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Abstract: Background and Objectives: This study investigated the usefulness of deep neural network
(DNN) models based on 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and blood
inflammatory markers to assess the therapeutic response in pyogenic vertebral osteomyelitis (PVO).
Materials and Methods: This was a retrospective study with prospectively collected data. Seventy-four
patients diagnosed with PVO underwent clinical assessment for therapeutic responses based on
clinical features during antibiotic therapy. The decisions of the clinical assessment were confirmed
as ‘Cured’ or ‘Non-cured’. FDG-PETs were conducted concomitantly regardless of the decision at
each clinical assessment. We developed DNN models depending on the use of attributes, including
C-reactive protein (CRP), erythrocyte sedimentation ratio (ESR), and maximum standardized FDG
uptake values of PVO lesions (SUVmax), and we compared their performances to predict PVO
remission. Results: The 126 decisions (80 ‘Cured’ and 46 ‘Non-cured’ patients) were randomly
assigned with training and test sets (7:3). We trained DNN models using a training set and evaluated
their performances for a test set. DNN model 1 had an accuracy of 76.3% and an area under the
receiver operating characteristic curve (AUC) of 0.768 [95% confidence interval, 0.625–0.910] using
CRP and ESR, and these values were 79% and 0.804 [0.674–0.933] for DNN model 2 using ESR and
SUVmax, 86.8% and 0.851 [0.726–0.976] for DNN model 3 using CRP and SUVmax, and 89.5% and 0.902
[0.804–0.999] for DNN model 4 using ESR, CRP, and SUVmax, respectively. Conclusions: The DNN
models using SUVmax showed better performances when predicting the remission of PVO compared
to CRP and ESR. The best performance was obtained in the DNN model using all attributes, including
CRP, ESR, and SUVmax, which may be helpful for predicting the accurate remission of PVO.
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1. Introduction

Pyogenic vertebral osteomyelitis (PVO) invades the spine and adjacent structures,
shows non-specific symptoms, and is usually progresses to destructive spondylodiscitis
with abscess formation at the time of diagnosis [1–4]. Long-term intravenous antibiotics
are generally recommended for 6 to 12 weeks for treating PVO, but treatment guidelines
have not been clearly established due to the diversity of causative bacteria and antibiotic
resistance in the regions [2,5–8]. Moreover, in the assessment of therapeutic response, blood
inflammatory markers such as C-reactive protein (CRP) and erythrocyte sedimentation rate
(ESR) can be easily influenced by other physical conditions. Magnetic resonance imaging
(MRI), regarded as the best modality to present the anatomical state of the spine, also has
limitations in differentiating residual PVO and post-treatment structural abnormalities
under the healing process [4,9,10].
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To overcome these limitations, there has been new attempt to apply 18F-fluorodeoxyglucose
positron emission tomography (FDG-PET) in the assessment of the therapeutic response
in PVO [11–13]. Changes in FDG uptake, presented as maximum standardized FDG up-
take (SUVmax), showed superior outcomes for evaluating residual PVO compared to CRP
and ESR [12–14]. However, SUVmax can also be variable depending on the structural
features, including the anatomical location of major PVO lesions and the stabilization of
the damaged intervertebral discs (autofusion) in cured PVO after sufficient antibiotic ther-
apy [15,16]. These characteristics can also cause variability in the SUVmax, even in patients
with cured PVO, and, therefore, blood inflammatory markers should also be considered for
the assessment of therapeutic responses.

Deep learning (DL) is an emerging technique, and its application is gradually in-
creasing in the field of medicine. DL differs from traditional machine learning methods,
such as linear regression, artificial neural network, support vector machines, and naïve
Bayes classifiers, by how representations are automatically discovered from raw data. The
algorithms of DL use multiple deep layers of perceptron that capture low- and high-level
representations of data, enabling them to learn richer abstractions of inputs [17,18]. In par-
ticular, a deep neural network (DNN), a type of DL, is a mathematical model that simulates
the structure and functionalities of a biological neural network. It is a feed-forward neural
network with multiple hidden layers, which can be applied in the problems of classification
and regression [19]. In particular, a DNN is a relatively simple algorithm compared to
other DL techniques and shows excellent performance for clinical predictions by binary
classification based on various clinical features.

In this study, we used DNN to overcome difficulties in obtaining high objectivity
for the assessment of therapeutic responses in PVO. DNN models were developed based
on various combinations of SUVmax, ESR, and CRP, considering their relationships and
complementary effects, and their performances were evaluated and compared to predict
the remission of PVO after antibiotic therapy.

2. Patients and Methods
2.1. Patients

We retrospectively reviewed the prospective collected clinical and radiological data of
100 patients with PVO (63 men and 37 women) treated at single tertiary university hospital
from December 2017 to March 2021. The criteria of inclusion were as follows: (1) patients
presented with clinical symptoms (fever, back pain, or neurological signs) and specific
findings on MRI of PVO, (2) PVO was on thoracolumbar spine, (3) with/without identifi-
cation of causative bacteria in the PVO lesion or ≥2 sets of blood cultures, and (4) above
20 years old. Patients with tuberculous vertebral osteomyelitis, a PVO lesion containing
instrumentation or bone cement, bone infection other than in the spine, recent trauma,
tumor, pregnancy, or experiencing severe concomitant medical problems were excluded.

Under the voluntary written informed consent, all patients participated in this study
to receive a simultaneous FDG-PET/MRI at each clinical assessment during antibiotic
therapy. All clinical and radiological data were collected and analyzed under the approval
of the institutional review board.

2.2. Clinical Assessment and Determining Therapeutic Response

All patients participating in this study underwent clinical assessments to determine
therapeutic responses during antibiotic therapy based on clinical symptoms including fever,
back pain, and CRP (normal range <0.5 mg/L in our institute), which were performed
after the minimum intravenous antibiotic therapy of 3 weeks [20]. In addition, each clinical
assessment was conducted in the absence of any other medical problems that could affect
the decision making. The decisions for therapeutic responses by clinical assessments were
classified as ‘Cured (group C)’ or ‘Non-cured (group NC)’. Simultaneous FDG-PET/MRIs
of the spine involving PVO were taken concurrently at each clinical assessment, regardless
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of the decision for therapeutic response. The choice of selective or empirical parenteral
antibiotics was made after consultation with an infectious disease physician.

At the clinical assessment, decisions based on the condition presenting with sustained
or aggravated clinical symptoms, sustained or re-elevated CRP, and aggravation of the PVO
lesion on MRI (defined as newly developed or progressed epidural/intravertebral/psoas
abscess) and/or persistent causative bacteria on the PVO lesion were classified into group
NC. When the decision was classified into group C by clinical assessment, antibiotic therapy
was discontinued. The decision of group C was observed with a minimum follow-up period
of six months after discontinuing antibiotic therapy, and they were finally confirmed as
group C if there was no recurrence [21]. Recurrence was defined as the condition presenting
with a re-elevation of CRP ≥1 mg/L, aggravated clinical symptoms with/without fever,
and aggravation of the PVO lesion on MRI during the follow-up period. If there was a
recurrence in the initial decision of group C during the follow-up period, the follow-up
was stopped and the decision was finally classified into group NC.

2.3. FDG-PET/MRI and Image Analysis

Each patient underwent simultaneous FDG-PETs/MRIs (Biograph mMR; Siemens
Healthcare, Erlangen, Germany) with fasting for more than 6 h to maintain a blood glucose
level of under 8.9 mmol/L before the intravenous administration of FDG (3.7 MBq/kg). The
acquisition of simultaneous FDG-PETs/MRIs was initiated 60 min after FDG injection, and
the thoracolumbar spine centering PVO lesion was scanned under one–two bed positions
with the approved surface coil. FDG-PET data acquisition was performed over 20 min, and
the MRI data were also simultaneously obtained based on the predetermined sequence
protocol [14]. We applied a 3-dimensional ordered subsets expectation maximization
iterative reconstruction (OSEM-IR) algorithm with 3 iterations and 21 subsets for the FDG-
PET data using a 172× 172 matrix. To measure the FDG uptake value, we drew an ellipsoid
volume of interest including the PVO lesion based on the spine structures of the MRI and
confirmed the maximum standardized uptake value of FDG (SUVmax).

2.4. Deep Neural Network Model

We developed DNN models as pattern classifiers to predict the remission of PVO
using supervised learning. This DNN is a type of feed-forward artificial neural network
whereby logical units of one layer only communicate with the subsequent layer, and it
consists of three kinds of layers including input, hidden, and output layers. DNN models
were developed based on various combinations of the attributes including ESR, CRP, and
SUVmax. The DNN model utilized the backpropagation rule for training, which repetitively
calculates the error function for each input and backpropagates the error to the previous
layer. The weights were adjusted in direct proportion to the error in the neural nodes to
which it was connected. The data of the ESR, CRP, and SUVmax were randomly assigned as
70% to the training set and 30% to the test set, respectively. The DNN model was developed
using Keras 2.6.0 with a TensorFlow 2.6.0 backend, and all experiments were performed
based on a single Nvidia GeForce RTX 2080 Ti graphics card.

2.5. Statistical Analysis

We used SPSS version 25.0 software (SPSS Inc., Chicago, IL, USA) for conducting
the statistical analyses. Categorical and continuous variables are presented as numbers
with percentages and median values with a range, respectively. AUCs were used to assess
the performance of the DNN models to predict the remission of PVO. To compare the
two population means, the Kolmogorov–Smirnov test was used to determine whether
the sample data had a normal distribution (normality test), and then the Student’s t-test
and Mann–Whitney U test were used for parametric and non-parametric continuous
variables, respectively. Probability values (p-values) of less than 0.05 were considered
statistically significant.
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3. Results
3.1. Demographic and Clinical Data

Among 100 patients, 26 were finally excluded from this study due to the following
reasons: only a back muscle abscess with no spondylodiscitis (n = 8), spinal screw within
the PVO lesion (n = 6), tuberculous spondylodiscitis (n = 3), degenerative change (n = 1),
trauma (n = 2), ankylosing spondylitis (n = 2), other severe concomitant medical problems
(n = 1), and lost to follow-up or withdrawal of participation (n = 3). Final analyses were
performed on 74 patients (47 men and 27 women) with a mean age of 67.27 ± 11.18 (37–85)
years. The main cause of PVO was injection or acupuncture (47.3%, 35/74). Back pain was
the most common symptom (97.3%, 72/74) in the initial clinical features of PVO, and fever
was present in half of the patients with PVO (50.0%, 37/74). The lumbar-sacral spine was
the main location of the PVO (87.8%, 65/74). Detailed data are presented in Table 1.

Table 1. Demographic and clinical data.

Characteristics Values

Age, years 67.27 ± 11.18 (37–85)
Sex (Male/Female) 47/27
Cause of PVO

Spontaneous 30/74 (40.5%)
Procedure-related 44/74 (59.5%)
Injection or acupuncture 35/44 (79.5%)
Operation 9/44 (20.5%)

Initial clinical features at diagnosis of PVO
Fever (◦C, >37.3) 37/74 (50.0%)
Back pain 72/74 (97.3%)
Radiculopathy 39/74 (52.7%)
Weakness 10/74 (13.5%)
Bowel and bladder symptoms 4/74 (5.4%)
Extent of PVO, levels 1.35 ± 0.53 (1–3)
Location of PVO

Thoracic spine 6/74 (8.1%)
Thoracic-lumbar spine 3/74 (4.0%)
Lumbar-sacral spine 65/74 (87.8%)

ESR (mm/h) 67.68 ± 30.21 (6–120)
CRP (mg/L) 9.84 ± 9.16 (0.03–33.8)

Duration of follow up, months # 12.66 ± 8.81 (1–44)
PVO, pyogenic vertebral osteomyelitis; ESR, erythrocyte sedimentation ratio (normal range of <20 mm/h);
CRP, C-reactive protein (normal range of <0.5 mg/dL), # after discontinuing of antibiotic therapy under the
decision of ‘Cured’.

3.2. Causative Bacteria and Antibiotic Therapy

The rate of bacterial identification was 51.4% (38/74) in the blood and/or PVO tissue
cultures. The main causative bacterium identified was methicillin-sensitive Staphylococcus
aureus (34.2%, 13/38). The mean duration of parenteral antibiotic therapy was 44.14± 16.70
(21–89) days. Detailed data are presented in Table 2.

3.3. Clinical Assessment and Determination of Therapeutic Response

Among the decisions of residual PVO (no remission), those showing a definite aggra-
vation of the PVO lesion on MRI and/or persistent causative bacteria on the PVO lesion
were classified into group NC (n = 41), and the others (n = 25) with no aggravation of the
PVO lesion on MRI and/or persistent causative bacteria on the PVO lesion were excluded
due to the possibility of false positives for residual PVO caused by other general conditions
or the subjectivity of clinical symptoms. The 84 decisions with remission were followed-up
for 12.66 ± 8.81 (1–44) months. The 80 decisions with no recurrence were finally classified
into group C, and 5 decisions with recurrence were classified into group NC. These five
recurrences occurred at 2.20 ± 1.44 (1–4.5) months during the follow-up period. Therefore,
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the final analysis was performed with 80 patients in group C and 46 patients in group
NC (Figures 1 and 2). There were statistically significant differences in the ESR, CRP, and
SUVmax between groups C and NC (p < 0.001) (Table 3).

Table 2. Microorganisms and antibiotics.

Characteristics Values

Identification of causative bacteria 38/74 (51.4%)
Causative bacteria

Gram-positive bacteria 35/38 (92.1%)
Staphylococcus aureus 18/35 (51.4%)

MSSA 13/15 (60.0%)
MRSA 5/15 (40.0%)

Coagulase-negative staphylococci 6/35 (17.1%)
MRSE 3/6 (50.0%)
Others 3/6 (50.0%)

Streptococcus species 7/35 (20.0%)
Enterococcus species 4/35 (11.4%)

Gram-negative bacteria 3/38 (7.9%)
Escherichia coli 2/3 (66.7%)

Enterobacter species 1/3 (33.3%)
Non 36/74 (48.6%)

Routes of causative bacterial diagnosis
Blood 10/38 (26.3%)
PVO lesion 19/38 (50.0%)
Blood and PVO lesion 6/38 (15.8%)

Duration of parenteral antibiotics, days 44.14 ± 16.70 (21–89)
MSSA, methicillin-sensitive staphylococcus aureus; MRSA, methicillin-resistant staphylococcus aureus; MRSE,
methicillin-resistant staphylococcus epidermidis; PVO, pyogenic vertebral osteomyelitis.

Medicina 2022, 58, x FOR PEER REVIEW 5 of 13 
 

 

Table 2. Microorganisms and antibiotics. 

Characteristics Values 
Identification of causative bacteria 38/74 (51.4%) 
Causative bacteria  

Gram-positive bacteria 35/38 (92.1%) 
Staphylococcus aureus 18/35 (51.4%) 

MSSA 13/15 (60.0%) 
MRSA 5/15 (40.0%) 

Coagulase-negative staphylococci 6/35 (17.1%) 
MRSE 3/6 (50.0%) 
Others 3/6 (50.0%) 

Streptococcus species 7/35 (20.0%) 
Enterococcus species 4/35 (11.4%) 

Gram-negative bacteria 3/38 (7.9%) 
Escherichia coli 2/3 (66.7%) 

Enterobacter species 1/3 (33.3%) 
Non 36/74 (48.6%) 

Routes of causative bacterial diagnosis  
Blood 10/38 (26.3%) 
PVO lesion 19/38 (50.0%) 
Blood and PVO lesion 6/38 (15.8%) 

Duration of parenteral antibiotics, days 44.14 ± 16.70 (21–89) 
MSSA, methicillin-sensitive staphylococcus aureus; MRSA, methicillin-resistant staphylococcus aureus; 
MRSE, methicillin-resistant staphylococcus epidermidis; PVO, pyogenic vertebral osteomyelitis. 

3.3. Clinical Assessment and Determination of Therapeutic Response 
Among the decisions of residual PVO (no remission), those showing a definite ag-

gravation of the PVO lesion on MRI and/or persistent causative bacteria on the PVO lesion 
were classified into group NC (n = 41), and the others (n = 25) with no aggravation of the 
PVO lesion on MRI and/or persistent causative bacteria on the PVO lesion were excluded 
due to the possibility of false positives for residual PVO caused by other general condi-
tions or the subjectivity of clinical symptoms. The 84 decisions with remission were fol-
lowed-up for 12.66 ± 8.81 (1–44) months. The 80 decisions with no recurrence were finally 
classified into group C, and 5 decisions with recurrence were classified into group NC. 
These five recurrences occurred at 2.20 ± 1.44 (1–4.5) months during the follow-up period. 
Therefore, the final analysis was performed with 80 patients in group C and 46 patients in 
group NC (Figures 1 and 2). There were statistically significant differences in the ESR, 
CRP, and SUVmax between groups C and NC (p < 0.001) (Table 3). 

 
Figure 1. Differences in FDG uptake between ‘Non-cured’ and ‘Cured’ FDG-PET/MRIs. A 54-year-
old male patient with lumbar PVO on L4-5 was treated with vancomycin and ciprobay for 46 days. 
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Figure 1. Differences in FDG uptake between ‘Non-cured’ and ‘Cured’ FDG-PET/MRIs. A 54-year-old
male patient with lumbar PVO on L4-5 was treated with vancomycin and ciprobay for 46 days.
The first clinical assessment on the 25th day of antibiotic therapy presented sustained back pain,
intermittent fever, and a CRP/ESR of 1.399/64 (‘Non-cured’). Compared to the initial MRI (a) per-
formed at the other hospital, the first FDG-PET/MRI (b) revealed an elevated FDG uptake (red
arrow; SUVmax 6.58) and progression of the PVO lesion. After additional antibiotic therapy, the
patient showed improved back pain and no fever, with a CRP/ESR of 0.325/31 in the second clinical
assessment on the 46th day of antibiotic therapy (‘Cured’). The second FDG-PET/MRI (c) also shows
markedly decreased FDG uptake and a reduced territory of the PVO lesion (blue arrow; SUVmax 4.3).
However, determination of the therapeutic response seemed to be impossible based on the MRI due
to the continuous enhancement of the PVO lesion even after successful treatment. FDG 18F, fluo-
rodeoxyglucose; FDG-PET/MRI 18F, fluorodeoxyglucose positron emission tomography/magnetic
resonance imaging; PVO, pyogenic vertebral osteomyelitis; CRP, C-reactive protein (mg/dL); ESR,
erythrocyte sedimentation rate (mm/h); SUVmax, maximum standardized uptake value of FDG.
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Figure 2. Flowchart of the decision classification in the clinical assessment. Among the decisions
with residual PVO (no remission), the decisions showing the presence of causative bacteria and/or
an aggravated PVO lesion on MRI were only classified into group NC (n = 41), and the others (n = 25)
were excluded from the study. The 85 decisions with remission were followed-up with a minimum
of six months after discontinuing antibiotic therapy, and the 80 decisions with no recurrence were
finally classified into group C. The five recurrences were classified into group NC. Therefore, the final
analysis was performed with 80 patients in group C and 46 in group NC. PVO, pyogenic vertebral
osteomyelitis; MRI, magnetic resonance imaging; Group C, cured; Group NC, non-cured.

Table 3. Clinical features between groups C and NC.

Attributes Group C (n = 80) Group NC (n = 46) Total (n = 126)

ESR * 42.64 ± 27.76 (7–120) 71.57 ± 31.36 (7–120) 53.20 ± 32.20 (7–120)
CRP * 0.80 ± 1.07 (0.02–5.93) 3.01 ± 3.20 (0.11–15.75) 1.61 ± 2.36 (0.02–15.75)

SUVmax * 4.59 ± 2.15 (1.66–16.11) 7.30 ± 2.14 (3.61–14.65) 5.58 ± 2.51 (1.66–16.11)
Group C, cured; Group NC, non-cured; ESR, erythrocyte sedimentation ratio (normal range <20 mm/h); CRP,
C-reactive protein (normal range of <0.5 mg/dL); SUVmax, maximum standardized 18F-fluorodeoxyglucose
uptake value on PVO lesion; * p < 0.001 between groups C and NC; p-values of <0.05 were considered
statistically significant.

3.4. Development of DNN Model to Predict Remission of PVO

The 126 decisions based on the clinical assessments were randomly divided into 70%
for the training set (88 decisions; 56 in group C and 32 in group NC) and 30% for the test
set (38 decisions; 24 in group C and 12 in group NC). The ESR, CRP, and SUVmax were used
as the attributes. We developed four DNN models, depending on the involved attributes
to predict remission of PVO, as follows: DNN model 1 with ESR and CRP, DNN model 2
with ESR and SUVmax, DNN model 3 with CRP and SUVmax, and DNN model 4 with
ESR, CRP, and SUVmax. The performances of four DNN models were compared under the
same conditions. A rectifier linear unit (ReLu) for the activation functions in four hidden
layers, softmax cross-entropy to calculate the loss, and adaptive moment estimation for
loss optimization with a learning rate of 0.001 were adopted. The dropout technique was
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used in the output layer to prevent overfitting with the training set. Our DNN models are
summarized in Figure 3.
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Here, we summarize the structure of the DNN developed in this study for the detection
of residual PVO. The DNN consists of an input layer, multiple hidden layers, and an output
layer. The input layer feeds clinical data consisting of input features x∈{x1, . . . , xn} to the
first hidden layer, where n is the number of input features. The hidden layer consists of
four layers; the first layer has 32 neurons, the second layer has 16 neurons, the third layer
has 8 neurons, and the fourth is a ReLU activation layer. The last hidden layer contains five
neurons, followed by a dropout for regularization and a ReLU for activation. The output
layer generates a probability distribution of the predictions using softmax cross-entropy
activation. Adam for loss optimization with a learning rate of 0.001 was adopted (DNN,
deep neural network; PVO, pyogenic vertebral osteomyelitis; ReLU, rectifier linear unit;
and Adam, adaptive moment estimation).

3.5. Performances of the DNN Models for Predicting the Remission of PVO

The performances of each DNN model were compared when they were trained at
100 epochs. The sensitivity, specificity, positive predictive value (PPV), negative predictive
value (NPV), accuracy, and AUCs were 75%, 78.6%, 85.7%, 64.7%, 76.3%, and 0.768 [95%
confidence interval, 0.625–0.910] in DNN model 1; 75%, 85.7%, 90%, 66.7%, 79%, and 0.804
[0.674–0.933] in DNN model 2; 91.7%, 78.6%, 88%, 84.6%, 86.8%, and 0.851 [0.726–0.976]
in DNN model 3; and 87.5%, 92.9%, 95.5%, 81.3%, 89.5%, and 0.902 [0.804–0.999] in DNN
model 4. The performances of the DNN models are summarized in Table 4 and Figure 4.

3.6. Incorrectly Predicted Cases in the DNN Model 4

DNN model 4 using ESR, CRP, and SUVmax showed the best performance with
approximately 90% accuracy to predict the remission of PVO. There were 4 incorrect
predictions among the 38 cases in the test set. DNN model 4 showed opposite predictions for
three cases in group C and one case in group NC. The detailed data are presented in Table 5.
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Table 4. Performances of the DNN models for predicting remission in PVO.

DNN Models Sensitivity Specificity PPV NPV Accuracy AUC

DNN model 1
(ESR and CRP) 75% 78.6% 85.7% 64.7% 76.3% 0.768

[0.625–0.910]
DNN model 2

(ESR and SUVmax) 75% 85.7% 90% 66.7% 79% 0.804
[0.674–0.933]

DNN model 3
(CRP and SUVmax) 91.7% 78.6% 88% 84.6% 86.8% 0.851

[0.726–0.976]
DNN model 4
(ESR, CRP, and

SUVmax)
87.5% 92.7% 95.5% 81.3% 89.5% 0.902

[0.804–0.999]

DNN, deep neural network; PPV, positive predictive value; NPV, negative predictive value; AUC, area under
the receiver operating characteristic; ESR, erythrocyte sedimentation ratio; CRP, C-reactive protein; SUVmax,
maximum standardized 18F-fluorodeoxyglucose uptake value on PVO lesion; [ ], 95% confidence intervals.
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Figure 4. AUCs of the DNN models. CRP, C-reactive protein (mg/dL); ESR, erythrocyte sedimen-
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Table 5. Incorrect predictions in DNN model 4.

Number of Case ESR CRP SUVmax Prediction of DNN Model 4 Actual Result

# 33 79 5.104 6.38 Non-cured Cured
# 45 25 0.537 7.79 Non-cured Cured

# 107 97 3.222 6.2 Non-cured Cured
# 126 7 0.149 4.6 Cured Non-cured

DNN, deep neural network; ESR, erythrocyte sedimentation ratio (normal range <20 mm/h); CRP, C-reactive
protein (normal range <0.5 mg/L); SUVmax, maximum standardized 18F-fluorodeoxyglucose uptake value on
PVO lesion.

4. Discussion

To date, the assessment of therapeutic responses in PVO has been performed mainly
based on changes in clinical symptoms and blood inflammatory markers. However, no
clear standards have yet been established. Generally, compared with ESR and white blood
cell (WBC) count, CRP was highly correlated with clinical symptoms and rapidly decreased
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as the clinical condition improved [22]. In particular, WBC count is known to be less useful
for applications related to diagnosis and the assessment of therapeutic responses because
WBC count often provides false-negative results despite the presence of PVO in elderly or
immunocompromised patients [23,24]. In addition, there are also no definite guidelines
for antibiotic therapy due to frequent negative cultures for causative bacteria and various
causative bacteria with different antibiotic resistance rates by region. Kim et al. [5] reported
that identifying the causative bacteria was possible in only half of all patients. S. aureus
was the main causative bacteria, and approximately 40% had methicillin resistance. For the
treatment of PVO, an average of 6 weeks of parenteral antibiotics is usually recommended,
although there some studies that considered 2–4 weeks sufficient [2,25–27]. Here, a clinical
assessment based on clinical symptoms and a CRP was performed after more than 3 weeks
of intravenous antibiotic therapy.

The application of FDG-PET to assess therapeutic responses in PVO has been at-
tempted for the last 10 years [12–14]. The literature has reported that FDG-PET was affected
less by other general conditions and, therefore, it objectively represents PVO lesions com-
pared to blood inflammatory markers [12]. In particular, Jeon et al. [14] confirmed that
FDG-PET, using the degree of FDG uptake, had higher accuracy compared to a CRP, an ESR,
and an MRI for detecting residual PVO. The difference in FDG uptake mediated by glucose
transporters in the cell membrane, depending on the phases of PVO, can be explained
based on the pathophysiological features of osteomyelitis [28–30]. Activated neutrophils
accumulate in the early phase, which shows high glucose consumption for chemotaxis
and phagocytosis. Lymphocytes, plasma cells, histiocytes, and some polymorphonuclear
leukocytes are predominant inflammatory cells in the chronic or recovery phase and have
low glucose consumption. In addition, fibrosis and granulation tissues form around the foci
of inflammation and bone marrow during the recovery phase, and there are fatty changes,
increased new bone formation by osteoblasts, and dilated blood vessels. The mechanical
stress on intervertebral structures including the intervertebral disc and endplates associ-
ated with the patient’s activities, in addition to the changes during the recovery phase,
can result in a sustained increase in localized FDG uptake at the intervertebral structures,
even after successful treatment, compared to widespread FDG uptake when residual PVO
continues [14].

However, FDG uptake presented as SUVmax also showed some variability, although
it was less than that observed for CRP. Here, we discuss the reasons for the abnormally
increased FDG uptake on the FDG-PET imaging of cured PVO, which was obtained at the
time of antibiotic therapy discontinuation and showed no recurrence during the follow-
up [15,16]. First, when the main PVO lesions containing SUVmax were located in the bone
marrow within the vertebral body or presented as a form of intramuscular abscess, the
SUVmax was higher than that observed on the intervertebral structures. However, the
value of SUVmax was not related to the clinical symptoms, and the destruction of the
intervertebral structure as the main PVO lesion was the main cause of the sustained back
pain, even after successful treatment. Second, when the damaged intervertebral structure of
the PVO was healed by autofusion with a loss of joint function during the follow-up period,
a higher SUVmax was observed in the intervertebral structure, including the endplate and
disc on FDG-PET imaging, of those with cured PVO. We hypothesize that these various
features of FDG uptake on the FDG-PET imaging of cured PVO patients might be an
important reference for interpreting the value of SUVmax to assess therapeutic responses.
However, considering the variability in FDG uptake as described above, FDG-PET is still
limited for use as an absolute standard method to assess therapeutic responses in PVO. It
will be effective to supplement FDG-PET with hematological inflammatory makers, which
are still used as a popular treatment method. As a result, we analyzed the performance of
ESR, CRP, and SUVmax applied together based on a DNN in this study.

Back pain is one of the main clinical symptoms of PVO and can be considered an
indicator for assessing therapeutic responses in PVO. However, back pain can easily be
influenced by individual subjective factors or psychological status. It is difficult to measure
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back pain objectively and the reliability of the measurement result may be low. In this
study, we developed DNN models using only automatically and objectively measured ESR,
CRP, and SUVmax to increase the reliability of the results. All DNN models developed in
this study were started to overfit with the presenting estrangement of loss between the
training and test sets at approximately 100 epochs, and there was a decrease in accuracy
with training at over 100 epochs. Therefore, a comparison of the performances between the
DNN models depending on the use of attributes was possible and appropriate at 100 epochs.
The best performance was obtained with DNN model 4, which had an accuracy of 89.5%
and an AUC of 0.902. DNN model 1 had the lowest performance, with an accuracy of 76.3%
and an AUC of 0.768 when using ESR and CRP. Of note, ESR and CRP, currently used
as important measurement methods at clinical assessment, were confirmed to have the
lowest performance even after using deep learning. These results might be explained by the
fundamental limitations of ESR and CRP themselves, which are susceptible to other general
conditions. Overall, the DNN models that included SUVmax as an attribute showed better
performances than models without it. It is thought that the FDG uptake of FDG-PET also
indicated the status of PVO lesions more objectively than ESR and CRP under a predictive
DNN model, as confirmed in previous studies using conventional statistics.

DNN model 4 based on the ESR, CRP, and SUVmax as attributes showed approxi-
mately 90% accuracy for predicting the remission of PVO, and there were incorrect predic-
tions in 4 out of 38 cases in the test set. DNN model 4 showed opposite predictions for three
cases in group C and one case in group NC. In two cases in group C (case numbers 33 and
107), there were sustained increases in ESR and CRP levels, with a moderate elevation
of the SUVmax. These are likely to be judged as ‘Non-cured’ using blood inflammatory
markers in the currently applied clinical assessment. In one other case in group C (case
number 45), a markedly elevated SUVmax value led to a ‘Non-cured’ decision under DNN
model 4, although it was highly likely to be judged as ‘Cured’ based on the ESR and CRP
levels by clinical assessment. An elevated SUVmax value was identified in three out of four
incorrect predictions. Based on the aforementioned theory, we may consider the reasons
for elevated SUVmax values in terms of the location of the main PVO lesion and autofusion.
However, although these analyses of the characteristics of PVO lesions can help to under-
stand elevated SUVmax values in cases with cured PVO, additional studies with more cases
are required to apply these theories to the DNN model for predicting the remission of PVO.
Considering the possibility of false-positives of SUVmax as seen for the above incorrect
predictions, blood inflammatory markers can partially contribute to achieving improved
performance in a DNN model by compensating for the shortcomings of the SUVmax. The
last incorrect prediction of group NC (case number 126) with normalized values of ESR and
CRP and a markedly decreased SUVmax was suitable to be determined as ‘Cured’ in the
clinical assessment and with DNN model 4, although residual PVO persisted. This was an
unpredictable case and this shortcoming should be overcome to improve the performance
of DNN models in future studies.

Our study had several limitations. First, decision making for therapeutic responses
in this study was conducted based on the existing method currently used in the medical
field. There is still no definite method to confirm the presence of residual PVO in group
NC, although patients in group C can finally be determined as ‘Cured’ with a sufficient
follow-up period. This problem remains a major limitation in many studies of PVO. In this
study, we limited cases to group NC only when there was a definite aggravation of the PVO
lesion on MRI and/or persistent causative bacteria on the PVO lesion under the additional
bacterial culture. The decision of ‘Non-cured’, which did not meet these conditions (the
possibility of false positives for residual PVO), was excluded to increase the reliability of the
study. Second, this study was conducted based on a relatively small number of FDG-PET
images compared with recent studies using deep learning. The application of FDG-PET
for diagnosis and assessing therapeutic responses in PVO has not yet been generalized,
and it is not easy to conduct a large-scale study considering the cost of FDG-PET. However,
based on the high accuracy of using FDG-PET to assess therapeutic responses in PVO,
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as demonstrated in previous studies, we think that the AUC observed in this small-scale
study will be reproduced in large-scale studies. Lastly, this study was conducted in a
single center and our results were not confirmed under the same conditions as those in
other institutions. Multicenter research is an important factor to obtain high reliability of
research results. Unfortunately, this study was conducted with FDG-PET/MRI for various
reasons, including the measurement of SUVmax based on the exact anatomical structure of
the PVO lesion under MRI, and the availability of FDG-PET/MRI is still poor compared
that of FDG-PET/CT. To overcome these limitations and clearly confirm the usefulness
of FDG-PET in PVO, additional multi-center studies with a larger number of participants
are required.

5. Conclusions

DNN models using SUVmax had a better performance for predicting the remission of
PVO compared to those using CRP and ESR. However, the best performance was obtained
in a DNN model using all attributes, including CRP, ESR, and SUVmax, which may be
achieved by compensating for the limitations of each attribute. We expect that the use of a
DNN model based on a combination of FDG-PET and blood inflammatory markers may
help accurately predict remission in PVO.
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