SND: strong negative decoupling.
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5. Discussion
5.1. Analysis of Water Resource Utilization in the BTH Region

In this study, we analyzed the water resource consumption and pollution in the BTH
region using the VWF model and GWF model, respectively. The VWF results showed
that the per capita VWF in Beijing (577.6 m3/person) and Tianjin (763.73 m3/person)
was much lower than the national average (1542.7 m3/person) for the same period [65],
while that in Hebei was relatively high (1661.0 m3/person). This indicates that Hebei was
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confronted with a relatively high level of water stress. Moreover, from 2004 to 2017, water
consumption in Hebei showed a significant increasing trend, and was closely related to
population increment (Figure 8), as has also been reported by Kong et al. [35]. The increase
in water demand in Hebei should be additionally supplied by the transfer of water from
the South–North Water Transfer Project [35].

Hoekstra and Mekonnen [66] confirmed that the agricultural sector contributed the
largest share of VWF across the world, especially in China, India, and the USA. Since
the BTH region was the second-biggest traditional agricultural area in China [67], the
proportion of agricultural water consumption was high in all three provinces, especially
in Hebei province (VWFa average >90%)—a largely agricultural province. At the same
time, the rough irrigation methods further led to a large amount of water consumption
in agricultural production [68]. Water consumption in the ecological sector also increased
gradually in the three provinces during the study period (VWFe in Beijing, Tianjin, and
Hebei increased by 11%, 6%, and 1%, respectively) due to the rise in the BTH region’s
synergistic development through a national strategy in 2014, which strengthened the
implementation of various key forestry and ecological projects in the three areas [68]. Both
Beijing and Tianjin had a high share of VWFim and VWFex, due to active trade activities
and the import and export of water-intensive products. The agricultural sector in Hebei
consumed the largest amount of water, while all other sectors accounted for relatively
little (< 2%).

With a well-developed service industry and residents’ living standards [68], the do-
mestic sector in Beijing produced the most wastewater discharge. The crude irrigation
and aquaculture as well as mechanized livestock farming in Hebei Province also led to a
great deal of consumption and pollution of surface water [68]. These all made the problem
of water pollution in the study area one of the key threats to water security. Fortunately,
the per capita GWF in Beijing, Tianjin, and Hebei (860.7 m3/person, 1802.3 m3/person,
and 2248 m3/person, respectively) was significantly lower than the national average level
(4542.5 m3/person, calculated by Cui et al. [69]), which may be benefits of the relatively
advanced wastewater treatment technology and progressively enhanced residential aware-
ness of environmental protection in the BTH region. Moreover, the GWF in all three areas
showed decreasing trends. In particular, Tianjin showed a 76.6% reduction in GWF from
2004 to 2017, and a significant improvement in the overall water environment. This was
because the synergistic development strategy in Beijing–Tianjin–Hebei had led the three
areas to abandon their separate water environment management modes, strengthening the
control of the water environment in this region [70]. In addition, the Water Pollution Preven-
tion and Control Action Plan also strengthened the water environment management in the
BTH region [71], contributing to a significant reduction in wastewater discharge from the
three areas.

5.2. Coordinated Relationship between Water Utilization and Urbanization

According to the Tapio decoupling model, it is known that there is a strong link
between WF and the urbanization process in the BTH region. When the changes in economic
development, population size, and built-up area are stable, the changes in WF will directly
affect the decoupling state [48].

There was a good coordination relationship between VWF and GDP in Beijing (all
13 years were decoupling states (SD and WD)) (Figure 8), while the coordination relation-
ship between POP and BA was still weak (all had 5 years of negative decoupling state).
With the rapid economic growth, Beijing’s water consumption was growing at a lower
rate, or even negatively. However, with the expansion of population size and built-up area,
water resource consumption would grow at a faster rate (END) in some years. Even with
the decrease in population in Beijing in 2017, water consumption still increased (SND). The
coordination relationship between VWF and GDP/BA in Tianjin (Figure 8) was generally
good (all had 12 years of decoupling states (SD and WD)); however, the coordination rela-
tionship with POP was weaker in comparison, with 2 years of negative decoupling states
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(END) and 1 year of a coupling state (EC). The relationship between VWF and GDP/BA in
Hebei (Figure 8) was in good coordination in most years (with 11 years of decoupling (SD
and WD)). Kong et al. [35] also reported a similar decoupling relationship between VWF
and GDP in this region (2004–2017), with the WD state being dominant. This indicates that,
as the least developed province in the BTH region, Hebei’s economic development is no
longer overly dependent on water consumption. However, VWF and POP in Hebei were
in a negative decoupling state (END) in most years, and the increase in population would
lead to accelerated depletion of water resources. To achieve the decoupling of VWF and
POP in Hebei Province, the focus is still on reducing water use for agricultural production,
and promoting the progress of agricultural irrigation technology is an important goal [35].
Generally, this emphasizes the coordination relationship between urbanization and water
consumption, as the higher the economic level (GDP), the lower the consumption of water
resources, whereas the increase in POP and AN would lead to more water consumption, as
has also been confirmed by Li et al. [4]. This suggests that urbanization in the BTH region
plays a complicated role in influencing regional water resources.

The decoupling state of GWF and the urbanization indicators in the BTH region had
strong similarities, and was dominated by decoupling states (SD and WD). Water pollution
and urbanization were generally in a good coordination relationship in all three areas
(Figure 9). With the rapid development of urbanization, the wastewater discharge was
decreasing instead of increasing in most years. This also indicated that the various water
pollution control policies enacted for the BTH region had achieved significant results, and
guaranteed the healthy development of the urbanization process in the BTH region [70].

5.3. Recommendations and Limitations

Based on the main findings of this study, corresponding policy recommendations
are proposed to promote the coordination of urbanization and water resource utilization.
First, agriculture consumes most of the water resources in the region (Figure 5), and
plays a crucial role in achieving the decoupling of VWF and urbanization indicators.
Therefore, agricultural water-saving irrigation technology—e.g., agricultural mechanized
irrigation—should be vigorously developed to improve water utilization efficiency in
parallel with the development of urbanization [35,48]. Second, the increased population
will lead to more water consumption (especially in Hebei; Figure 8); thus, the promotion of
residents’ awareness of water conservation is essential. Third, we found that the average
GWF was much higher than the VWF in all three areas (Figures 4 and 6), which indicates
that water pollution has become the main cause of regional water stress compared to
the physical water usage in the BTH region [29–31]. Moreover, domestic wastewater
contributed to the major role of GWF (Figure 7). It is thus necessary to continue to develop
wastewater treatment technology for the sustainable development of the region [34], and to
raise awareness of water conservation (e.g., stepped price standards to reasonably control
domestic water use [48]).

However, this study has some limitations. First, uniform and static parameters (i.e., the
virtual water content per unit of agricultural product; Table 1) were adopted to estimate
VWFa during the study period. Second, the calculation of GWF only considered the highest
level of pollutants, and did not consider the interaction effects of multiple pollutants, which
is something worthy of further discussion in the future.

6. Conclusions

Water resources are the prerequisite and foundation for regional socioeconomic devel-
opment. Based on the theory and method of WF, this paper calculated VWF and GWF in
the BTH region from 2004 to 2017 to evaluate the situation of water resource utilization.
Meanwhile, the Tapio decoupling model was used to analyze the coordination relationship
between WF and urbanization. The main conclusions can be summarized as follows:

(1) VWF in Beijing and Tianjin showed a non-significant decreasing trend, with a
reduction of 1.08× 109, 1.56× 109 m3, while Hebei province showed a significant increasing
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trend, with an increase of 5.74 × 109 m3. In all three regions, agriculture accounted
for a relatively higher proportion of VWF than other sectors. Improving agricultural
irrigation technology should be an important goal in reducing the consumption of water
and promoting the decoupling of VWF from the development of urbanization.

(2) GWF in Beijing, Tianjin, and Hebei all showed declined trends, with reductions
of 2.19 × 1010, 2.32 × 1010, and 1.66 × 1011 m3, respectively. Because of government
policy interventions, wastewater discharges in the three provinces were reduced, and the
quality of the water environment improved significantly. The domestic sector contributed
as the main component of GWF in Beijing, while agriculture was the main contributor in
Hebei. The major contributor in Tianjin transitioned from the domestic (before 2015) to the
agricultural sector. Future water pollution prevention and control in Beijing should focus
on the domestic sector, and in Tianjin and Hebei it should focus on the agricultural sector.

(3) VWF and GDP in the three areas were almost entirely decoupling, and there was a
good coordination relationship between VWF and GDP, with economic growth no longer
causing an increase in water consumption. In comparison, the coordination relationship
between VWF and BA was weaker in Beijing, while that between VWF and POP was
weaker in Tianjin and Hebei. In some years, the expansion of the built-up area or the
increase in population brought about an accelerated depletion of water resources.

(4) GWF and GDP, POP, and BA were decoupling in most years in the three areas,
there was good coordination between GWF and the urbanization process in general, and
the development of urbanization has not caused significant pollution of water resources.
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