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ABSTRACT

Objective: MicroRNAs (miRs) are small non-coding RNA molecules of around 18–22 
nucleotides that are key regulators of many biologic processes, particularly inflammation. 
The purpose of this study was to determine the association of circulating miRs from 
asthmatic children with seasonal variation in allergic inflammation and asthma symptoms.
Methods: We used available small RNA sequencing on blood serum from 398 children with 
mild-to-moderate asthma from the Childhood Asthma Management Program. We used 
seasonal asthma symptom data at the study baseline and allergen affection status from 
baseline skin prick tests as primary outcomes. We identified differentially expressed (DE) 
miRs between pairs of seasons using DESeq2. Regression analysis was used to identify 
associations between allergy status to specific seasonal allergens and DE miRs in 4 seasons 
and between seasonal asthma symptom data and DE miRs. We performed pathway 
enrichment analysis for target genes of the DE miRs using DAVID.
Results: After quality control, 398 samples underwent differential analysis between the 
4 seasons. We found 52 unique miRs from a total of 81 DE miRs across seasons. Further 
investigation of the association between these miRs and sensitization to seasonal allergens 
using skin prick tests revealed that 26 unique miRs from a total of 38 miRs were significantly 
associated with a same-season allergen. Comparison between seasonal asthma symptom data 
revealed that 2 of these 26 miRs also had significant associations with asthma symptoms in the 
same seasons: miR-328-3p (P < 0.03) and let-7d-3p (P < 0.05). Enrichment analysis showed that 
the most enriched pathway clusters were Rap1, Ras, and MAPK signaling pathways.
Conclusion: Our results show seasonal variation in miR-328-3p and let-7d-3p are significantly 
associated with seasonal asthma symptoms and seasonal allergies. These indicate a 
potentially protective role for let-7d-3p and a deleterious role for miR-328-3p in asthmatics 
sensitized to mulberry. Further work will determine whether these miRs are drivers or results 
of the allergic response.
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INTRODUCTION

Asthma affects more than 300 million people worldwide and results in roughly 250,000 
annual deaths.1 It is expected that by 2025, there could be a further 100 million people with 
asthma,2 and as such presents a growing concern. Allergic asthma is the most common type 
of asthma and a frequent manifestation of indoor and outdoor allergen exposure. Extensive 
overlap exists between asthma and allergies, and 10%-40% of patients with allergies also 
have asthma.3 Allergic asthma itself has also increased in recent years, notably in Westernized 
countries.4 Allergic responses are triggered by allergens acting as antigens that react with 
specific immunoglobulin E (IgE) antibodies. Allergens may be derived from many different 
animals, insects, mites, plants, or fungi.5 Pollen allergens are primarily from trees, grasses, 
and weeds, and their air concentrations differ among locations and atmospheric conditions.6 
More than 150 seasonal pollen allergens have been identified (http://www.allergen.org).

Seasonal variation in exposure to pollen allergens can lead to seasonal increases in asthma 
exacerbations. Sensitization to the seasonal allergens timothy grass (Phleum species [sp.]) or 
birch (Betula sp.) pollens is associated with asthma in children.7 Tree pollen counts peak in 
mid spring and exhibit substantive impacts on allergy and asthma exacerbations, particularly 
in children.8 An Australian study assessing the role of ambient levels of different pollens on 
a large time series of child and adolescent asthma hospitalizations found grass and weed 
pollens to be important triggers of asthma exacerbations in children and adolescents.9 
Another study reported significant associations between airborne grass pollens and asthma 
attacks requiring physician consultation.10

MicroRNAs (miRs) are small non-coding RNA molecules of around 18–22 nucleotides that 
have emerged as core regulators of inflammatory processes. Many studies have demonstrated 
a role of miRs in regulating the susceptibility and response to allergies.11-13 In a recent 
study, Wardzynska et al.14 linked asthma exacerbations to the epigenetic dysregulation of 
circulating miR changes. In addition, miR expression was associated with clinical symptoms 
and patterns of T-cell cytokine expression. Others have documented links between miRs 
and asthma caused by viral respiratory infections.15 However, there has not yet been work 
investigating the role of miRs in the seasonality of allergy or asthma exacerbations.

The purpose of this study was to determine whether seasonal variation in circulating miRs 
concentrations in asthmatic children is associated with seasonal variation in allergen 
affection status and asthma symptoms.

MATERIALS AND METHODS

The Childhood Asthma Management Program (CAMP)
The CAMP was a randomized, placebo-controlled, four-year trial of inhaled anti-
inflammatory therapy for mild-to-moderate persistent childhood asthma. A total of 1,041 
participants were enrolled in the trial between 1993 and 1995 at age 5–12 years; follow-up 
continued to 2012 when participants were aged 22–30 years.16

Seasonal asthma symptoms and allergen affection status
Seasonal asthma symptoms and allergen affection status were the primary outcomes. 
Seasonal symptoms were assessed with baseline questionnaires which asked “During 
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[month], how many days per week did a child have asthma symptoms?” for each of 12 
months. Parents or guardians responding with values > 7 were removed from analysis (n = 
92). Per-month symptom data was taken from questionnaires and averaged into a seasonal 
measure of asthma symptoms. Allergen affection was assessed with skin prick tests for 28 
common allergens conducted at baseline. A wheal diameter of 3 or more millimeters was 
considered a positive reaction indicating allergy. Four seasons were defined by groups of 
3 calendar months: Spring was March, April and May; Summer was June, July and August; 
Fall was September, October, and November; and Winter December, January, and February. 
Allergens were categorized into seasons of primary effect (Table 1): Spring (n = 13), summer 
(n = 5), Fall (n = 10), or Winter (n = 0). Subjects were classified in terms of blood draw dates 
for miR sequencing into seasons as for allergens.

miR data collection, quality control (QC), filtering, and normalization
We used available small RNA sequencing of blood serum from 398 children with mild-to-
moderate persistent asthma from the CAMP. Small RNA-seq libraries were prepared using 
the Norgen Biotek (Thorond, Canada) Small RNA Library Prep Kit and sequenced on the 
Illumina (San Diego, CA, USA) NextSeq 500 platform by Norgen Biotek. The exceRpt pipeline 
was employed for the QC of the RNA-seq data.17 We excluded miRs with mapped read counts 
< 5 or with coverage < 50% of all subjects from the study. Using the DESeq2 R package,18 
we normalized reads by relative log expression, which has been shown to be a robust 
normalization method.19 The small RNA sequencing was performed in 22 batches, which can 
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Table 1. Tested Allergens
No. Category/family Allergen test Sensitized subjects (%) Type Season

1 Fungi Penicillium sp. 74 (18.59%) Mold Fall
2 Aspergillus sp. 70 (17.58%) Mold Fall
3 Hormodendrum (now Cladosporium sp.) 51 (12.81%) Mold Fall/Winter
4 Alternaria sp. 121 (30.40%) Mold Fall/Winter
5 Grass (Poaceae family) Bermuda grass (Cynodon sp.) 76 (19.09%) Grass Summer
6 Timothy grass (Phleum sp.) 162 (40.70%) Grass Summer
7 Aster (Asteraceae family) Ragweed (Ambrosia sp.) 133 (33.41%) Weed Fall
8 Sagebrush (Artemisia sp.) 41 (10.30%) Weed Fall
9 → including Wormwood (Artemisia sp.) 2 (0.50%) Weed Fall

10 Amaranth (Amaranthaceae family) Kochia, Burning Bush (now Bassia scoparia) 17 (4.27%) Weed Fall
11 Lambs Quarters, Goosefoot (Chenopodium sp.) 9 (2.26%) Weed Fall
12 Pigweed (Amaranthus sp.) 16 (4.02%) Weed Fall
13 Russian thistle, Saltwort (Salsola sp.) 41 (10.30%) Weed Fall
14 Buckwheat (Polygonaceae family) Yellow Dock, Dock (Rumex sp.) 9 (2.26%) Weed Summer
15 Plantain (Plantaginaceae family) English Plantain (Plantago sp.) 0 (0%) Weed Summer
16 Beech (Fagaceae family) White oak (Quercus alba) 10 (2.51%) Tree Spring
17 Red oak (Quercus rubra) 33 (8.29%) Tree Spring
18 Oak (Quercus sp.) 21 (5.27%) Tree Spring
19 Birch (Betulaceae family) Alder (Alnus sp.) 10 (2.51%) Tree Spring
20 Birch (Betula sp.) 23 (5.77%) Tree Spring
21 Cypress (Cupressaceae family) Cedar/Juniper (Juniperus sp.) 10 (2.51%) Tree Spring
22 Elm (Ulmaceae family) Elm (Ulmus sp.) 32 (8.04%) Tree Spring
23 Mulberry (Moraceae family) Mulberry (Morus sp.) 11 (2.76%) Tree Spring
24 Olive (Oleaceae family) Olive (Olea sp.) 19 (4.77%) Tree Spring

→ including Privet (Ligustrum vulgare) Tree Spring
→ including Ash (Fraxinus sp.) Tree Spring

25 Walnut (Juglandaceae family) Walnut (Juglans sp.) 17 (4.27%) Tree Spring
25 Willow (Salicaceae family) Cottonwood (Populus deltoides) 43 (10.80%) Tree Spring

→ including Poplar (Populus sp.) Tree Spring
27 Uncategorized 6 tree mix 7 (1.75%) Tree Spring
28 Eastern weeds 2 (0.50%) Weed Fall



introduce technical effects due to inconsistencies during preparation and handling. Guided 
principal components analysis (gPCA)20 was used to check for batch effects on mapped read 
counts per sample, which did not detect a significant batch affect after data normalization (P 
= 0.371, Supplementary Fig. S1).

Statistical analysis
Our analysis was composed of 3-steps: 1) we assessed differentially expressed (DE) miRs 
between pairs of seasons; 2) significantly DE miRs were assessed for the association with 
seasonal allergen affection status; and 3) miRs significant in step 2 were assessed for the 
association with seasonal asthma symptoms (Fig. 1). In each step, the same season is 
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CAMP cohort

Differential expression analysis
(DESeq2)

miRNA samples categorized by
blood draw date

DE miRs associated with seasonal allergens and
asthma symptoms across a single season:

miR-328-3p; let-7d-3p

miRNA Seq
(n = 398)

Step 1

Seasonal
allergies

Seasonal
asthma

symptoms

Spring vs.
Fall

Up: 9
Down: 17

Spring vs.
Winter
Up: 1

Down: 4

Summer vs.
Fall

Up: 0
Down: 6

Summer vs.
Winter
Up: 0

Down: 5

Fall vs.
Winter
Up: 23

Down: 16

Spring
(n = 123)

Summer
(n = 128)

Fall
(n = 69)

Winter
(n = 78)

miRs from Step 1:
Association with seasonal allergies?

miRs from Step 2:
Association with seasonal asthma symptoms?

Step 2

Step 3

Fig. 1. Analysis plan and step 1. Using data from the CAMP cohort, we conducted 3 analyses using 3 types of data: 
1) miR (assessed by season); 2) allergies to seasonal allergens; and 3) seasonal asthma symptoms. This occurred 
in 3 steps. First, in step 1, we compared expression of miR across seasons. We then categorized blood samples by 
blood draw date into seasons and used DESeq2 to perform differential expression between pairs of seasons. In 
step 2, we continued analysis on miRs determined to be DE by season in step 1. For each such miR, we checked 
it for their association with allergies to allergens prominent in the same seasons demonstrating differential 
expression for the miR. In step 3, we checked miRs with significant associations in step 2 for association with 
asthma symptoms in the same season. As a final result, we identified 3 miRs that were over or under expressed, 
associated with an allergen and asthma symptoms all in the same season. 
CAMP, Childhood Asthma Management Program; miR, microRNA; DE, differentially expressed.



assessed: e.g., if a miR is overexpressed in Spring vs Fall, we check it for the association with 
Spring allergens and Spring symptoms; then also for Fall allergens and Fall symptoms.

First, we looked for DE miRs through a total of 6 pairwise season comparisons (Spring vs. 
Fall, Spring vs. Winter, Spring vs. Summer, Summer vs. Fall, Summer vs. Winter, and Fall 
vs. Winter) using the DESeq2 package in R with a Benjamini-Hochberg false discovery rate 
(FDR) multiple testing correction (Fig. 1).21 DESeq2 is a method for differential analysis of 
count data that uses an Empirical Bayes approach for shrinkage estimation for fold changes 
to improve stability and interpretability of estimates. For each gene, DESeq2 models the read 
counts using a generalized linear model with a negative binomial distribution. In order to test 
whether each model coefficient differs significantly from zero, DESeq2 reports the standard 
error for each shrunken logarithmic fold change (LFC) estimate, which is obtained from the 
curvature of the coefficient's posterior at its maximum. For significance testing, DESeq2 
uses a Wald test where the shrunken estimate of LFC is divided by its standard error.18 On top 
of this, we applied an additional significance threshold of 10% FDR. Next, the statistically 
significant miRs were passed to step 2 (Fig. 2). The distributions of miRs among participants 
sensitized and not sensitized to allergens in the same seasons were compared. We used a 
logistic regression analysis to identify associations. miRs with significant associations (P < 
0.05) were passed to step 3 (Fig. 3). These miRs were then checked for significant association 
(P < 0.05) with asthma symptoms from the same season using a multivariable linear 
regression analysis. All statistical computations were made using the R statistical framework.

Subjects were recruited from 8 different North American cities: Albuquerque, Baltimore, 
Boston, Denver, San Diego, Seattle, St. Louis, and Toronto. Because of environmental 
differences in pollen types and abundances, all 3 steps were performed with adjustment for city 
of recruitment. To adjust for non-specific allergy, all three steps were also adjusted for total IgE.
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For each differentially
expressed miRNA

e.g. hsa-miR-328-3p
Spring vs. Fall

Split patients
by sensitivity to Asp

Compare hsa-miR-328-3p
expression level in

Asp− vs. Asp+ patients

hsa-miR-328-3p is
associated with

Asp allergy

T-test with adjustment for
recruitment site and total IgE

Asp
+

Asp
−

Test each allergen active
during Spring and Fall

e.g. Asp

Fig. 2. Step 2. miRs DE between pairs of seasons (step 1) were then checked for their association with allergies 
to seasonal allergens from the same season. For each allergen primarily active during the season of differential 
expression, participants were split by their sensitization to that allergen. Levels of the miR were then compared 
between these 2 groups using the t-test. 
miR, microRNA; DE, differentially expressed; IgE, immunoglobulin E; Asp, Aspergillus.



Identification of miR target and functional analysis
We identified putative mRNA targets for DE miRs from Dianna MicroT-CDS with 0.9 miTG 
as a threshold.22,23 Then, we used DAVID 6.8 for the functional enrichment of the identified 
putative targets.24 We considered an adjusted P value threshold of ≤ 0.05 and a gene count of 3 
or more significant enrichment.

RESULTS

Characteristics of cohort
Among 1,041 children with asthma from the CAMP cohort, small RNA sequencing data 
from baseline blood serum were available on 398 children with seasonal asthma symptom 
and allergen affection status data (Table 2). The majority of subjects had miR assessed in the 
spring and summer. Subjects were broadly similar across the seasons of blood draw, with only 
significant differences by recruitment city (Table 2). Most patients were from St. Louis (n = 
72), then San Diego (n = 55), Denver (n = 54), Boston (n = 54), Toronto (n = 45), Seattle (n = 44), 
Baltimore (n = 44), and fewest from Albuquerque (n = 30).

Allergen affection to 28 common allergens was assessed with skin prick tests conducted at 
baseline. Allergens were categorized into seasons of primary effect (Spring, n = 13; Summer, 
n = 5; Fall, n=10; Winter, n = 0), based on expert analysis. These are categorized in Table 1.

Seasonal miR differential expression, allergy, and asthma symptoms
After QC, filtering, and normalization, we had 398 samples and 266 miRs for differential 
analysis between the 4 seasons (step 1, Fig. 1). In Fall vs. Winter, we found the highest 
number of up-regulated (n = 23) & down-regulated (n = 16) miRs, where up-regulated miRs 
are more abundant in Fall than in Winter, and vice versa for down-regulated (Supplementary 
Table S1). In Spring vs. Fall, 9 miRs were up-regulated and 17 down-regulated. In Spring vs. 
Winter, 1 miR was up-regulated, and 4 miRs down-regulated. In Summer vs. Fall, 6 miRs 
were down-regulated, and in Summer vs. Winter, 5 miRs were down-regulated.
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DE miRs also associated
with allergies of
the same season
From step 2 (n = 49)

Fall asthma symptoms
for all patients

e.g. hsa-miR-328-3p
(Spring vs. Fall)

Regression test with
adjustment for

recruitment site
and total IgE

Compare miRNAs
expression level
with symptoms

hsa-miR-328-3p is
associated with Fall
asthma symptoms

Asthma seasonal
symptoms

(based on questionnaire)

Fig. 3. Step 3. For miRs significantly associated with an allergy of a specific season (from step 2), we check 
them for associations of miR-328-3pwith asthma symptoms from that season. Seasonal asthma symptoms were 
reported in a questionnaire, and miRs associated with seasonal asthma symptoms were associated in all 3 steps. 
miR, microRNA; DE, differentially expressed; IgE, immunoglobulin E.



The DE miRs were assessed for the association with seasonal allergies, from the same 
seasons, in step 2 (Fig. 2). This was accomplished by selecting an allergen primarily 
associated with one of the seasons wherein the miR was differentially expressed. Next, all 
patients were split into 2 groups: those sensitized to the allergen and those not sensitized. 
After that, the levels of the miR among the 2 groups were checked for differences using 
a logistic regression analysis. We identified a total of 26 unique miRs out of the 38 miRs 
significantly associated with 1 or more same-season allergen (Supplementary Table S2). 
Finally, miRs were assessed for association with seasonal asthma symptoms of the same 
season in step 3 (Fig. 3). We found that 2 miRs were significantly associated with seasonal 
asthma symptom data from the same season: miR-328-3p with Aspergillus in the Fall (P = 0.03; 
β = −0.089; 95% confidence interval [CI] = 0.842–0.991), and let-7d-3p with mulberry in the 
Spring (P = 0.05; β = −0.084; 95% CI= 0.844–1.00) (Table 3).
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Table 2. Baseline epidemiologic and clinical characteristics
Characteristics Spring (n = 123) Summer (n = 128) Fall (n = 69) Winter (n = 78) P value
Sex

Male 75 (61.0) 79 (61.7) 38 (55.1) 54 (69.2)
Female 48 (39.0) 49 (38.3) 31 (44.9) 24 (30.8)

Age (year) 0.522
Mean ± SD 9.01 ± 2.26 8.73 ± 2.28 8.91 ± 2.11 8.58 ± 1.75
Median [Min, Max] 8.96 [5.25, 13.0] 8.61 [5.18, 12.9] 8.70 [5.18, 13.1] 8.62 [5.34, 12.4]

Race 0.263
White 97 (78.9) 98 (76.6) 58 (84.1) 52 (66.7)
Black 20 (16.3) 26 (20.3) 9 (13.0) 21 (26.9)
Hispanic 6 (4.9) 4 (3.1) 2 (2.9) 5 (6.4)

Clinic < 0.001
Albuquerque 11 (8.9) 17 (13.3) 1 (1.4) 1 (1.3)
Baltimore 21 (17.1) 3 (2.3) 6 (8.7) 14 (17.9)
Boston 10 (8.1) 16 (12.5) 14 (20.3) 14 (17.9)
Denver 12 (9.8) 20 (15.6) 9 (13.0) 13 (16.7)
San Diego 25 (20.3) 20 (15.6) 4 (5.8) 6 (7.7)
Seattle 9 (7.3) 20 (15.6) 11 (15.9) 4 (5.1)
Saint Louis 22 (17.9) 20 (15.6) 16 (23.2) 14 (17.9)
Toronto 13 (10.6) 12 (9.4) 8 (11.6) 12 (15.4)

Height (cm) 0.916
Mean ± SD 133 ± 14.5 133 ± 14.6 134 ± 12.9 132 ± 12.5
Median [Min, Max] 134 [105, 170] 132 [108, 167] 133 [110, 177] 133 [108, 158]

BMI 0.169
Mean ± SD 17.8 ± 3.18 17.8 ± 3.20 18.8 ± 3.50 18.3 ± 3.22
Median [Min, Max] 17.1 [13.3, 34.3] 17.0 [13.0, 28.1] 18.1 [13.4, 30.7] 17.3 [13.7, 29.7]

Log10 IgE 0.778
Mean ± SD 2.60 ± 0.680 2.62 ± 0.706 2.71 ± 0.589 2.65 ± 0.767
Median [Min, Max] 2.71 [0.480, 4.15] 2.63 [0.780, 4.61] 2.75 [0.850, 3.72] 2.70 [0.300, 4.13]

FEV1pp 0.552
Mean ± SD 92.8 ± 14.2 95.2 ± 12.3 94.8 ± 13.7 94.2 ± 13.4
Median [Min, Max] 94.0 [55.0, 124] 95.0 [61.0, 122] 95.0 [64.0, 122] 93.0 [64.0, 128]
Missing 0 (0) 1 (0.8) 3 (4.3) 0 (0)

FVCpp 0.535
Mean ± SD 104 ± 13.1 106 ± 12.2 104 ± 12.2 103 ± 12.2
Median [Min, Max] 103 [73.0, 132] 105 [73.0, 136] 105 [69.0, 134] 104 [71.0, 132]
Missing 0 (0) 1 (0.8) 3 (4.3) 0 (0)

PC20 0.205
Mean ± SD 0.0114 ± 1.08 −0.0205 ± 1.04 0.131 ± 1.12 0.292 ± 1.20
Median [Min, Max] 0.190 [−2.94, 2.04] −0.0450 [−2.12, 2.53] 0.170 [−2.28, 2.32] 0.300 [−1.71, 2.48]

Values are presented as number (%) not otherwise specified.
BMI, body mass index; SD, standard deviation; Min, minimum; Max, maximum; IgE, immunoglobulin E; FEV1pp, forced expiratory volume in the one second percentage 
predicted; FVCpp, forced vital capacity percentage predicted; PC20, provocative concentration of methacholine causing a 20% drop in FEV1 from baseline.



In a sensitivity analysis, we found that self-reported prior inhaled corticosteroid use was not 
associated with seasonal symptoms (Spring P = 0.15, Summer P = 0.19, Fall P = 0.65, Winter 
P = 0.54).

Identification of putative targets and functional enrichment of DE miRs
We identified 52 unique miRs from a total of 81 DE miRs across seasons (Supplementary 
Table S1), of which 29 miRs were common in the 6 comparisons. We retrieved a total of 1,302 
putative gene targets for these 52 DE miRs from the DIANA MicroT-CDS database (miTG 
score ≥ 0.9, Supplementary Table S3). We then performed enrichment analysis of retrieved 
putative gene targets through DAVID. The most enriched pathway cluster was characterized 
by Rap1 signaling pathways (KEGG; hsa04015), the Ras signaling pathway (hsa04014), and 
the mitogen activated protein kinases (MAPK) signaling pathway (hsa04010) (Table 4).25

DISCUSSION

The occurrence of seasonal allergic asthma has escalated in recent decades and is now a 
major global health challenge. Seasonal allergic asthma is among the most severe asthma 
phenotypes and is related to respiratory allergic diseases triggered by pollen.26-28

In this manuscript, we identified 2 miRs, miR-328-3p and let-7d-3p, which were significant 
in 3 related analyses. First, they were DE between pairs of seasons, according to blood draw 
dates of the CAMP samples. Second, they were associated with allergy to seasonal allergens 
active in the same seasons Aspergillus in the Fall for miR-328-3p and mulberry in the Spring 
for let-7d-3p). Third, they were associated with rates of asthma symptoms in those seasons. 
The let-7d-3p is decreased in the spring and decreases with sensitization to mulberry; 
decreasing let-7d-3p is also associated with increasing asthma symptoms in the spring, 
indicating a potentially protective role for let-7d-3p. The role of miR-328-3p is potentially 
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Table 4. Pathway enrichment analysis of differentially expressed miRs
Annotation cluster Term Gene count % P value Fold enrichment Benjamini
KEGG_PAHWAY hsa04015:Rap1 signaling pathway 22 2.67 5.52E-05 2.69 2.426e-3
KEGG_PAHWAY hsa04014:Ras signaling pathway 23 2.79 5.53E-05 2.62 2.025e-3
KEGG_PAHWAY hsa04010:MARK signaling pathway 22 2.67 7.29E-04 2.24 1.4478e-2
Enrichment score: 3.88.
miR, microRNA.

Table 3. List showing association between differentially expressed miRs and seasonal symptom date
miR Allergen Season symptom
hsa-miR-328-3p Aspergillus P value = 0.052 Fall P value = 0.080

β = 0.12 β = −0.07
OR = 1.13 OR = 0.92

95% CI = 1.003–1.30 95% CI = 0.85–1.01
Spring P value = 0.030

β = −0.89
OR = 0.91

95% CI = 0.84–0.99
hsa-let-7d-3p Mulberry P value = 0.044 Spring P value = 0.050

β = −1.55 β = −0.084
OR = 0.21 OR = 0.91

95% CI = 0.03–0.69 95% CI = 0.84–1.00
miR, microRNA; OR, odds ratio; CI, confidence interval.



more complicated, with a decrease in the fall and increase with allergies to Aspergillus; 
increasing miR-328 is also associated with greater occurrences of asthma symptoms during 
the fall; these effects point to a potentially deleterious effect of miR-328 in people sensitized 
to Aspergillus.

We found a total of 82 miRs DE by season with the highest number of miRs DE between 
Fall vs. Winter, Spring vs. Fall, and Summer vs. Fall. Many studies have reported seasonal 
patterns in asthma exacerbations with the highest exacerbation rate in children in the fall and 
the lowest exacerbation rate in the summer. The seasonal rise in fall exacerbations is highly 
consistent,29-33 and may be due to pollen exposure, increased cold air exposure, and viral 
infections common in the Fall.

Interestingly, we found a total of 14 miRs associated with Fall allergen sensitization out of 26 
unique miRs that were associated with the same season's allergen (Supplementary Table S2).

We also tested each DE miR for the association with symptoms in those seasons. We found 
seasonal variations in the circulating miRs miR-328-3p and let-7d-3p to be subsequently 
associated significantly with both seasonal allergies and asthma symptoms (Table 3). Our 
results suggest a protective role of miR-328-3p in asthmatics sensitized to Aspergillus. The 
miR-32-3p was associated with sensitization to Aspergillus and decreased asthma symptoms 
in the spring and fall. Aspergillus is a common indoor and outdoor mold that grows under 
damp conditions, including wet spring and fall seasons. The miR-328 has a complex role in 
the lung, and our results first provide the association between miR-328 and allergic asthma. 
It has been shown to promote wound repair in bronchial epithelial cells yet decrease bacterial 
clearance and host defense against microbial infection in the lung.34,35

Our results also demonstrate a protective role of let-7d in seasonal allergic asthma. The let-7d 
was inversely associated with both mulberry pollen sensitization and spring season asthma 
symptoms. Mulberry trees are widely distributed across North America and similar to other 
trees, bloom in the spring can trigger seasonal allergy and asthma symptoms. Consistent 
with our results, decreased let-7d expression has been associated with asthma affection status 
compared to healthy controls.36 Moreover, allergen desensitization to wasp venom leads to 
higher let-7d expression further supporting a protective role of let-7d in allergic inflammation.37

Gene targets of DE miRs between the seasons were enriched for MAPK and Rap1 signaling 
pathways. MAPK belong to a large family of proline-directed serine-threonine protein kinases 
that play a fundamental role in cellular functions. Activation of MAPK via pharmacological or 
genetic approaches blocks allergic inflammation of airways.38 A previous study reported that 
activation of the MAPK signaling pathway can control the production of IgE and interleukin 
(IL)-4 as well as inhibit inflammatory mediators in asthma.39,40 Furthermore, the MAPK 
signaling pathway controls immune responses and inflammation in asthma by regulating the 
gene expression of inflammatory factors such as TNF-alpha and IL-6.41,42

Rap1 (Ras-proximate-1 or Ras-related protein 1) is a small GTPase, which are small cytosolic 
proteins that act as cellular switches and are essential for efficient signal transduction.43 The 
association of the RAP1 pathway with seasonal allergic asthma has not yet been reported.

Our study has several strengths. This is the first study to analyze seasonal variation in 
circulating miR and report its association with seasonal allergies and asthma symptoms in 
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children. Another strength includes the use of small-RNA next-generation sequencing to 
comprehensively identify miRs in an unbiased way. Our study also has limitations. We were 
unable to account for actual pollen levels and differences in pollen exposure to each subject. 
While we did adjust for city of recruitment in an effort to account for regional differences in 
pollen, there may be remaining effects. We were also unable to tell if the miR levels were a 
cause or an effect of the allergen exposure. Although we found no associations of miRs with 
symptoms and ICS use, recall bias may have resulted in inaccuracies in these data. Similarly, 
the reporting of asthma symptoms may have been inaccurate due to recall bias. It is not clear 
how much these unmeasured confounders may have altered the findings given the other 
measured confounders (total IgE and geographic location) that were included as covariates 
in the model. Future work will involve more careful collection of exposures, pollen counts, or 
medication, and examine their effect on miR expression by season. Finally, allergies to some 
of the pollens were rare in our cohort, including to mulberry. In future work, our results with 
mulberry and miR-328-3p should be investigated in a larger dataset. Future work will also 
assess miR associations to allergies without considering seasonal symptoms.

In conclusion, our results show seasonal variations in miR-328-3p and let-7d-3p to be 
significantly associated with seasonal asthma symptoms and seasonal allergies. Further work 
is needed to determine whether these miRs are drivers or results of allergic response.

SUPPLEMENTARY MATERIALS

Supplementary Table S1
Differentially expressed miRs

Click here to view

Supplementary Table S2
List of associated differentially expressed miRNAs and seasonal allergens

Click here to view

Supplementary Table S3
List of putative target genes of differentially expressed miRNAs from DIANA MicroT-CDS. 
Shown are genes with predicted score of binding > 0.9

Click here to view

Supplementary Fig. S1
Box plot showing sum of (A) raw read counts per batch (B) normalized read counts per batch. 
P values calculated from gPCA package for the identification of batch effect.

Click here to view
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