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Abstract: Bone metastasis is among the most frequent in diseases to patients suffering from metastatic
cancer, such as breast or prostate cancer. A popular diagnostic method is bone scintigraphy where
the whole body of the patient is scanned. However, hot spots that are presented in the scanned
image can be misleading, making the accurate and reliable diagnosis of bone metastasis a challenge.
Artificial intelligence can play a crucial role as a decision support tool to alleviate the burden of
generating manual annotations on images and therefore prevent oversights by medical experts.
So far, several state-of-the-art convolutional neural networks (CNN) have been employed to address
bone metastasis diagnosis as a binary or multiclass classification problem achieving adequate
accuracy (higher than 90%). However, due to their increased complexity (number of layers and free
parameters), these networks are severely dependent on the number of available training images
that are typically limited within the medical domain. Our study was dedicated to the use of a new
deep learning architecture that overcomes the computational burden by using a convolutional neural
network with a significantly lower number of floating-point operations (FLOPs) and free parameters.
The proposed lightweight look-behind fully convolutional neural network was implemented and
compared with several well-known powerful CNNs, such as ResNet50, VGG16, Inception V3,
Xception, and MobileNet on an imaging dataset of moderate size (778 images from male subjects with
prostate cancer). The results prove the superiority of the proposed methodology over the current
state-of-the-art on identifying bone metastasis. The proposed methodology demonstrates a unique
potential to revolutionize image-based diagnostics enabling new possibilities for enhanced cancer
metastasis monitoring and treatment.

Keywords: machine learning; convolutional neural network; bone metastasis classification;
deep learning; medical image; nuclear medicine; lightweight look-behind fully convolutional
neural network

1. Introduction

Bones, along with lung and liver, are identified as the most common sites for cancer metastasis,
causing morbidity especially to patients with advanced-stage cancer. Early diagnosis permits accurate
patient management and treatment decision making that consecutively can lead to improvement of
patient’s condition and quality of life and the rise of their survival rates [1,2].
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When it comes to bone metastasis (BS) diagnosis, various techniques are available nowadays such
as magnetic resonance imaging (MRI), radiography, and computed tomography (CT) [3]. However,
whole-body bone scans (WBS) have been identified as the standard method for the detection of bone
metastatic tumors due to lower costs and equivalent performance compared to the other aforementioned
techniques [4]. The so-called hot spots, which are areas receiving higher intensity signals than the
surroundings, signify the potential abnormalities in WBS images and contribute to the diagnosis of
BS. Hence, the accurate and effective WBS interception for BS diagnosis remains a challenging and
subjective task that demands experience since hot spots can be presented even to patients that do not
suffer from BS [5]. To this end, a methodology that will be able to identify hot spots relevant to BS is of
paramount importance for supporting the treatment decision making.

Over the last decade, artificial intelligence (AI) has been applied in diagnostic disciplines to support
medical decision-making and to interpret medical data, such as medical images [6–8]. Computer-aided
detection of BS was proposed for bone scintigraphy images based on a parallelepiped classification
method to map the radionuclide distribution in [9]. Another automated diagnosis for BS was proposed
in [10] exploiting multi-view bone scans with attention-augmented deep neural networks. The model
contains three parts that aim to extract, aggregate, and classify high-level features in a data-driven
manner. An automated diagnostic tool, ‘CADBOSS’, was proposed in [11] for BS using WBS images.
The system was implemented with an Artificial Neural Network (ANN) classifier to identify potential
metastases in cancer patients. A segmentation method for predicting the contour and location of the
lesion areas of BS in CT images has been also developed in [12]. The study modifies the holistically
nested edge detection (HED) network to match the characteristics of BS. Diagnosis of breast cancer
metastasis in bones via deep learning was presented in [13] taking advantage of WBS. The study
compared various convolutional neural networks (CNN) models for solving the binary classification
problem of bone metastasis from breast. Another approach was proposed for BS diagnosis by
applying and compared fast convolutional neural networks trained on bone scintigraphy images [14].
Extending this study, a further investigation was performed for simpler, faster, and more accurate CNN
architectures based on CNN hyper-parameter selection and fine-tuning [15]. In another study [16]
the skeletal-related events were investigated on cancer patients with BS using linear regression (LR),
decision trees (DT), and support vector machines (SVM).

Recently, due to the technological advancements in medical imaging, positron emission
tomography (PET) has been also recognized as an efficient method of detecting cancer cells. This method
combined with computed tomography (CT) could provide images of high-resolution [17]. Focusing
on PET/CT imaging, a deep convolutional neural network has been implemented, based on VGG19
architecture, for automatically differentiating benign and malignant lesions in sodium fluoride positron
emission tomography (18F-NaF PET/CT) images of patients with metastatic prostate cancer [18]. Another
CNN-based system was proposed to detect malignant findings in FDG PET-CT examinations in a
retrospective study including 3485 sequential patients. A neural network model similar to ResNet24
was also employed to solve the three-classes classification problem consisting of the categories:
(i) benign, (ii) malignant, and (iii) equivocal in [19]. Apart from CNN approaches, random forest
(RF) was adopted for addressing the BS classification problem in combination with a threshold-based
method for detection [20]. The proposed methodology was developed in the context of an automatic
evaluation of 18F-NaF PET/CT scans for bone metastases in patients with prostate cancer.

Despite the significant number of studies focusing on AI adoption to medicine, there are still
limitations of the current AI techniques that need to be overcome. In the field of computer vision (CV)
convolutional neural networks (CNNs), such as VGG-16 [21] and ResNet [22], can extract features
that better represent the input space when compared to conventional hand-crafted features [23].
While the classification performance of deep CNNs is remarkable, the training procedure requests a
large amount of training data to be available. This is directly derived from the large number of free
parameters that are required to be trained. While in many cases, such as natural images, this is viable,
data availability in the medical domain is limited mainly due to ethical concerns. Another drawback of



Healthcare 2020, 8, 0493 3 of 13

a large number of free parameters is that they are directly connected to the computational performance
of the trained model, which limits their use on high-end computational platforms typically equipped
with graphics processing units (GPUs). To this end, to enable the use of CNNs on mobile and
embedded devices, there has been work towards the minimization of the number of free parameters
and thus towards the increase of computational performance and decrease of their memory footprint.
Examples include MobileNetV2 [24], which achieves a trade-off between computational performance
and classification accuracy.

Recently, in the domain of gastrointestinal tract abnormality detection look-behind fully
convolutional neural network (LB-FCN) has achieved state-of-the-art results. The network is
characterized by multi-scale feature extraction modules composed of parallel convolutional layers
and residuals connections across the network. This enables the network to learn features under
different scales increasing the overall generalization performance [25]. In our study, we employed
the lightweight look-behind fully convolutional neural network (LB-FCN light) architecture, which is
a revised version of the original LB-FCN, focused on the computational performance reduction by
decreasing the number of required free parameters. The lightweight version of LB-FCN has been
already used for mobile applications such as staircase detection in natural images [13]. Variation of
multiscale feature extraction and the low number of free parameters enables the network to generalize
well, even when the number of training samples is limited. In this paper, the proposed LB-FCN
light network was evaluated and compared with state-of-the-art pre-trained CNN networks of the
recent literature for addressing the classification problem of patients with prostate cancer (P-Ca) for an
assisted BS diagnosis. The main contributions of this study by adopting the use of a lightweight CNN
is in the followings:

• Decrease the number of free parameters.
• Achieve high classification accuracy with small datasets.
• Decrease the training time needed for convergence.
• Decrease the complexity of the network thus enabling its mobile application.
• Establish a future research direction that will extend the applicability of the method to other types

of scintigraphy.

The rest of this study is structured as follows: In Section 2 the dataset used in the research and the
proposed methodology are presented. Section 3 presents the results achieved, while conclusions and
future work are provided in Section 4.

2. Materials and Methods

2.1. Dataset of Whole-Body Scan Images

This research study contains retrospective patient records whose development is in accordance
with the Declaration of Helsinki. The study was approved by the Board Committee Director of the
Diagnostic Medical Center “Diagnostiko-Iatriki A.E.” Dr. Vassilios Parafestas and the requirement to
obtain informed consent was waived by the Director of the Diagnostic Center due to its retrospective
nature. Nuclear medicine physician and co-author of this paper, Dr. Nikolaos Papandrianos, who has
15 years of experience in bone scan interpretation, was mainly involved and contributed to the dataset
collection and pre-processing, differential diagnosis for whole-body scans interpretation, and patient
group characterization.

In this study, 817 male patients with prostate cancer (P-Ca) participated and examined with
whole-body scintigraphy images for bone cancer metastasis. In total, 908 images were selected in the
Nuclear Medicine Department of the Diagnostic Medical Center ‘Diagnistiko-Iatriki A.E.’ in Larissa,
Greece from June 2013 until June 2018. The patient scanning was performed with a Siemens gamma
camera Symbia S series SPECT System (Siemens, Enlargen, Germany) with two heads with low energy
high-resolution (LEHR) collimators and with Syngo VE32B software (Siemens Healthcare, Forchheim,
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Germany). Anterior and posterior digital views of 1024× 256 pixels resolution were captured by using
a whole-body field.

A data pre-processing step of the scanned images was considered necessary due to the existence
of artifacts and non-related to bone findings, such as medical accessories, radioisotope drugs, or urine
accumulation [26,27]. The pre-processed dataset includes images from P-Ca patients with and without
bone metastasis, or other benign etiologies as to the diagnosis, such as degenerative joint disease,
benign fractures, and inflammation [28]. The degenerative changes are present in the whole body
scans because 99mTc-MDP accumulates in response not only to the tumor but also to the reported
benign findings [29].

The procedure followed by the experienced nuclear medicine physician to categorize patients into
three classes/groups (as malignant (bone metastasis), degenerative changes, and normal) was as follows:
Initially, by inspecting the provided image dataset, the NC physician was able to determine the normal
bone scans which were characterized from metastasis absence. Next, following the typical scintigraphic
patterns for bone metastasis (i.e., solitary focal lesions and multiple local lesions), as reported in [30],
the nuclear medicine physician easily recognized certain features on the provided scintigraphy images,
which helped him to define these image scans as malignant. Thus, he differentiated them from those
that are characterized in the relevant literature as equivocal [31].

In the case of the equivocal group of image scans, further investigation using localized radiological
examination such as computed tomography (CT) or magnetic resonance imaging (MRI) was requested
by the physician to distinguish benign-degenerative (fracture, Paget’s, degenerative joint disease, etc.)
from malignant (metastatic) origin patients [32]. The group of patients diagnosed with degenerative
changes such as degenerative joint diseases (which include knee, hand, wrist, shoulder, and bones of
the feet), or degenerative changes in the spine, formed the category “degenerative” (benign). The rest
of the cases characterized as malignant from the aforementioned radiological examination were added
to the previously defined “malignant” category/group.

Hence, these three classes were adopted in this study. In this study, 778 images were chosen
where 328 illustrate bone metastasis, 271 degenerative alterations, and 179 without any bone metastasis
findings (normal). Figure 1 illustrates representative cases of each one of the three categories.
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Figure 1. Examples of the three categories of prostate cancer (P-Ca) patients: (a) normal (metastasis 
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2.2. The Proposed Methodology 

This study was divided into two steps (Figure 2): (i) the training and validation of the LB-FCN 
light model; and (ii) its comparison with state-of-the-art CNN architectures. In the first step, a pre-
processing step was performed for data curation. In this process, the Red-Green-Blue (RGB) images 

Figure 1. Examples of the three categories of prostate cancer (P-Ca) patients: (a) normal (metastasis
absent); (b) malignant (metastasis present); (c) benign-degenerative (no metastasis, but image includes
degenerative lesions/changes) [14].

2.2. The Proposed Methodology

This study was divided into two steps (Figure 2): (i) the training and validation of the LB-FCN light
model; and (ii) its comparison with state-of-the-art CNN architectures. In the first step, a pre-processing
step was performed for data curation. In this process, the Red-Green-Blue (RGB) images were
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transformed to grayscale and a nuclear medicine doctor labeled the data based on three pre-determined
classes, namely malignant, degenerative, and healthy. Then, data were normalized to achieve a scalable
dataset in which the proposed LB-FCN light was trained.
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Figure 2. Methodology pipeline.

The design architecture of the adopted LB-FCN light is based on the initial LB-FCN [25] while a
lightweight version of the LB-FCN was adopted [33] to decrease the architecture complexity, the number
of free parameters and required floating-point operations (FLOPs). LB-FCN light was compared to
conventional and pre-trained CNN architectures [34,35] used to solve the classification problem of bone
metastasis from P-Ca patients [14]. Light LB-FCN follows the FCN network design [21] and it is based
on the presence of depth wise separable convolutions among the convolutional layers of the network.
In contrast with the conventional convolution where the filters are connected on the entire depth of the
input channels, the filter in the depth wise convolution is applied on each channel separately followed
by a 1 × 1 pointwise convolution for connecting the filters. The LB-FCN light that was used in our
study is composed of four multi-scale blocks and three residual connections (Figure 3). In total the
network is composed of 0.3 × 106 free parameters and requires 0.6 × 106 FLOPs for an inference.
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In the second step, a comparison among the LB-FCN light and state-of-the-art CNN models,
such as RESNET50, VGG16, Inception V3, Xception, and MobileNet, was performed. ResNet50 is
a convolutional neural network with 50 layers deep [22] with 2.3 × 107 trainable free parameters.
VGG16 [35] architecture contains 1.3 × 108 trainable free parameters and 16 trainable layers each of
which is composed of filters with spatial size 3 × 3. In this study, the weights of the last five layers
were retrained. Inception-v3 [36] is a deep network composed of 48 layers and fewer parameters
than VGG16 architecture. This architecture has 2.1 × 107 trainable free parameters. Xception [37]
is an extension of the original Inception [38] architecture which replaces the standard Inception’s
modules with depth-wise separable convolutions reducing the trainable free parameters to 2 × 107.
MobileNet [39] architecture consists of depth-wise and point-wise convolution layers resulting in
3.2 × 106 trainable free parameters.

Accuracy, precision, recall, F1-score, sensitivity, and specificity were used as evaluation metrics
for testing the performance of the classifiers. Bellow, we present the mathematical formulations used
to calculate the evaluation metrics, where we indicate as TP (true positive) the correct classification
of an image as benign, as FP (false positive) the false classification of an image as benign while it is
malignant, as TN (true negative) the correct classification of a malignant image and FN (false negative)
the false classification of a benign image as malignant [40,41]:

accuracy =
TP + TN

TP + FP + TN + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1− score = 2×
(recall× precision)
recall + precision

(4)

sensitivity =
TP

TP + FN
(5)

speci f icity =
TN

FP + TN
(6)

3. Results

To evaluate the classification performance of LB-FCN light architecture, we adopted the
methodology applied in [14] where state-of-the-art convolutional neural networks were employed for
solving the three-class classification problem of BS detection on P-Ca patients’ images. These CNNs
have already been applied in similar problems of bone metastasis classification in nuclear
medicine [10,13–15,42,43]. To this end, LB-FCN light was compared with ResNet50, VGG16, MobileNet,
InceptionV3, Xception, and the fast CNN proposed in [14], namely Papandrianos et al., following
10-fold stratified cross-validation. Table 1 presents the characteristics of the state-of-the-art CNNs that
are used in the evaluation. In this procedure, the dataset was partitioned into 10 stratified subsets,
from which 9 were used for training and 1 for testing. This was repeated 10 times, each time selecting
a different subset for testing until all folds were tested. For training we used the Adam optimizer with
a batch size of 32 images, learning rate = 0.001 with first (beta1) and second (beta2) moment estimates
exponential decay rate beta1 = 0.9 and beta2 = 0.999. As not all images of the dataset are of the same
spatial size, the images were uniformly downsized to 224 × 224 pixels and zero-padded to maintain the
original aspect ratio. A minimal data augmentation process was applied, in a form of sample image
rotation and rescaling. No further pre-processing step was applied to the input images other than
standard pixel normalization between 0 and 1. For the implementation, we used the Keras API from
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the Python TensorFlow [44] framework. The training was performed on an NVIDIA GeForce GTX 960
GPU equipped with 1024 CUDA cores, 4GB of RAM, and a base clock speed of 1127 MHz.

Table 1. Characteristics of the networks used in the evaluation.

Network Characteristics

ResNet50 [22] pixel size (250× 250× 3), batch size = 64, dropout = 0.2, global average pooling,
dense nodes 1024 × 1024, epochs = 200

VGG16 [35] pixel size (250× 250× 3), batch size = 32, dropout = 0.2, flatten, dense nodes
512 × 512, epochs = 200

MobileNet [39] pixel size (300× 300× 3), batch size = 32, dropout = 0.5, global average pooling,
epochs = 200

InceptionV3 [36] pixel size (250× 250× 3), batch size = 32, dropout = 0.7, global average pooling,
dense nodes = 1500× 1500, epochs = 200

Xception [37] pixel size (300× 300× 3), batch size = 16, dropout = 0.2, flatten,
dense nodes = 512× 512, epochs = 200

Papadrianos et al. [14] pixel size (400× 400× 3), batch size = 32, dropout = 0.2, 16–32–64–128 dense
nodes = 32, 16, epochs = 300

LB-FCN light [33] pixel size (224× 224× 3), batch size = 32, global average pooling, epochs = 200

The comparative classification performance results, which are illustrated in Tables 2–5, show that
the LB-FCN light architecture can generalize significantly better compared to conventional pre-trained
networks. Specifically, due to its ability to extract multi-scale features, LB-FCN light achieves a 5.8%
higher classification performance compared to state-of-the-art [14] network trained exclusively on the
same dataset. This is more apparent when compared to malignant (Table 3) and degenerative images
(Table 4), where the classes are harder to distinguish compared to healthy class images.

Table 2. Comparative classification performance for the healthy class.

Network Precision Recall F1-Score Sensitivity Specificity

ResNet50 [22] 0.994 0.777 0.866 0.825 0.997
VGG16 [35] 0.952 0.844 0.896 0.855 0.988

MobileNet [39] 0.890 0.990 0.936 0.857 0.960
InceptionV3 [36] 0.884 0.958 0.916 0.959 0.947

Xception [37] 0.958 0.908 0.931 0.913 0.988
Papadrianos et al.

[14] 0.950 0.938 0.942 0.938 0.978

LB-FCN light [33] 0.972 0.978 0.975 0.978 0.992

Table 3. Comparative classification performance for the malignant disease class.

Network Precision Recall F1-Score Sensitivity Specificity

ResNet50 [22] 0.904 0.972 0.934 0.971 0.921
VGG16 [35] 0.952 0.950 0.952 0.949 0.960

MobileNet [39] 0.946 0.941 0.944 0.940 0.952
InceptionV3 [36] 0.902 0.922 0.911 0.920 0.909

Xception [37] 0.964 0.932 0.946 0.937 0.909
Papadrianos et al.

[14] 0.948 0.928 0.938 0.927 0.960

LB-FCN light [33] 0.979 0.979 0.979 0.978 0.984
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Table 4. Comparative classification performance for the degenerative class.

Network Precision Recall F1-Score Sensitivity Specificity

ResNet50 [22] 0.830 0.882 0.846 0.881 0.902
VGG16 [35] 0.836 0.914 0.872 0.913 0.917

MobileNet [39] 0.938 0.856 0.888 0.857 0.960
InceptionV3 [36] 0.848 0.754 0.786 0.755 0.937

Xception [37] 0.820 0.936 0.904 0.934 0.925
Papadrianos et al. [14] 0.862 0.894 0.874 0.894 0.933

LB-FCN light [33] 0.970 0.967 0.968 0.967 0.984

Table 5. Overall classification accuracy comparative results.

ResNet50 [22] VGG16 [35] MobileNet [39] InceptionV3 [36] Xception [37] Papandrianos et al. [14] LB-FCN light [33]

Accuracy 90.74% 90.83% 91.02% 88.96% 91.54% 91.61% 97.41%

While LB-FCN light architecture achieves higher classification results compared to state-of-the-art
networks, it is also able to maintain low computational requirements. This is illustrated in Table 5,
which includes the computational requirements of all the networks tested in this paper. With respect
to the required number of free parameters and FLOPs (see Table 6), LB-FCN light computational
requirements are significantly lower when compared to the rest of the CNN networks. It should be
noted that LB-FCN light is more than 10 times lighter compared to MobileNet [39] that is a well-known
light-weighted and efficient network especially designed for mobile applications.

Table 6. Computational performance comparison.

FLOPs (×106) Trainable Free Parameters (×106)

ResNet50 [22] 47.0 23.5
VGG16 [35] 268.5 134.2

MobileNet [39] 6.4 3.2
InceptionV3 [36] 43.5 21.8

Xception [37] 41.6 20.8
Papadrianos et al. [14] 13.1 6.5

LB-FCN light [33] 0.6 0.3

4. Discussion

In this study, the LBFCN light architecture was adopted to identify bone metastasis in the case of
patients suffering from prostate cancer based on their whole-body scintigraphy images. The problem
was formulated as a three-class classification problem aligned with [14]. The LB-FCN light architecture
was chosen to address the limitations derived from previous works [9–16] such as:

1. A large annotated dataset of medical images is necessary to achieve strong generalization ability.
2. Abnormalities in images can also be presented due to non-neoplastic diseases. This can lead to

low specificity and high sensitivity.
3. The use of deep learning in computer-aided diagnostic systems typically requires significant

computational resources, limiting their use to powerful computers.

Due to a lack of publicly available datasets in WBS images of patients with BS, a straightforward
comparison with most of the proposed methodologies in the literature remains a challenge. Table 7
summarizes results from the literature review on recent Machine Learning (ML) based BS classification
studies. The great majority of the reported approaches employ CNN-based methodologies to implement
the classification problem of BS detection. Being a gold standard in BS detection, CNNs have been used
in various architectures [10,14,15,42,45] outperforming conventional ML models such as ANNs [11]
or LR, DT and SVMs [16]. However, difficulties in comparing their efficacy of the different CNN
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architectures arise from the fact that each of the aforementioned techniques uses its own dataset that is
not publicly available due to privacy reasons. To overcome this barrier, we present a straightforward
comparison between the proposed LB-FCN light and almost all well-known CNN-based architectures
using the same dataset on the BS classification problem. Validation was performed by using a number
of evaluation metrics including accuracy, precision, recall, sensitivity, specificity and F1 score indicators.

Table 7. Summarized results of state-of-the-art ML approaches for bone metastasis (BS) classification.

Studies Year ML Method Classification Problem Results

[10] 2020 Deep CNNs 2 classes: absence or presence of
bone metastasis

accuracy of 89.00%, F1-score of 0.893, and
Sensitivity of 92.00%

[14] 2020 CNN

2 classes: BS metastasis in prostate
patient or not
3 classes: (a) benign, (b) malignant
and (c) degenerative

overall classification accuracy 91.61% ±
2.46%
accuracy regarding normal, malignant
and degenerative
changes: 91.3%, 94.7% and 88.6%

[15] 2020 CNN 2 classes: BS metastasis in prostate
patient or not

97.38% classification testing accuracy and
95.8% average sensitivity

[9] 2019 Parallelepiped
algorithm

2 classes: absence or presence of
bone metastasis

87.58 ± 2.25% classification accuracy and
0.8367 ± 0.0252 κ coefficient

[12] 2019 Modified Fully
CNN Segmentation of the BS area 69.2% intersection over union rate and

79.8% true positive rate

[13] 2019 CNN 2 classes: metastasis of breast
cancer or not

classification accuracy of 92.50%, 95%
sensitivity

[11] 2016 CADBOSS
(ANNs)

2 classes: absence or presence of
bone metastasis

92.30% accuracy, 94% sensitivity and
86.67% specificity

[16] 2016 LR, DT and
SVM

2 classes: absence or presence of
bone metastasis

LR, DT, and SVM classification accuracy
was 79.2%, 85.8% and 88.2%

From the results in Tables 2–6, it arises that the proposed methodology outperforms the previously
proposed CNN architectures, as reported in the literature, applied in the specific problem in both
classification performance and computational efficiency. Specifically, ResNet50 accomplished a
moderate overall accuracy (90.74%) with a low recall for the healthy class (77.7%) while being
computationally intensive (with 23.5 × 106 free parameters). VGG16 was the worst performer in terms
of computationally efficiency (with 134.2 × 106 parameters to be trained), whereas InceptionV3 gave
the lowest overall classification accuracy (88.96%) among the competing CNN algorithms. Xception
achieved a relatively high performance (91.54%) with a network of moderate complexity. MobileNet
and Gray-based CNN were computationally efficient whereas at the same time they achieved higher
overall accuracy compared to the aforementioned CNN approaches. However, MobileNet led to low
precision and sensitivity values for the healthy class as well as low recall, F1-Score, and sensitivity in
the degenerative class. Moreover, the fast CNN network proposed by Papandrianos et al. resulted in
low precision, recall, F1-Score, and sensitivity for the subjects of the degenerative class.

LBFCN light architecture was chosen due to its significantly lower number of free parameters
compared to state-of-the-art CNN networks. Furthermore, the results prove that the adopted
methodology not only decreases the computational complexity of the model but also increases the
accuracy significantly. Compared to the existing methodologies, the following text outlines the main
advantageous characteristics of the proposed LB-FCN architecture in light mode. More precisely,
LB-FCN light:

1. Is capable of generalizing well, even when the availability of training images is limited, due to its
multi-scale feature extraction process. This is important in applications where high classification
performance is required with limited data. Such applications include computer-aided medical
systems, where data availability is limited due to patient privacy legislation.
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2. Achieves a high overall classification performance outperforming the state-of-the-art approaches.
Specifically, LB-FCN light achieved a 97.41% accuracy rate, which indicates that the proposed
architecture can detect bone metastasis with almost three times lower error rate (2.59%) compared
to the state-of-the-art approach [14].

3. Has a significantly lower number of free parameters (0.3 × 106) and FLOPs (0.6 × 106) compared
to conventional approaches enabling its use in embedded and mobile devices, such as tablets and
portable diagnostic systems.

The produced results suggest the feasibility of the proposed LB-FCN light network to classify
bone metastasis using whole-body scans in the field of nuclear medicine. Even though this too
effective fully CNN-based network uses a relatively small dataset of patients, this work suggests that
bone scintigraphy, incorporating a variety of multiscale feature extraction and a low number of free
parameters, can have a considerable effect in the detection of bone metastasis, providing at the same
time a potential application in mobile devices.

The main outcome of this study can be summarized as follows: The proposed LB-FCN light
architecture is powerful enough, in all aspects concerning computational performance, complexity,
and generalization, outweighing the CNN architectures previously applied in whole-body image
classification problem in bone scintigraphy, as reported in the literature. The validation of the proposed
methodology on a small dataset could be considered as a potential limitation of this study since most
of the notable accomplishments of deep learning are typically trained and validated on very large
amounts of data. Moreover, the insufficiency of the current method to provide explanations on the
decisions could also be seen as a limitation since the network is treated as a black box. Future work
includes the use of LB-FCN light architecture in classifying and localizing possible bone metastasis
from bone scans of patients, gathering more images from patients suffering from prostate cancer, as
well as patients suffering from other various types of metastatic cancer, such as breast cancer, kidney,
and lung cancer.

5. Conclusions

A new lightweight deep learning architecture is proposed in this paper for bone metastasis
classification in prostate cancer patients. The proposed LBFCN-light overcomes the computational
burden by using a CNN with a significantly lower number of FLOPs and free parameters. A thorough
comparison with several well-known powerful CNNs proved the superiority of the proposed
methodology over the current state-of-the-art on identifying bone metastasis. Specifically, LB-FCN
light was proved at least 6% more accurate and at least 10 times computationally lighter from all
the competing algorithms. Overall, the proposed methodology demonstrates a unique potential for
enhanced cancer metastasis monitoring and treatment using lighter and at the same time more accurate
networks thus facilitating their application on mobile and embedded devices.
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