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Background: The tumour immune microenvironment plays an important role in the

biological mechanisms of tumorigenesis and progression. Artificial intelligence medicine

studies based on big data and advanced algorithms are helpful for improving the

accuracy of prediction models of tumour prognosis. The current research aims to explore

potential prognostic immune biomarkers and develop a predictive model for the overall

survival of ovarian cancer (OC) based on artificial intelligence algorithms.

Methods: Differential expression analyses were performed between normal tissues

and tumour tissues. Potential prognostic biomarkers were identified using univariate

Cox regression. An immune regulatory network was constructed of prognostic immune

genes and their highly related transcription factors. Multivariate Cox regression was used

to identify potential independent prognostic immune factors and develop a prognostic

model for ovarian cancer patients. Three artificial intelligence algorithms, random survival

forest, multitask logistic regression, and Cox survival regression, were used to develop a

novel artificial intelligence survival prediction system.

Results: The current study identified 1,307 differentially expressed genes and 337

differentially expressed immune genes between tumour samples and normal samples.

Further univariate Cox regression identified 84 prognostic immune gene biomarkers

for ovarian cancer patients in the model dataset (GSE32062 dataset and GSE53963

dataset). An immune regulatory network was constructed involving 63 immune genes

and 5 transcription factors. Fourteen immune genes (PSMB9, FOXJ1, IFT57, MAL,

ANXA4, CTSH, SCRN1, MIF, LTBR, CTSD, KIFAP3, PSMB8, HSPA5, and LTN1) were

recognised as independent risk factors by multivariate Cox analyses. Kaplan-Meier

survival curves showed that these 14 prognostic immune genes were closely related

to the prognosis of ovarian cancer patients. A prognostic nomogram was developed by

using these 14 prognostic immune genes. The concordance indexes were 0.760, 0.733,

and 0.765 for 1-, 3-, and 5-year overall survival, respectively. This prognostic model
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could differentiate high-risk patients with poor overall survival from low-risk patients.

According to three artificial intelligence algorithms, the current study developed an

artificial intelligence survival predictive system that could provide three individual mortality

risk curves for ovarian cancer.

Conclusion: In conclusion, the current study identified 1,307 differentially expressed

genes and 337 differentially expressed immune genes in ovarian cancer patients.

Multivariate Cox analyses identified fourteen prognostic immune biomarkers for ovarian

cancer. The current study constructed an immune regulatory network involving 63

immune genes and 5 transcription factors, revealing potential regulatory associations

among immune genes and transcription factors. The current study developed

a prognostic model to predict the prognosis of ovarian cancer patients. The

current study further developed two artificial intelligence predictive tools for ovarian

cancer, which are available at https://zhangzhiqiao8.shinyapps.io/Smart_Cancer_

Survival_Predictive_System_17_OC_F1001/ and https://zhangzhiqiao8.shinyapps.io/

Gene_Survival_Subgroup_Analysis_17_OC_F1001/. An artificial intelligence survival

predictive system could help improve individualised treatment decision-making.

Keywords: ovarian cancer, overall survival, immune gene, transcription factor, prognostic signature

INTRODUCTION

Ovarian cancer (OC) is one of the most lethal malignant tumours
in women, with 295,414 new cases and 184,799 deaths in
2018 (1). Although considerable progress has been made in
diagnostic and therapeutic techniques, the 5-year survival rate of
advanced OC patients remains poor (2). Early identification of
patients with highmortality risk andmore precise, individualised
treatments will help improve the prognosis of OC patients.
Regarding precision medicine, developing predictive models
to provide early individualised mortality risk prediction and
predicting the effectiveness of specific therapeutic schedules
would be significant.

Considerable progress in bioinformatics helps scientists
explore the intrinsic regulatory mechanisms of tumorigenesis
and progression (3–6). The immune microenvironment plays an
important role in the initiation and development of tumours
(7, 8). Various studies have reported the clinical value of
immunotherapy for ovarian cancer (5, 6). Several studies
established prognostic models to predict the prognosis of OC
patients (7, 8). However, regarding precision medicine, mortality
risk prediction for high-risk and low-risk subgroups could
not meet the needs of individualised treatment. Individualised
treatment needs precise prognostic models to provide individual
mortality risk prediction for a specific agent but not for a
special subgroup.

Our team constructed two precision medicine predictive
tools that predict individualised mortality risk for hepatocellular
carcinoma (9, 10). These two precision medicine predictive tools

Abbreviations: OC, ovarian cancer; TCGA, The Cancer Genome Atlas; GEO,

Gene Expression Omnibus; ROC, receiver operating characteristic; DFS, disease-

free survival; HR, hazard ratio; CI, confidence interval; AJCC, American Joint

Committee on Cancer; SD, standard deviation.

provide online mortality risk prediction that is convenient and
easy to understand. More importantly, these precision medicine
predictive tools provide individual and specific mortality risk
prediction, which is important for individualised treatment
decision-making. Recently, artificial intelligence based on big
data and advanced algorithms has been used to improve
the accuracy of predictive models for the diagnosis and
prognosis in various tumours (11–13). Therefore, the current
study aimed to build artificial intelligence predictive tools to
predict individualised mortality risk for OC patients based on
immune genes.

MATERIALS AND METHODS

Study Datasets
We retrieved the Gene Expression Omnibus (GEO) database
according to the following conditions to obtain valuable
research datasets: (1) The dataset should have available gene
expression profile data; (2) The dataset should have complete
clinicopathological data; (3) The dataset should have follow-
up survival information. The GSE32062 dataset contained
expression profiling data from 260 advanced-stage high-grade
OC patients (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE32062). The GSE53963 dataset contained expression
profiling data from 174 high-grade OC patients (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53963). To
eliminate the effect of death caused by non-tumour factors on the
results of survival analysis, surviving patients with a survival time
of <3 months were removed from the current study. Therefore,
the GSE32062 dataset and GSE53963 dataset involved 420
patients, and 19,569 mRNAs were downloaded as model datasets
for further survival. Probe IDs generated on the GPL6480
platform were converted to gene symbols based on Gencode
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v29. The TCGA cohort contained 21,586 mRNAs and 370 OC
patients as a validation dataset for survival. The gene count
values were log2-transformed for the TCGA cohort. The flow
chart of patient selection is shown in Supplementary Figure 1.

Differential Expression Analyses
We searched the GEO database to explore a dataset containing
gene expression information of ovarian cancer samples and
normal samples. The GSE26712 dataset was generated on
the Affymetrix Human Genome U133A Array platform. The
GSE26712 dataset has gene expression profiling information
from 185 primary ovarian tumours and 10 normal ovarian
surface epithelium (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE26712). Therefore, differential expression
analyses were performed between 185 tumour samples and
10 normal samples (GSE26712). Cut-off values for differential
expression analyses were log2 |fold change| > 1 and P < 0.05.
The data were normalised using the trimmed mean of M values
method with “edgeR” (14).

Immune Genes
The Immunology Database and Analysis Portal database were
used to identify the immune gene list (15). Transcription factors
were identified via the Cistrome Cancer database (16). Cytoscape
v3.6.1 was used to develop an immune regulatory network of
prognostic immune genes and their highly related transcription
factors (11). Thresholds of |correlation coefficient| > 0.5 and P <

0.01 were used to identify transcription factors highly correlated
with prognostic immune genes. The biological processes of
immune genes were identified using the TISIDB database (http://
cis.hku.hk/TISIDB/index.php).

Tumour Immune Infiltration
Associations among tumour infiltrating immune cells and
immune genes were evaluated by the Tumour Immune
Estimation Resource database (16). Twenty-eight tumour
immune infiltration scores were generated by single sample gene
set enrichment analysis (17, 18).

Statistical Analyses
Statistical analyses were conducted by SPSS Statistics 19.0
(SPSS Inc., USA). Artificial intelligence and bioinformatics
analyses were performed using Python language 3.7.2 and
R software 3.5.2 with the following artificial intelligence
algorithms: random survival forest (RFS) algorithm (19, 20),
multitask logistic regression (MTLR) algorithm (21, 22), and Cox
survival regression algorithm (23, 24). The important packages
included pec, rms, survival, rmda, ggplot2, GOplot, timereg,
randomForestSRC, and riskRegression. The threshold for a
statistically significant difference was a P < 0.05.

RESULTS

Study Datasets
The clinical information of the OC patients is shown in Table 1.
There were 229 (61.9%) of 370 patients who died in the TCGA
cohort (validation dataset), and 260 (61.9%) of 420 patients died

TABLE 1 | Clinical features of included patients.

TCGA dataset GEO dataset P-value

Number [n] 370 420

Deaths [n (%)] 229 (61.9) 260 (61.9) 0.997

Total survival time (mean ± SD, month) 39.2 ± 31.0 47.9 ± 37.3 <0.001

Survival time for dead patients (month) 38.7 ± 25.7 36.8 ± 28.3 0.430

Survival time for living patients (month) 40.0 ± 38.1 66.0 ± 42.7 <0.001

Age (mean ± SD, year) 60.0 ± 11.0 NA

Grade 4 [n (%)] 1 (0.3) 74 (17.6) 0.615

Grade 3 [n (%)] 316 (85.4) 212 (50.5)

Grade 2 [n (%)] 42 (11.4) 134 (31.9)

Grade 1 [n (%)] 1 (0.3) 0

Grade (NA) [n (%)] 10 (2.7) 0

Stage 4 [n (%)] 57 (15.4) 93 (22.1) <0.001

Stage 3 [n (%)] 289 (78.1) 320 (76.2)

Stage 2 [n (%)] 20 (5.4) 7 (1.7)

Stage 1 [n (%)] 1 (0.3) 0

Stage (NA) [n (%)] 3 (0.8) 0

Vascular invasion (positive) [n (%)] 63 (17.0) NA

Vascular invasion (negative) [n (%)] 39 (10.5) NA

Vascular invasion (NA) [n (%)] 268 (72.4) NA

Lymphovascular invasion (positive) [n (%)] 99 (26.8) NA

Lymphovascular invasion (negative) [n (%)] 46 (12.4) NA

Lymphovascular invasion (NA) [n (%)] 225 (60.8) NA

ECOG score (2–4) [n (%)] 6 (1.6) NA

ECOG score (1) [n (%)] 26 (7.0) NA

ECOG score (0) [n (%)] 53 (14.3) NA

ECOG score (NA) [n (%)] 285 (77.0) NA

Continuous variables were presented as mean ± standard deviation; NA, missing data;

AJCC, American Joint Committee on Cancer.

in the GEO cohort (model dataset). As shown in Table 1, there
was no significant difference regarding mortality, survival time
of deceased patients, or grade between the modelling cohort and
the validation cohort during the follow-up period (P > 0.05).
The overall survival time of all patients and the survival time of
the patients in the survival subgroup for the model dataset were
significantly longer than those of the validation dataset. However,
the survival time of patients in the death subgroup of the model
dataset was shorter than that of the patients in the death subgroup
of the validated dataset, indicating that the difference in survival
time between the two datasets might be related to the longer
follow-up time of patients in the GEO cohort (model dataset).

Differential Expression Analyses
Volcano plots of 13,216 mRNAs and 3,075 immune genes are
shown in Figures 1A,B. With a threshold of log2 |fold change|
> 1 and P < 0.05, differential expression analysis identified
779 upregulated and 528 downregulated mRNAs from 13,216
mRNAs (Figure 1A) between 185 tumour samples and 10 normal
samples (GSE26712 dataset). Differential expression analysis
further identified 194 upregulated and 143 downregulated
immune mRNAs from 3,075 immune mRNAs (Figure 1B)
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FIGURE 1 | Differentially expression and functional enrichment: (A). Volcano plot of all genes; (B). Volcano plot of immune genes; (C). Barplot chart of immune genes.

The depth of the color represents different P-values; The length of the band represents the number of enriched genes.
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between 185 tumour samples and 10 normal samples in the
GSE26712 dataset.

To explore the gene expression difference of the identified
immune biomarkers between the patients who died among the
remaining patients with respect to the year of death, we further
performed differential expression analysis between 130 tumour
samples of patients who died and 10 normal samples of living
patients (GSE26712 dataset). Differential expression analysis
identified 753 upregulated and 526 downregulated mRNAs from
13,216 mRNAs. Differential expression analysis further identified
190 upregulated and 137 downregulated immune mRNAs from
3,075 immune mRNAs in the GSE26712 dataset.

Functional Enrichment Analyses
Further univariate Cox regression identified 84 prognostic
immune gene biomarkers for OC patients in the model
dataset (GSE32062 dataset and GSE53963 dataset). The bar
plot (Figure 1C) and Gene Ontology chord chart (Figure 2)
showed that the biological processes of the previous 84 prognostic
immune genes were mainly enriched in leukocyte migration,
cell chemotaxis, regulation of protein serine/threonine kinase
activity, regulation of MAP kinase activity, positive regulation
of response to external stimulus, regulation of leukocyte
migration, regulation of chemotaxis, leukocyte chemotaxis,
positive regulation of MAP kinase activity, and leukocyte
proliferation. The results of the bar plot and Gene Ontology
chord chart suggested that the above biological processes might
play a role in the occurrence, growth, invasion, and prognosis
of ovarian cancer, and the underlying mechanism is worthy of
further study.

Immune Regulatory Network
Univariate Cox regression identified 84 prognostic immune
biomarkers for the OS of OC patients. Transcription factors
that were highly correlated with prognostic immune mRNAs
were identified with previous correlation analysis thresholds.
To explore the potential regulatory relationships among these
immune genes, these previous prognostic immune mRNAs
and their highly correlated transcription factors were placed
in the STRING database with confidence values of 0.90.
Thus, a regulatory network involving 63 immune genes and 5
transcription factors was constructed by using Cytoscape v3.6.1
(Figure 3). As shown in Figure 3, IRF4, GATA4, GATA3, CIITA,
and MYH11 were involved in the immune regulatory network,
indicating that these five transcription factors might play a role
in the immune microenvironment of ovarian cancer.

Construction of a Prognostic Model
Multivariate Cox regression identified fourteen independent
prognostic mRNAs for OS (Table 2 and Figure 4), indicating
that these 14 prognostic immune genes might be more
closely related to the prognosis of ovarian cancer than the
prognostic immune genes that were not included in multivariate
Cox regression. The formula of the prognostic model based
on multivariate Cox regression was as follows: prognostic
score = (-0.472∗PSMB9) + (-0.268∗FOXJ1) + (0.303∗IFT57)
+ (0.095∗MAL) + (0.357∗ANXA4) + (-0.339∗CTSH)

+ (0.422∗SCRN1) + (-0.301∗MIF) + (0.515∗LTBR) +
(-0.371∗CTSD) + (0.503∗KIFAP3) + (0.574∗PSMB8) +
(0.485∗HSPA5) + (0.463∗LTN1). A prognostic nomogram
is shown in Figure 5. For each prognostic gene, different gene
expression values were assigned different risk scores. The total
points (overall risk score) of one patient were obtained by
adding up the risk scores of 14 prognostic genes. Through the
vertical line corresponding to the total points, we can obtain
the corresponding mortality rate of individual patients at
different times.

Supplementary Figure 2 shows significant differences in
survival curves between the high-risk group and the low-risk
group. Eight immune factors (IFT57, MAL, ANXA4, SCRN1,
LTBR, KIFAP3, HSPA5, and LTN1) were positively correlated
with poor prognosis of ovarian cancer, whereas six immune
factors (PSMB9, FOXJ1, CTSH, MIF, CTSD, and PSMB8)
were negatively correlated with poor prognosis of ovarian
cancer. Supplementary Figures 3, 4 show the predictive value
distribution chart and the survival status scatter plot.

Performance of Model Cohort
Survival curves of the two groups are illustrated in Figure 6A,
showing that the mortality rate in the high-risk group was
significantly higher than that in the low-risk group. Concordance
indexes were 0.760, 0.733, and 0.765 for 1-, 3-, and 5-year
survival, respectively (Figure 6B), indicating that the prognostic
model has good predictive value for the prognosis of OC patients.
Supplementary Figure 5 shows the calibration curves of the
model cohort, showing that there was good consistency between
the predicted mortality rate and the actual mortality rate.

Performance of Validation Cohort
Survival curves of the two groups are illustrated in Figure 7A,
showing that the mortality rate in the high-risk group was
significantly higher than that in the low-risk group. Concordance
indexes were 0.860, 0.715, and 0.679 for 1-, 3-, and 5-year
survival, respectively (Figure 7B), indicating that the prognostic
model has good predictive value for the prognosis of OC
patients. Supplementary Figure 6 shows calibration curves of
the validation cohort. Supplementary Figure 7 shows decision
curves for 1-, 3-, and 5-year survival, showing that there was
consistency between the predicted mortality rate and the actual
mortality rate.

Artificial Intelligence Survival Predictive
System
An artificial intelligence survival prediction system was
constructed for individual mortality risk prediction for OC
patients (Figure 8) and is available at https://zhangzhiqiao8.
shinyapps.io/Smart_Cancer_Survival_Predictive_System_17_
OC_F1001/. After the user inputs the expression values of the
prognostic genes and clicks the “predict” button, the survival
curve of one individual patient during the follow-up period will
be presented.

The artificial intelligence survival prediction system provides
three individual mortality risk predictive curves based on
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FIGURE 2 | Chord chart of prognostic genes. Biological processes of previous 84 prognostic immune genes were mainly enriched in cell chemotaxis, leukocyte

migration, regulation of protein serine/threonine kinase activity, regulation of MAP kinase activity, positive regulation of response to external stimulus, regulation of

leukocyte migration, regulation of chemotaxis, leukocyte chemotaxis, positive regulation of MAP kinase activity, and leukocyte proliferation.

artificial intelligence algorithms: the RFS model (Figure 8A),
MTLR model (Figure 8B), and Cox model (Figure 8C).

Gene Survival Analysis Screen System
A Gene Survival Analysis Screen System was
constructed for exploratory research of immune genes
(Supplementary Figure 8) and is available at https://zhangz

hiqiao8.shinyapps.io/Gene_Survival_Subgroup_Analysis_17_
OC_F1001/. After the user inputs the parameters and clicks
the “survival curve analysis” button, the survival curves of the
high-risk group and low-risk group are presented. Users can
obtain hazard ratio values of different clinical parameters after
clicking the “Univariate Cox survival analysis table” button in
the Gene Survival Analysis Screen System.
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FIGURE 3 | Immune gene regulatory network chart. The immune regulatory network involved 63 immune genes and 5 transcription factors. IRF4, GATA4, GATA3,

CIITA, and MYH11 were involved in the immune regulatory network, indicating these transcription factors might play a role in the immune microenvironment of ovarian

cancer.

Independence Assessment
We used multivariate Cox regression to explore the independent
effect of the prognostic model on the prognosis of OC patients.
The prognostic signature was an independent influencing factor
for OS in themodel cohort (Table 3). In the validation cohort, the
prognostic signature was an independent risk factor for OS. The
results of multivariate Cox regression showed that the prognostic
model had an independent effect on the prognosis of ovarian
cancer, which further supported the value of the prognostic
model in predicting ovarian cancer prognosis.

DISCUSSION

The current study identified 1,307 differentially expressed
genes and 337 differentially expressed immune genes between
tumour samples and normal samples. Further univariate Cox
regression identified 84 prognostic immune gene biomarkers
for OC patients in the model dataset (GSE32062 dataset

and GSE53963 dataset). An immune regulatory network was
depicted involving 63 immune genes and 5 transcription factors.
Through bioinformatics research, the current study depicted
potential regulatory relationships among immune genes and
transcription factors. Fourteen immune genes were identified as
independent prognostic factors by multivariate survival analysis.
Kaplan-Meier survival curves showed that these 14 prognostic
genes were closely related to the prognosis of ovarian cancer
patients. These 14 prognostic genes were used to develop
a prognostic nomogram for ovarian cancer. Moreover, two
artificial intelligence predictive tools were developed for precise
individual mortality risk prediction in ovarian cancer. Based on a
random survival forest algorithm, a multitask logistic regression
algorithm, and a Cox survival regression algorithm, the current
artificial intelligence survival predictive system provided three
individual mortality risk predictive curves for the evaluation and
improvement of individualised medical decisions.

In the current study, 1,308 differentially expressed genes
(including 337 differential immune genes) were identified
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TABLE 2 | Information of prognostic immune genes.

Univariate analysis Multivariate analysis

Immune gene HR 95% CI P-value Coefficient HR 95% CI P-value

PSMB9 (High/Low) 0.708 0.554–0.904 0.006 −0.472 0.624 0.449–0.867 0.005

FOXJ1 (High/Low) 0.659 0.516–0.843 <0.001 −0.268 0.765 0.672–0.871 <0.001

IFT57 (High/Low) 1.439 1.126–1.839 0.004 0.303 1.354 1.014–1.807 0.040

MAL (High/Low) 1.355 1.060–1.730 0.015 0.095 1.099 1.019–1.186 0.014

ANXA4 (High/Low) 1.298 1.017–1.658 0.036 0.357 1.430 1.123–1.820 0.004

CTSH (High/Low) 0.751 0.588–0.960 0.022 −0.339 0.712 0.565–0.898 0.004

SCRN1 (High/Low) 1.415 1.107–1.809 0.006 0.422 1.525 1.126–2.065 0.006

MIF (High/Low) 0.776 0.608–0.991 0.042 −0.301 0.740 0.602–0.910 0.004

LTBR (High/Low) 1.377 1.077–1.759 0.011 0.515 1.674 1.190–2.354 0.003

CTSD (High/Low) 0.772 0.605–0.986 0.038 −0.371 0.690 0.523–0.912 0.009

KIFAP3 (High/Low) 1.619 1.266–2.070 <0.001 0.503 1.653 1.189–2.298 0.003

PSMB8 (High/Low) 0.615 0.480–0.787 <0.001 0.574 1.775 1.165–2.703 0.008

HSPA5 (High/Low) 1.317 1.032–1.681 0.027 0.485 1.625 1.094–2.415 0.016

LTN1 (High/Low) 1.347 1.054–1.721 0.017 0.463 1.588 1.051–2.400 0.028

HR, hazard ratio; CI, confidence interval. The medians of gene expression values were used as cut-off values to stratify gene expression values into high expression group (as value 1)

and low expression group (as value 0).

FIGURE 4 | Immune gene survival forest chart. Eight immune factors (IFT57, MAL, ANXA4, SCRN1, LTBR, KIFAP3, HSPA5, and LTN1) were positively correlated with

poor prognosis of ovarian cancer, whereas six immune factors (PSMB9, FOXJ1, CTSH, MIF, CTSD, and PSMB8) were negatively correlated with poor prognosis of

ovarian cancer.

by differential expression analysis. Compared with normal
ovarian tissues, these differentially expressed genes showed high
expression or low expression in tumour tissues, suggesting

that these differentially expressed genes might be related
to the biological characteristics and clinical process of OC.
Further univariate Cox and multivariate Cox regression analyses
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FIGURE 5 | Prognostic nomogram chart. For each prognostic gene, different gene expression values were assigned different risk scores. The total point (overall risk

score) of one patient was obtained by adding up the risk scores of 14 prognostic genes. Through the vertical line corresponding to the total point, we can obtain the

corresponding mortality rate of individual patient at different times.

identified 84 and 14 prognostic immune genes, respectively,
suggesting that these 14 prognostic immune genes might be
closely related to the prognosis of OC patients. Functional
enrichment analysis showed that the 84 genes were mainly
related to the regulation of immune inflammation and were
enriched in leukocyte migration, cell chemotaxis, regulation of
protein serine/threonine kinase activity, and regulation of MAP
kinase activity.

The immune regulatory network further indicated the
potential regulatory relationship among 63 immune genes and
5 transcription factors, suggesting that these immune genes and
transcription factors might play a potential role in the regulatory
mechanism of the tumour immune environment. Previous
studies have provided supporting evidence for the potential
mechanisms of these five transcription factors regarding tumour
growth, progression and prognosis. There is a close relationship
between GATA3 and poor prognosis of high-grade serous
ovarian carcinoma (25). GATA3 positivity is associated with
poor prognosis of pancreatic ductal adenocarcinoma (26). High

expression of GATA3 is associated with good prognosis of ER+
breast cancer (27). IRF4 might activate the Notch-Akt signalling
pathway in non-small cell lung cancer (28). Higher expression
of IRF4+ Tregs was related to poor prognosis for different
cancers (29). IRF4 was an independent prognostic factor for
node-negative breast cancer (30). MYH11 positively modulated
the immune-related gene GLP2R in colon adenocarcinoma
(31). MYH11 positively regulated GSTM5, PTGIS, ENPP2, and
P4HA3 (32). GATA4 inhibits tumour growth by affecting the
assembly of tumour suppressor enhancement modules (33).
Overexpression of GATA4 can protect human granulosa cell
tumours from apoptosis induced by TRAIL in vitro (34).

Different research teams have established valuable survival
prediction models for ovarian cancer based on different research
cohorts and modelling methods. Previous prognostic models
provided mortality curves for two classes of patients with
different clinical characteristics (7, 8) but did not provide
mortality curves for individual patients. He et al. constructed
a prognostic model based on 10 RNA-binding proteins for
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FIGURE 6 | Clinical performance in model cohort: (A). Survival curves for high risk group and low risk group; (B). Time-dependent receiver operating characteristic

curves. The mortality rate in the high risk group was significantly higher than that in the low risk group. Concordance indexes were 0.760, 0.733, and 0.765 for 1-, 3-,

and 5-year survival, indicating that the prognostic model has a good predictive value for the prognosis of ovarian cancer patients.

ovarian cancer (35). However, the calculation formula of this
model is so complex that it is difficult for patients to calculate
their personal risk score. Bing et al. constructed a novel model
by merging three previous models selected by the integrated

P-value method, providing a new idea for the establishment
of a prognostic model (36). However, this theoretically feasible
method has not been applied in clinical research because it
involves the fusion of multiple prognostic models. Tang et al.
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FIGURE 7 | Clinical performance in validation cohort: (A). Survival curves for high risk group and low risk group; (B). Time-dependent receiver operating characteristic

curves. The mortality rate in the high risk group was significantly higher than that in the low risk group. Concordance indexes were 0.860, 0.715, and 0.679 for 1-, 3-,

and 5-year survival, respectively (B), indicating that the prognostic model has a good predictive value for the prognosis of ovarian cancer patients.

presented an eight-mRNA prognostic model for ovarian cancer
(37), providing a valuable predictive model for clinical practise.
If the above models can provide a simple calculation tool, it
will be more helpful to provide convenient survival prediction
information for patients with ovarian cancer. In fact, every

cancer patient cares only for her or his own individual mortality
after diagnosis. Due to the considerable clinical heterogeneity
of tumours, clinicians observe large differences in clinical
prognosis among different cancer patients. Therefore, it is of
great significance to predict the individual mortality risk of
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FIGURE 8 | Individual mortality risk predictive curves based on artificial intelligence algorithms. (A) Random survival forest model; (B) Multitask logistic regression

model; (C) Cox proportional hazard regression model.

cancer patients. The emergence of big data and advanced
algorithms has laid a solid foundation for artificial intelligence
research. Different artificial intelligence algorithms have been
used to improve clinical diagnosis and prognostic prediction
(11–13). Based on the artificial intelligence algorithms provided
in previous studies, the current study developed an artificial
intelligence survival prediction system. The current artificial
intelligence survival prediction system provides three individual
mortality risk predictive curves according to different artificial
intelligence algorithms. These artificial intelligence algorithms

are not widely used in clinical research because of the complexity
of calculation. To the best of our knowledge, our team is the first
to introduce various artificial intelligence algorithms for tumour
prognosis research. Our study showed that artificial intelligence
algorithms have great application value and superiority in
predicting the individual mortality risk for cancer patients
and are worth further research and application. The tumour
immune microenvironment is reportedly related to oncogenesis
and prognosis (7, 38). The current study revealed the potential
association of tumour-infiltrating immune cells and immune
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TABLE 3 | Results of Cox regression analyses.

Univariate analysis Multivariate analysis

HR 95% CI P-value Coefficient HR 95% CI P-value

Model cohort (n = 420)

AJCC Stage (3–4/1–2) 1.913 0.783–4.679 0.155 1.000 2.718 1.111–6.646 0.028

AJCC Grade (3–4/1–2) 1.417 1.066–1.882 0.016 0.108 1.114 0.832–1.492 0.468

Prognostic model (High/Low) 2.988 2.294–3.893 <0.001 1.105 3.019 2.302–3.959 <0.001

Validation cohort (n = 370)

AJCC Stage (3–4/1–2) 1.999 0.887–4.505 0.095 0.734 2.084 0.913–4.756 0.081

AJCC Grade (3–4/1–2) 1.209 0.808–1.812 0.356 0.046 1.048 0.695–1.579 0.824

Prognostic model (High/Low) 1.915 1.466–2.500 <0.001 0.658 1.930 1.472–2.531 <0.001

AJCC, the American Joint Committee on Cancer; HR, hazard ratio; CI, confidence interval. The median of Prognostic model scores was used as the cut-off value to stratify gastric

cancer patients into high risk group and low risk group.

genes with tumour prognosis. Compared with several previous
predictive models for the prognosis of OC patients (14, 39),
our precision medical predictive tools were more valuable
in providing individual mortality risk prediction at different
time points.

The TISIDB database was used to explore the biological
processes of immune genes. The top biological processes of
proteasome subunit beta 9 (PSMB9) were immune response-
activating signal transduction, the immune response-regulating
signalling pathway, and the immune response-activating cell
surface receptor signalling pathway. The top biological processes
of Forkhead box J1 (FOXJ1) were adaptive immune responses,
leucocyte-mediated immunity, humoural immune response
mediated by circulating immunoglobulin, and lymphocyte-
mediated immunity. The top biological processes of mal, T-
cell differentiation protein (MAL) were the extrinsic apoptotic
signalling pathway via death domain receptors, regulation
of apoptotic signalling pathway, and the extrinsic apoptotic
signalling pathway. The top biological processes of annexin
A4 (ANXA4) were interleukin-8 production, regulation of
interleukin-8 production, and negative regulation of interleukin-
8 production. The top biological processes of cathepsin
H (CTSH) were T cell-mediated immunity, lymphocyte-
mediated immunity, leucocyte-mediated immunity, and adaptive
immune response. The top biological processes of macrophage
migration inhibitory factor (MIF) were negative regulation
of immune system process, B cell homeostasis, regulation
of immune effect or process, and lymphocyte homeostasis.
The top biological processes of lymphotoxin beta receptor
(LTBR) were myeloid dendritic cell activation, leucocyte
differentiation, response to tumour necrosis factor, and response
to molecules of bacterial origin. The top biological processes
of cathepsin D (CTSD) were autophagy, antigen processing
and presentation of exogenous antigen, antigen processing
and presentation of exogenous peptide antigen via MHC
class II. The top biological processes of kinesin-associated
protein 3 (KIFAP3) were antigen processing and presentation,
antigen processing and presentation of peptide antigen via
MHC class II, and antigen processing and presentation of
exogenous antigen. The top biological processes of proteasome

subunit beta 8 (PSMB8) were immune response-activating
signal transduction, innate immune response-activating signal
transduction, and the immune response-regulating cell surface
receptor signalling pathway.

PSMB9, FOXJ1, IFT57, MAL, ANXA4, CTSH, SCRN1,
MIF, LTBR, CTSD, KIFAP3, PSMB8, HSPA5, and LTN1 were
recognised as independent risk factors by multivariate Cox
analyses, suggesting that these 14 prognostic immune genes
might have potential effects on the occurrence, progression and
prognosis of tumours. NANOG controls cell migration and
invasion by regulating FOXJ1 expression in ovarian cancer (15).
FOXJ1 promoted tumour growth in bladder cancer (16). Highly
expressed FOXJ1 promoted the proliferation and invasiveness of
laryngeal squamous cell carcinoma cells (17). High expression
of MAL was associated with poor survival of advanced ovarian
cancer (40). Overexpression of the MAL gene was used to predict
chemoresistance and poor prognosis in serous ovarian cancer
patients (18). High expression of MAL promoted metastasis
in colorectal cancer (24). Ikaros inhibited the proliferation
of tumour cells by downregulating the expression of ANXA4
in hepatocellular carcinoma (23). Knockdown of SCRN1
significantly reduced tumour cell growth in colorectal cancer
(19). EIF expression was associated with overall survival in
patients with ovarian cancer (20). The KIFAP3 gene is highly
expressed at the mRNA and protein levels in breast cancer
(41). miR-451a inhibited cancer growth and induced apoptosis
of papillary thyroid cancer by targeting PSMB8 (41). The CpG
mutation of PSMB9 is related to the recurrence or drug resistance
of ovarian cancer after chemotherapy (42). High expression
of PSMB8 and PSMB9 is related to the five-year survival of
ovarian cancer (43). High expression of MIF is correlated with
poor overall survival of ovarian cancer (44). HSPA5 inhibits
the growth of epithelial ovarian cancer cells through G1 phase
arrest (45). High expression of CD5L promoted proliferation and
the antiapoptotic response in hepatocellular carcinoma cells by
binding to HSPA5 (46).

CD4T helper cells can inhibit the transformation of
immunosuppressive regulatory T cells in ovarian cancer (41).
Regulatory T cells were positively correlated with ovarian cancer
(20). An increased CD8/regulatory T cell ratio suggests good
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prognosis for ovarian cancer (47). Dendritic cell immunotherapy
could stimulate antitumour T cell immunity and improve the
prognosis of cancer patients (21). Interleukin 10 regulates Toll-
like receptor-mediated dendritic cell activation in ovarian cancer
(22). IL-15 enhanced natural killer cell function in ovarian cancer
patients (13). A low lymphocyte-to-monocyte ratio was related
to poor survival in ovarian cancer (48). Mast cell infiltration
with high mean vessel density indicated favourable prognosis
in ovarian cancer (49). Macrophage secretory proteins induce
ovarian cancer proliferation through the JAK2/STAT3 pathway
(50). M1 macrophages induce ovarian cancer cell metastasis
through the activation of NF-κB (51). Small extracellular vesicles
could inhibit the T cell response and promote the growth
of ovarian cancer cells (51). Artesunate induced apoptosis of
ovarian cancer cells by microRNA-142 (52). Mature neutrophils
inhibited T cell immunity in ovarian cancer patients (50).
Regulatory T cells inhibit CD8T cell function through the IL-
10 pathway (53). ISG15 induced CD8T cells and inhibited
the progression of ovarian cancer (54). TGF-beta 1 induces
CD8 Tregs through the p38 MAPK pathway in ovarian
cancer (55). CD4T helper cells inhibit the transformation of
immunosuppressive regulatory T cells (56). CD4T cells induce
the host immune response through dendritic cells in patients
with MHC class II-negative ovarian cancer (57).

Advantages: First, the current study developed two artificial
intelligence predictive tools that provided individual mortality
risk prediction at different time points and were valuable
for optimising individual treatment decisions. Second, the
current artificial intelligence survival predictive system provided
three individual mortality risk predictive curves based on
three artificial intelligence algorithms. Different artificial
intelligence algorithms provided more reliable and valuable
prognostic predictions for ovarian cancer than conventional
prognostic models.

Shortcomings: First, because study datasets from public
databases did not include information on surgical treatment,
radiotherapy, biological targeting therapy, etc., the current study
failed to assess the impact of these important clinical variables
on survival. Second, from the perspective of model validity
and extensibility, the sample size of the current research was
relatively small for prognosis, which might weaken the validity
of the research conclusions. Large, prospective sample studies
can provide more convincing clinical evidence for the current
study. Third, as non-parametric algorithms, artificial intelligence
algorithms are complex to perform, and their calculation
processes cannot be expressed by simple equations, restricting
artificial intelligence algorithms as the mainstream methods for
prognostic studies. Fourth, the current study constructed an
immune regulatory network and revealed potential regulatory
associations among immune genes and transcription factors.
However, the role and mechanism of immune genes and
transcription factors in tumorigenesis, growth and prognosis
need to be elucidated by further study.

In conclusion, the current study identified 1,307 differentially
expressed genes and 337 differentially expressed immune genes
in ovarian cancer patients. Multivariate Cox analyses identified

fourteen prognostic immune biomarkers for ovarian cancer.
The current study constructed an immune regulatory network
involving 63 immune genes and 5 transcription factors, revealing
potential regulatory associations among immune genes and
transcription factors. The current study developed a prognostic
model to predict the prognosis of ovarian cancer patients. The
current research further developed two artificial intelligence
predictive tools for ovarian cancer, which are available at
https://zhangzhiqiao8.shinyapps.io/Smart_Cancer_Survival_
Predictive_System_17_OC_F1001/ and https://zhangzhiqiao8.
shinyapps.io/Gene_Survival_Subgroup_Analysis_17_OC_
F1001/. The artificial intelligence survival predictive system can
improve individualised treatment decision-making.
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