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Physiologic signals such as the electroencephalogram (EEG) demonstrate irregular
behaviors due to the interaction of multiple control processes operating over different
time scales. The complexity of this behavior can be quantified using multi-scale entropy
(MSE). High physiologic complexity denotes health, and a loss of complexity can
predict adverse outcomes. Since postoperative delirium is particularly hard to predict,
we investigated whether the complexity of preoperative and intraoperative frontal EEG
signals could predict postoperative delirium and its endophenotype, inattention. To
calculate MSE, the sample entropy of EEG recordings was computed at different
time scales, then plotted against scale; complexity is the total area under the curve.
MSE of frontal EEG recordings was computed in 50 patients ≥ age 60 before
and during surgery. Average MSE was higher intra-operatively than pre-operatively
(p = 0.0003). However, intraoperative EEG MSE was lower than preoperative MSE at
smaller scales, but higher at larger scales (interaction p < 0.001), creating a crossover
point where, by definition, preoperative, and intraoperative MSE curves met. Overall,
EEG complexity was not associated with delirium or attention. In 42/50 patients with
single crossover points, the scale at which the intraoperative and preoperative entropy
curves crossed showed an inverse relationship with delirium-severity score change
(Spearman ρ = −0.31, p = 0.054). Thus, average EEG complexity increases intra-
operatively in older adults, but is scale dependent. The scale at which preoperative
and intraoperative complexity is equal (i.e., the crossover point) may predict delirium.
Future studies should assess whether the crossover point represents changes in neural
control mechanisms that predispose patients to postoperative delirium.
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INTRODUCTION

As the age of surgical patients has increased, efforts have focused
on optimizing older adults’ postoperative brain health outcomes
(Mahanna-Gabrielli et al., 2019) and avoiding perioperative
neurocognitive disorders (PND; Evered et al., 2018) such as
postoperative delirium. Up to half of older surgical patients
experience some form of PND (Daiello et al., 2019). PND are
distressing for patients and families and are associated with
increased postoperative mortality (Loponen et al., 2008; Monk
et al., 2008), long-term cognitive decline (Newman et al., 2001;
Inouye et al., 2016), and increased long-term dementia risk
(Lundstrom et al., 2003; Evered et al., 2016). Thus, there is urgent
need for effective tools to identify those at highest risk for PND,
so they can be targeted for delirium prevention interventions
(Inouye et al., 2000; Chan et al., 2013; Ely, 2017).

Aside from delirium, the risk of other geriatric syndromes
such as falls (Inouye et al., 2007) and frailty have been
associated with age-related decreases in the physiologic output
complexity of the associated organ systems (Costa et al., 2007;
Manor et al., 2010; Wayne et al., 2014). Healthy organ systems
are governed by networks of physiologic control mechanisms,
which interact across multiple temporal and spatial scales
to produce highly complex signals. The complexity of these
physiological signals can be quantified using techniques adapted
from information theory, such as multi-scale entropy (MSE;
Costa et al., 2002). MSE works differently than traditional
entropy measures such as sample entropy, which measure
entropy over a single time scale and have maximal values with
random noise. In contrast, MSE measures the likelihood that
certain patterns of physiologic data are repeated in a time
series at various levels of temporal resolution (i.e., duration).
Specifically, MSE uses “coarse-graining” to transform the original
temporal signal into multiple “scales” with increasingly lower
temporal resolution. MSE then calculates the sample entropy
of the coarse-grained signal at each scale. The more the
repetition or regularity of the coarse-grained signal, the lower
the sample entropy at its associated scale. Because MSE captures
physiologic influences operating over different time scales at
different frequencies, MSE separates “meaningful structural
richness” (Costa et al., 2002) from noise in a way temporal,
spectral, or traditional entropic analysis cannot. Increased signal
complexity, quantified by the area under the MSE as a function
of scale curve, has been associated with greater resilience –,
i.e., greater capacity to adapt to stressors (Gijzel et al., 2019).
This relationship between signal complexity and recovery from
stressors is thought to reflect an organ system’s capacity to recover
from perturbations, which depends on numerous interacting
physiologic responses operating over varying time scales, with
fluctuating patterns of recurrence. Further, signal complexity
decreases with increasing age across many physiological systems.
This age-related decline in complexity is associated with an
impaired ability to recover from health stressors (Lipsitz, 2004;
Zhou et al., 2017; Gijzel et al., 2019).

During the physiologic stress of surgery and anesthesia,
frontal electroencephalogram (EEG) is widely used to titrate
anesthetic administration (Berger et al., 2020; Chan et al., 2020).

Intraoperative EEG has been studied to prevent delirium (and
other forms of PND) in older adults (Chan et al., 2020), although
protocols using traditional EEG metrics to titrate anesthetics
have had inconsistent effects on PND rates (Chan et al., 2013;
Radtke et al., 2013; Wildes et al., 2019; Evered et al., 2021). New
complexity-based EEG analysis using MSE may predict delirium
more accurately by accounting for complex physiological control
mechanisms. Because anesthetics generally suppress excitatory
neurotransmission (Franks and Lieb, 1994) and the complexity
of neuronal functional connectivity decreases in sedated younger
adults (Pappas et al., 2019), we hypothesized that complexity,
and thus, the overall MSE of EEG signals (i.e., area under the
MSE-by-scale curve) would decrease during general anesthesia.

In this work, we aimed to generate proof-of-concept data
on the extent to which the complexity of peri-operative
brain signals could identify patients likely to experience
postoperative attentional deficits, including delirium. We focused
on frontal EEG given the contribution of the frontal lobe
to attention (Zanto and Gazzaley, 2019), the frontal location
of common intraoperative EEG monitors (Chan et al., 2020),
prior associations between frontal-EEG parameters and cognitive
status (Giattino et al., 2017), and known anesthetic-induced age-
related frontal-EEG changes (Purdon et al., 2013). Given this
earlier work, we hypothesized that those with greater frontal-
EEG complexity, either pre-operatively or intra-operatively,
would have lower postoperative delirium incidence and severity
and more resilient/better attention after surgery. We further
hypothesized that a greater decrease in signal complexity from
the pre-operative to intra-operative state might predict delirium.

METHODS

Participants
This pilot study included 50 participants from the larger study,
“Investigating Neuroinflammation Underlying Postoperative
Brain Connectivity Changes, Postoperative Cognitive
Dysfunction, Delirium in Older Adults” (INTUIT; Berger et al.,
2019). The INTUIT study and this pilot analysis were approved
by the Duke Health institutional review board. INTUIT is
registered on clinicaltrials.gov clinical (NCT03273335). All
participants, or legally authorized representatives, provided
written informed consent prior to study participation.

INTUIT is an ongoing observational prospective cohort
study on the role of neuroinflammation in post-operative
cognitive dysfunction (POCD). INTUIT enrolls Duke patients
age ≥ 60 years undergoing non-cardiac, non-neurological
surgery (Berger et al., 2019). Exclusion criteria include
age < 60 years, anticipated surgery duration < 2 h, incarceration,
inadequate English fluency, and anticoagulant use that would
preclude lumbar punctures. INTUIT has no cognitive exclusion
criteria. In this pilot study, the first 53 INTUIT participants
undergoing 32-channel EEG were considered. Two subjects were
excluded due to insufficient post-operative delirium assessments.
Another was excluded for insufficient usable intraoperative
frontal EEG data, leaving n = 50.
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Delirium Severity and Attention Score
INTUIT participants undergo delirium screening prior to surgery
(baseline) and twice daily after surgery while hospitalized with
the 3-min confusion assessment method (3D-CAM; Marcantonio
et al., 2014). Because more than a third of our participants
were discharged by postoperative day 2, our analyses focused
on 3D-CAM assessments from post-operative day 1. Delirium
symptom severity score was calculated on our recently described
20-point scale (Vasunilashorn et al., 2020); higher scores indicate
worse delirium signs and/or symptoms. We operationally defined
an “attention score” as the number of correct answers on 3D-
CAM items 4–7, which assess attention (Marcantonio et al.,
2014), with higher scores therefore indicating better attention.
The change in total 3D-CAM severity score and the change in
attention score from before surgery to postoperative day 1 were
calculated utilizing the first available 3D-CAM assessment on Day
1 (Berger et al., 2015a).

Demographic and Clinical Variables
Demographic information (age, sex, race), baseline clinical status
[depressive symptoms, cognitive performance, comorbidities,
body-mass index (BMI), self-rated health status, and functional
status], and type of surgery and anesthesia were obtained
via survey administration or chart review as described
(Berger et al., 2019).

Electroencephalogram Recording and
Processing
Thirty-two channel EEG recording was performed just before
surgery for 3 min awake with eyes closed. The eyes-closed
(rather than open) awake condition was chosen to exclude
confounding by visual input in the awake state, since the eyes
are typically closed during surgery. EEG was also obtained during
anesthesia/surgery using the same 32-channel system.

For the first 10 subjects in this pilot study we used a tethered
EEG cap (Woldorff et al., 2002) and recording system (BrainAmp
MR Plus, Brain Products GmbH, Gilching, Germany). For
subsequent subjects, a wireless recording system with a standard
international 10–20 EEG cap configuration (LiveAmp, Brain
Products GmbH, Morrisville, NC, United States) was used
due to increased ease of use during surgery. Supplementary
Figure 1A shows the electrode configurations of the two caps
with the frontal region of interest, encompassing international
10–20 system sites Fp1, Fp2, F3, Fz, and F4, highlighted. EEG
signals were recorded at a 1,000 Hz sample rate, with a 0.016–
250 Hz passband, online Cz-electrode referencing, and electrode
impedances < 20 k�. Surgical event markers (e.g., incision,
electrocautery interference, end of surgery) were recorded and
cross-referenced with the anesthetic record to ensure accuracy.

The methods of EEG post-processing and data selection
have been described previously (Giattino et al., 2017)
and are detailed in the Supplementary Material. 3-min
segments of preoperative and intraoperative EEG data are
selected according to specific criteria (see Supplementary
Material/Methods) to ensure consistency and to make quasi
real-time MSE calculations feasible in future applications.

To remove as much mechanical/surgical artifact, electrical
noise and electromyography (EMG) signal as possible,
the raw EEG data were bandpass filtered using two
hamming-windowed sinc FIR filters (high pass: 1 Hz half-
amplitude cutoff with 1 Hz transition; low pass: 50 Hz
half-amplitude cutoff with 20 Hz transition) before down-
sampling to 250 Hz using EEGLAB (Delorme and Makeig,
2004).

Multi-Scale Entropy Analyses
Multi-scale entropy analysis was performed on the frontal EEG
data from each participant’s 3-min awake eyes-closed and 3-
min intraoperative segments by researchers blinded to delirium
outcomes. MSE analysis, which is depicted in Figure 1A,
calculates the sample entropy of the post-processed signal from
each electrode down-sampled to 250 Hz (scale 1) and of coarse-
grained signals (scales 2–25). Coarse graining averages sequential
data points to create a new coarse-grained signal at each scale
(Figure 1B), as originally described by Costa et al. (2002). For
example, at the scale of 2, pairs of non-overlapping sequential
data samples are averaged to generate a new temporal signal with
half as many samples as the original (i.e., 8 ms/sample at scale 2,
compared with 4 ms/sample in the original signal at scale 1). For
the scale of 3, sequential non-overlapping triplets of data were
averaged to generate a signal with a third as many samples as the
original (i.e., 12 ms/sample). The relationship between sample
length, L, of the coarse-grained signal, l the sample length of
the original signal (i.e., 4 ms) and scale, s, is shown in Eq. 1.

L = s× l (1)

Coarse graining was performed for scales up to 25 (i.e.,
100 ms/sample). The sample entropy of each of these coarse-
grained signals was calculated to yield MSE values at scales
2, 3, . . ., 25 (Costa et al., 2002). Plotting entropy values for
scale yielded a discrete entropy-by-scale (MSE) curve from
scales 1 to 25. Finally, for each subject and condition, the
individual MSE curves for each electrode within the frontal
region were averaged to give a mean frontal MSE curve. An
effect of coarse graining is removal of higher frequency signal
information by averaging successive points together. By the
Nyquist theorem, only frequencies lower than 1/ (2 × Ls),
where Ls is the sample length of the coarse-grained signal at
scale s from Eq. 1, can be fully represented in the coarse-
grained signal.

Electroencephalogram Predictor
Variables Derived From Multi-Scale
Entropy Curves
Area under the curve (AUC) of the entropy-by-scale curves for
each condition was calculated with a trapezoidal approximation
as shown in Eq. 2, where y is the MSE value at a given scale and n
is 25.

AUC = 0.5× y1 +

n−1∑
i=2

yi+0.5× yn (2)

Frontiers in Systems Neuroscience | www.frontiersin.org 3 November 2021 | Volume 15 | Article 718769

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-15-718769 November 8, 2021 Time: 11:6 # 4

Acker et al. EEG Complexity and Post-operative Delirium

FIGURE 1 | Multi-scale entropy procedure for frontal EEG electrodes (A) and example of course graining (B). (A) A flow chart of the processing algorithm applied to
the raw EEG signal for a given condition (pre-operative or intra-operative) for a given subject to generate the frontal average MSE curve for a given condition/subject.
The time domain signal recorded at 1,000 Hz from a given frontal electrode, n, is represented as xn(t) where t ranges from 0 to 3 min. This raw signal xn(t) is
down-sampled to 250 Hz to generate the time series yn,τ where τ is the sample number from 1 to 45,000. Each sample encompasses 4 ms. The down-sampled
time series yn,τ is then course-grained for a given scale k (as shown in the examples of scale k = 2, 3, and 4 in B) to generate the coarse-grained signal zn,k,j , where
zn,k = 1, j at scale 1 is identical to yn,τ and where j ranges from 1 to (τ + k–1)/k. The sample entropy is then calculated for each zn,k,j signal to yield an entropy value
En,k . This is repeated for each scale k. Once En,k has been calculated for all scales k = 1–25, an MSE curve for a given subject, condition, and electrode, n. The
MSEn curve ranges on the x-axis from scale k = 1–25. The MSEn curve on the y-axis is En,k . This is repeated for every electrode, n, in the frontal region. Finally, the
MSE curves for all n electrodes are averaged across scale k to yield a single frontal MSE curve for each subject/condition. (B) Example of course graining procedure
perform on the down-sampled time series for electrode n, yn,τ, where τ ranges from 1 to 4,500, to yield the course-grained series zn,k,j where n represents the
electrode in question, k is the scale value, and j is the sample number. Scales 2, 3, and 4 are shown for examples above, but this same pattern continues up to scale
25. The temporal resolution associated with the course graining is show on the axis at the bottom of the figure.

Predictor variables for each participant included MSE curve
AUC for the pre-operative eyes-closed and for the intra-operative
conditions, and the difference in AUC between these conditions.

Statistical Analysis
All statistical analyses were performed by a statistician who did
not collect data or process EEG data. First, we compared the
AUC of the MSE curves in the pre-operative and intra-operative
conditions, to determine whether average complexity across time
scales increased or decreased significantly between these two
conditions. For each participant, we calculated the difference
between AUC values in the pre-operative and intra-operative
condition, and we used t-tests to determine whether these values
differed significantly from zero.

Next, we examined the distribution of demographic and
clinical variables in our cohort. To identify variables that might
have confounded the relationship between EEG metrics and the
neurocognitive outcomes of interest, we split the cohort into
participants who did or did not exhibit a decrease in attention
score after surgery. We compared the characteristics of these
sub-groups with t-tests for continuous variables or chi-squared,
Wilcoxon rank sum, or Fisher tests for proportional variables.

Finally, we modeled the relationship between each EEG
predictor variable and two dependent variables, namely the
change from baseline to postoperative day 1 in delirium-
symptom severity and in attention scores. Initially, we calculated
Spearman’s correlation coefficients to estimate relationships
between variables of interest. If an association was detected
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with a ρ value of 0.25 or greater, we further modeled the
relationship. We used linear regression to model the change
in delirium symptom scores, and proportional-odds analysis
to model the change in attention scores due to the small
range in scores. In adjusted models, we included covariates that
differed significantly between individuals with versus without an
attention-score decrease.

RESULTS

Participant Characteristics, in Relation
to Neurocognitive Outcomes
Baseline subject characteristics are shown in Table 1, surgical,
anesthetic, and pharamacological factors are shown in
Supplementary Table 1. Almost all participants underwent
general anesthesia (n = 47). The rest (n = 3) received propofol
sedation and regional or neuraxial anesthesia without intubation;
none of these participants experienced delirium or attention
score decreases on post-operative day 1.

While only seven members of this cohort (14%) screened
positive for delirium on post-operative day 1, 18 (36%) had
a worse 3D-CAM attention score after versus before surgery.
Compared to participants with stable-to-improved attention
scores on post-operative day 1, participants whose attention
scores decreased were more likely to have lower BMI, more
cardiovascular disease, and older age (Table 1). None of the other
clinical or demographic variables in Table 1 or Supplementary
Table 1 differed significantly between those with versus without a
worsened attention score on postoperative day 1.

Electroencephalogram Complexity in the
Pre-operative and Intra-operative
Conditions
The average frontal EEG complexity, measured as the area under
the entropy-by-scale curve across all 25 scales, was greater in the
intra-operative, anesthetized condition than in the pre-operative,
eyes closed condition (p = 0.0003; Table 2 and Figure 2A).
The mean difference between the AUCs was 1.6 units (standard
deviation 2.9 units); overall, this result was opposite to our
original hypothesis.

Multi-Scale Entropy Curve “Crossover” Phenomenon
While plotting MSE as a function of scale, we observed
that subjects’ pre-operative eyes-closed and intra-operative
mean MSE curves typically intersected or “crossed over” each
other, with greater complexity values at longer scales during
anesthesia/surgery than before, and the converse at shorter scales,
as shown in the across-subject grand averages in Figure 2B.
A 2 × 25 repeated-measures ANOVA (2 conditions, 25 scales)
applied to all 50 subjects confirmed this relationship, reflected
by a highly significant interaction of pre- versus intra-operative
condition× scale (p < 0.001). Most subjects, 84% (42 of 50), had
a single “crossover” point, but the eight subjects with multiple
“crossovers” did not differ clinically or demographically from the
rest of the cohort, as shown in Supplementary Table 2.

Upon identifying this MSE-by-scale “crossover”
phenomenon, we wanted to examine its intra-subject consistency
and its relationship to delirium and inattention outcomes. In
particular, we wanted to analyze the information provided by
the scale at which the crossover occurred (i.e., the crossover
point). To take the more conservative approach, we applied
these analyses to those subjects (42 of 50) who had only
one MSE curve intersection in the 25 scales analyzed. For
these subjects, the scale of the “crossover” points ranged
from 3 to 15 with a median [Q1, Q3] of 7 [6,10] and a mode
of 7 (12/42). The “crossover” points were nearly normally
distributed with a slight rightward skew (Shapiro–Wilks test,
p = 0.015).

To assess the intra-subject consistency of the crossover-
point across recording time, we split the pre-operative eyes-
closed and intra-operative EEG recordings into equal sub-
segments and calculated the “crossover” point for the four
permutations of these sub-epochs (i.e., first half pre-op v
first half intra-op, first half pre-op v. second half intra-op,
second half pre-op v. first half intra-op, and second half pre-
op v. second half intra-op). The four permutated crossover
points agreed very closely with the original crossover points
obtained from the full segments, as shown in Supplementary
Figure 1B. Further, a Friedman test of the four permutations
by subject showed no statistically significant differences in
“crossover” point as a function of sub-epochs (Q = 1.59,
p = 0.66).

Relationship Between
Electroencephalogram Complexity
Metrics and Post-operative Cognitive
Scores
We hypothesized that the “crossover point” of the multiple scale
entropy as a function of scale might capture clinically useful
information about the impact of surgery and anesthesia on brain
activity. Thus, we evaluated complexity-based EEG metrics (AUC
values, “crossover” point) as potential predictors of the change in
delirium-symptom severity or attention scores from baseline to
postoperative day 1 (Table 3). Correlations between AUC values
and these cognitive outcomes were weak (absolute value ρ < 0.15
for all correlations, p > 0.05 for all). However, among the 42
participants whose MSE curves crossed only once, there was a
potential association between the “crossover” point occurring
at a longer scale and more favorable cognitive outcome. The
correlation between the “crossover” point and the change in
attention score came very close to reaching statistical significance
(ρ = 0.29, 95% confidence interval [CI] -0.02 to 0.55, p = 0.060).
In a regression model that adjusted for the three clinical variables
found to differ with decreased post-operative attention score
(i.e., lower BMI, cardiovascular disease, and increased age), a
similar, nearly significant relationship was observed between
crossover point and change in attention score (proportional
odds ratio 1.25, 95% CI 0.99–1.59, p = 0.07). The “crossover”
point similarly showed a potential correlation with pre- to post-
operative delirium severity score change (ρ = −0.31, 95% CI
−0.57 to 0.01, p = 0.054).
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TABLE 1 | Pre-operative characteristics of all participants and a comparison of participants with and without a decrease in attention score on Day 1 after surgery.

Variable Overall cohort
(N = 50)

No decrease in
attention score

(N = 32)

Decrease in
attention score

(N = 18)

p-value

Demographics

Age (years), mean (SD) 68.8 (5.4) 67.7 (4.4) 70.7 (6.5) 0.051

Race/Ethnicity, n (%)
White
Black
Other

40 (80.0%)
9 (18.0%)
1 (2.0%)

27 (84.4%)
5 (15.6%)
0 (0.0%)

13 (72.2%)
4 (22.2%)
1 (5.6%)

0.322

Female gender, n (%) 25 (50.0%) 18 (56.3%) 7 (38.9%) 0.242

Psychosocial characteristics

Years of education, median
[Q1, Q3]

16 [14,17] 16 [14,17] 16 [14,17] 0.973

MMSE score, median [Q1,
Q3]

28 [26, 29] 28.5 [27, 29] 27.5 [24, 29] 0.323

Cognitive impairment
(MMSE < 26), n (%)

10 (20.0%) 4 (12.5%) 6 (33.3%) 0.144

Baseline attention score, n
(%)
1
2
3
4

1 (2.0%)
4 (8.0%)

11 (22.0%)
34 (68.0%)

0 (0.0%)
3 (9.4%)

9 (28.1%)
20 (62.5%)

1 (5.6%)
1 (5.6%)

2 (11.1%)
14 (77.8%)

0.304

CES-depression, median
[Q1, Q3]

7 [4, 16] 7 [5, 15] 8 [4, 16] 0.983

Pre-surgical health status

Self-rated health, n (%)
Excellent
Very good
Good
Fair
Poor

8 (16.0%)
19 (38.0%)
17 (34.0%)
6 (12.0%)
0 (0.0%)

6 (18.8%)
13 (40.6%)
10 (31.3%)
3 (9.4%)
0 (0.0%)

2 (11.1%)
6 (33.3%)
7 (38.9%)
3 (16.7%)
0 (0.0%)

0.732

IADL score, median [Q1,
Q3]

6 [6, 6] 6 [6, 6] 6 [6, 7] 0.413

Body mass index (kg/m2),
mean (SD)

29.2 (5.6) 30.6 (5.8) 26.8 (4.3) 0.021

Comorbidities

Diabetes, n (%) 6 (12.0%) 3 (9.4%) 3 (16.7%) 0.654

Chronic lung disease, n (%) 8 (16.0%) 5 (15.6%) 3 (16.7%) >0.994

Cardiovascular disease, n
(%)

12 (24.0%) 4 (12.5%) 8 (44.4%) 0.024

Renal disease
(mod-severe), n (%)

5 (10.0%) 2 (6.3%) 3 (16.7%) 0.344

Cerebrovascular disease, n
(%)

1 (2.0%) 0 (0.0%) 1 (5.6%) 0.364

Thyroid disease, n (%) 10 (20.0%) 8 (25.0%) 2 (11.1%) 0.304

Rheumatoid arthritis, n (%) 1 (2.0%) 1 (3.1%) 0 (0.0%) >0.994

P-value key: 1 = t-test, 2 = Chi-Square, 3 = Wilcoxon rank sum, 4 = Fisher.
MMSE, mini mental status exam; IADL, instrumental activities of daily living; and MAC, monitored anesthesia care.
Values that are significant or nearly significant are bolded.

DISCUSSION

To our knowledge, this is the first study to examine the
extent to which EEG signal complexity in the awake condition
versus the anesthetized/surgical condition is associated with
postoperative delirium or inattention severity. To quantify EEG

complexity, we calculated entropy at MSE and observed several
key patterns. First, the total complexity across all times scales
(AUC of the MSE values) was significantly greater in the
anesthetized than in the awake eyes-closed condition, opposite
from our a priori hypothesis. These results are consistent with
previous studies (Wang et al., 2014; Eagleman et al., 2018) that
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TABLE 2 | Summary of EEG multi-scale entropy area under the curve (AUC) in
pre-operative (awake, eyes closed) and intra-operative conditions (n = 50).

Mean (SD) Median [Q1, Q3] Min, max

Pre-operative AUC 45.19 (2.25) 45.39 [43.83, 46.87] 39.06, 49.14

Intra-operative AUC 48.82 (1.43) 47.32 [46.33, 47.84] 43.03, 48.95

Difference in AUC in
pre-operative versus
intra-operative condition

1.62 (2.92)* 1.52 [−0.17, 3.11] −5.83, 9.48

*t-test (for difference from 0), p = 0.0003.

reported increased entropy during deep anesthesia compared
with the awake eyes-closed condition, although that study used
a different summating entropy measure and was applied only
across the longer temporal scales that were analyzed here.
Importantly, however, in the current study we also observed a
highly significant and robust interaction of pre- versus intra-
operative condition and temporal scale, with the MSE values
at the shorter time scales being higher during the awake
than during the anesthetized condition, but with the converse
relationship at longer time scales. The change seen within
individual subjects during anesthesia compared to the awake
state, mirrors the differences reported between health controls
and awake older adults with Alzheimer’s disease (Mizuno et al.,
2010). Specifically, EEG complexity determined via MSE was
lower in AD patients relative to healthy controls at short
time scales, possibly reflecting less regular structured neuronal
circuit activity in AD (or, in this study, during anesthesia and
surgery). In AD patients, EEG MSE was higher at longer-
time scales, possibly reflecting a more “disconnected” brain
in which AD “brain activity [tending more] toward random
or non-stationary” neuronal activity (Yang et al., 2013). It
is certainly possible that during anesthesia/surgery, “regular”
neuronal circuit patterns are lower (evidenced by lower shorter
scale MSE) and overall brain electrical activity is more “random”
(evidenced by higher longer scale MSE), leading to the observed
crossover point. The scale at which this “crossover” phenomenon

occurred varied amongst individuals but appeared to be highly
consistent within subject.

Our data are unique in showing that the complexity of
a physiologic signal may change in different ways during an
acute stressor depending on the scale at which it is measured.
This certainly makes sense if different scales result from the
outputs of multiple physiologic control mechanisms, each acting
over its own frequencies and timeframe, yet all dynamically
and adaptively responding to the same physiological stressors,
namely anesthesia and surgery. By examining entropy values
across a wide range of temporal scales, we show a robust, highly
significant, crossover pattern of the MSE-by-scale curves. In
addition, we describe the potential clinical significance of this
crossover phenomenon. More specifically, participants whose
MSE-curve crossover point occurred at shorter versus longer
temporal scales tended toward greater delirium symptomatology
on the first day after surgery.

While this relationship did not quite reach statistical
significance in this small pilot study, such a result may reflect
a lack of sufficient statistical power (a type II statistical error).
It is also worth noting that delirium typically presents on
postoperative day two (Robinson et al., 2009), a day later than
was feasible to assess in this pilot cohort, which may have reduced
our ability to detect a statistically significant relationship between
crossover point and delirium occurrence.

Nonetheless, if future studies demonstrate a significant
association between the crossover point and postoperative
delirium or inattention risk, then such a measure could
potentially be used clinically (e.g., built into perioperative
EEG monitors) to identify target patients for scarce delirium
prevention resources such as the HELP program (Inouye et al.,
2000; Ely, 2017) or ABCDEF bundle (Ely, 2017). The widespread
use of intraoperative frontal EEG monitoring suggests that this
would be feasible. Further, if future studies confirm the intra-
subject crossover point stability observed here, then the crossover
point could simply be calculated once per surgery/anesthetic,
allowing clinicians to arrange postoperative delirium prevention
interventions before the surgery/anesthetic is completed.

FIGURE 2 | AUC whisker plots (A) and entropy-by-scale curves (B), averaged across 50 participants. (A) Area under the curve (AUC) for the frontal entropy-by-scale
curves for the pre-op eyes-closed awake condition and the surgical/anesthetized condition. AUC complexity values integrated across all 25 scales are higher during
anesthesia/surgery relative to the conscious awake condition. (B) Frontal complexity (entropy) values (Y axis), by time scale (X axis), averaged across all participants
with standard error bars shown. The blue line represents the preoperative awake/eyes closed EEG recording. The red line represents intraoperative/anesthetized
EEG recording. Note the clear crossover point between scales 7 and 8, where the pre-operative complexity values are higher (compared to intra-operative
complexity values) to the left of this point but are lower to the right of this point.
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TABLE 3 | Association between EEG predictor variables and cognitive score changes from baseline to post-operative day 1.

Cognitive outcome variable: Change in attention score

EEG predictor variable Correlation Unadjusted proportional odds models Adjusted proportional odds models*

Spearman ρ (95%
CI)

p-value Odds ratio (95%
CI)

p-value Odds ratio (95%
CI)

p-value

Pre-operative AUC 0.10 (−0.18, 0.37) 0.49

Intra-operative AUC −0.05 (−0.32,
0.23)

0.73

Difference in AUC −0.12 (−0.39,
0.16)

0.39

Crossover location (N = 42**) 0.29 (−0.02, 0.55) 0.060 1.25 (0.99, 1.58) 0.058 1.25 (0.99, 1.59) 0.066

Cognitive outcome variable: Change in delirium severity score

EEG predictor variable Correlation Unadjusted linear regression models Adjusted linear regression models*

Spearman ρ (95%
CI)

p-value Mean difference
(95% CI)

p-value Mean difference
(95% CI)

p-value

Pre-operative AUC −0.08 (−0.35,
0.22)

0.61

Intra-operative AUC 0.06 (−0.23, 0.34) 0.67

Difference in AUC 0.17 (−0.12, 0.44) 0.24

Crossover point (N = 42**) −0.31 (−0.57,
0.01)

0.054 −0.10 (−0.23,
0.03)

0.11 −0.10 (−0.23,
0.03)

0.12

*Adjusted proportional odds model included the following covariables: age, body mass index, cardiovascular disease.
**Restricted analysis excludes eight participants with atypical MSE curves (multiple crossover points).
Values that are significant or nearly significant are bolded.

In addition to the clinical-relevance of frontal EEG
monitoring, our proof-of-concept analysis focused on the
frontal EEG because of its previous associations with cognitive
processes (Babiloni et al., 2016; Giattino et al., 2017; Koch et al.,
2019). We accounted for advances in clinical anesthesiology
practice by selecting and analyzing EEG epochs that were
free of artifacts, adjunct anesthetic drug exposure, and burst
suppression. Intraoperative burst suppression has been associated
with postoperative delirium in prior studies (Soehle et al., 2015;
Kratzer et al., 2020; Pedemonte et al., 2020; Shao et al., 2020), yet
modest reductions in burst suppression have not been shown
to reduce postoperative delirium incidence (Wildes et al., 2019;
Tang et al., 2020). Our data raise the possibility that EEG metrics
that are present even in the absence of burst suppression may
be associated with post-operative neurocognitive outcomes,
similar to our prior finding that lower intraoperative alpha
power is associated with lower preoperative cognitive function
(Giattino et al., 2017).

While most prior research on EEG as a predictor of
delirium has predominantly relied on analysis of EEG data
collected either intra-operatively (Kratzer et al., 2020; Sun
et al., 2020) or pre-operatively (van Montfort et al., 2020),
here we compared the pre-operative and intra-operative EEG
signals. We observed relative changes in EEG complexity from
before to during anesthesia/surgery, which may reflect brain-
health vulnerability. While we did not find an association
between dose or administration of common anesthetics,
analgesics, or neuromuscular blockers and cognitive outcomes

(Supplementary Table 1), the overall stress of surgery/anesthesia
may exacerbate pre-existing neurocognitive vulnerability in older
adults. In other physiologically stressful situations (e.g., walking
on uneven ground), age-related decreases in the complexity of
associated physiological variables (e.g., postural sway) predict
adverse outcomes (e.g., falls); presumably, decreased physiologic
complexity reflects diminished inherent capacity to respond
adaptively to stress (Lipsitz, 2004; Manor et al., 2010; Wayne
et al., 2014; Zhou et al., 2017). Similarly, EEG signal changes in
response to surgery/anesthesia may be an indicator of the brain’s
ability to function normally during and following these stressors.

The relationship between EEG complexity (i.e., MSE) and
more traditional EEG power by frequency analysis merits further
study. EEG frequency bands do not map linearly to MSE scales
although higher frequency information corresponds to shorter
scales, while lower frequency information corresponds to longer
scales (Takahashi et al., 2009). Thus, while higher intraoperative
MSE values at longer scales may roughly reflect the tendency
toward higher frontal power in lower EEG frequency bands (e.g.,
delta, alpha) during anesthesia (Purdon et al., 2013, 2015), greater
MSE values reflect higher complexity/entropy, not necessarily
higher power (i.e., a large but very regular low-frequency wave
could have high power but rather low complexity). Thus, these
MSE patterns may reflect important additional neurophysiologic
processes not measured by traditional EEG power measures.

Beyond applying entropy-based analysis to both preoperative
and intraoperative EEG, we characterized the “crossover”
phenomenon and evaluated its relationship with delirium and
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inattention. Subjects whose MSE curves intersected at short
scales, i.e., with fewer scales at which intraoperative entropy
was lower than pre-operative entropy, tended to have worse
delirium/inattention although these results narrowly missed
statistical significance at α = 0.05. A few participants had
multiple MSE “crossovers.” While our data do not provide an
obvious explanation for how these individuals differed from
the rest, the presence of multiple crossover points literally
means that there were multiple temporal scales in which
that patient’s EEG complexity was the same in the awake
and anesthetized states. Those who had multiple “crossover”
points tended to undergo sedation without intubation/general
anesthesia (2 of 8 subjects, compared to no subjects in the
single crossover group) or to have undergone orthopedic surgery
(3/8 of the multiple crossover group compared with 6/42 in
the single crossover group). We hypothesize that those with
multiple crossover points have more similar neurophysiological
complexity in the anesthetized and awake state, which could
occur if the patient was lightly anesthetized. This should be
explored in future work with more homogeneity in anesthetic and
surgical exposures.

This study has several limitations. First, we enrolled a
small sample at a single center. Due to its exploratory nature,
the study was not powered a priori to detect any particular
entropic change, much less the “crossover” phenomenon that
became apparent during our analysis. Second, as previously
mentioned, our patients’ short post-surgical hospitalization only
allowed for post-operative day 1 3D-CAM scores. Though
consistent across our study population, the post-operative day
1 assessment may have missed later post-operative delirium or
inattention, which most frequently develops on postoperative
day 2 (Robinson et al., 2009). Third, the heterogeneous types of
surgery and anesthesia studied here complicate interpretations
about potential mechanism(s) underlying different EEG patterns
and could potentially confound the relationship between these
EEG patterns and postoperative delirium/inattention. Fourth,
this study focuses specifically on post-operative delirium;
however, POCD more broadly defined (Berger et al., 2015b)
is another important perioperative cognitive outcome that
could be studied in future work. Finally, despite bandpass
filtering 1–50 Hz before down-sampling the EEG during
preprocessing (which removes all frequencies greater than
50 Hz), we cannot rule out the possibility that some EMG
signal remains with the EEG data. The possibility of EMG
contamination is a problem for EEG studies in general, and
larger studies could partly address this by controlling for
depth of paralysis. Nonetheless, the significant and nearly
significant findings in our work would have been unlikely to be
attributable to EMG alone.

These limitations notwithstanding, this is the first study
to describe this EEG MSE crossover phenomenon and its
potential association with delirium. Further, we demonstrate
the potential benefit of comparing the pre-operative and intra-
operative EEG signals as they may contain clinically useful
information on a condition by scale basis. If future research finds
that the “crossover” point is predictive of delirium, studying its
mechanistic basis may shed light on the etiology of delirium itself.
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