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Abstract Introduction: An Alzheimer’s disease (AD) biomarker adjusted for age-related brain changes
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should improve specificity for AD-related pathological burden.
Methods: We calculated a brain-age-adjusted “personalized AD cortical thickness index” (pADi) in
mild cognitive impairment patients from the Alzheimer’s Disease Neuroimaging Initiative. We per-
formed receiver operating characteristic analysis for discrimination between patients with and
without cerebrospinal fluid evidence of AD and logistic regression in an independent sample to deter-
mine if a dichotomized pADi predicted conversion to AD dementia.
Results: Receiver operating characteristic area under the curvewas 0.69 and 0.72 in the two samples.
Three empirical methods identified the same cut-point for pADi in the discovery sample. In the vali-
dation sample, 83% of pADi1 mild cognitive impairment patients were cerebrospinal fluid AD
biomarker positive. pADi1 mild cognitive impairment patients (n 5 63, 38%) were more likely to
progress to AD dementia after 1 (odds ratio 5 2.9) and 3 (odds ratio 5 2.6) years.
Discussion: The pADi is a personalized, magnetic resonance imaging–derived AD biomarker that
predicts progression to dementia.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Background

Positron emission tomography (PET) and cerebrospinal
fluid (CSF) biomarkers are the gold standard for identifying
paration of this article were obtained from the Alz-

uroimaging Initiative (ADNI) database (adni.loni.

e investigators within the ADNI contributed to the

ation of ADNI and/or provided data but did not partic-

iting of this report. A complete listing of ADNI inves-

nd at: http://adni.loni.ucla.edu/wpcontent/uploads

_Acknowledgement_List.pdf.

thor. Tel.: 617-726-5571; Fax: 617-726-5760.

ad.dickerson@mgh.harvard.edu

/j.dadm.2018.02.007

e Authors. Published by Elsevier Inc. on behalf of the Alzhe

commons.org/licenses/by-nc-nd/4.0/).
individuals with molecular evidence of Alzheimer’s disease
(AD) neuropathology, but these procedures are invasive
(CSF), expensive (PET), and only accessible in specialized
centers (PET) [1,2]. Magnetic resonance imaging (MRI),
on the other hand, is noninvasive, less expensive, and more
readily available than PET but less specific than amyloid
PET or CSF to AD-related neurodegeneration. Although
the magnitude of hippocampal atrophy in patients scanned
in vivo and followed to autopsy correlates with the burden
of neurofibrillary tangle pathology [3], hippocampal atrophy
can also be seen in patients with a variety of neurodegenera-
tive and other pathologies [4–6]. Spatial patterns of regional
imer’s Association. This is an open access article under the CC BY-NC-ND
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brain atrophy measured by MRI may be sensitive to the
typical localization of different types of neurodegenerative
conditions, providing increased specificity [7]. For example,
temporoparietal atrophy is strongly associatedwith the local-
ization and magnitude of neurofibrillary tangles in AD [8,9],
and in vivo tau PET investigations show a close
correspondence between regional atrophy and tau PET
signal [10–12]. However, the specificity of different
cortical patterns of atrophy for AD pathology has received
limited investigation [13].

Regional atrophy also shows clear relationships to the clin-
ical characteristics of patients with neurodegenerative diseases
[7,14,15]. Cortical thickness is a biologically meaningful
measure interpretable with an MRI scan in an individual
person that is highly reliable within and across scanner
manufacturers, sequences, and field strengths [16]. We previ-
ously showed that a cortical thickness AD signature measure,
comprised of nine regions of interest (ROIs), is a valid reflec-
tion of AD continuum severity and is reliable across multiple
samples including those scanned at different field strengths
[17]. Moreover, we have shown that it is associated withmem-
ory performance, cognitive decline, and progression to de-
mentia [17–25], is a better predictor of progression from
mild cognitive impairment (MCI) to AD compared to
entorhinal [18] or hippocampal volume [24], and is closely
associated with AD-like CSF characteristics [22].

One challenge associated with MRI-based biomarkers of
neurodegenerative disease is that aging itself is associated
with regional brain atrophy; we have shown that areas of
prominent age-related cortical atrophy include regions
partially overlapping with the AD signature [23,26–28].
Indeed, reducing the influence of age-related atrophy by ad-
justing the AD signature for these cortical changes resulted
in increased correlation with CSF tau and amyloid b (Ab)
and better prediction than molecular markers of progression
from MCI to dementia in 1 year [24].

Importantly, the cortical age-adjusted AD signature in our
previous study was calculated as a residual from a group-level
analysis. Therefore, while this study demonstrated the valid-
ity of a cortical age-adjusted AD signature MRI biomarker,
the approach may not be generalizable to individual patients,
potentially limiting its clinical applications. The goal of the
present study was to calculate a cortical age-adjusted AD
signature marker based on individual rather than group-
level data and to identify a cut-point that could be used to clas-
sify individuals as high or low risk of likely harboring AD pa-
thology based on CSFAb and tau. We chose to use a ratio of
aging-signature cortical thickness to AD-signature cortical
thickness because a ratio ismore likely to be applicable across
differences in scanners, sequences, or processing pipelines,
and because this ratio can be interpreted as increasing likeli-
hood of AD pathology with higher values.

With these motivations and this background in mind, we
undertook this study hypothesizing that the “personalized
AD cortical thickness index” (pADi) would discriminate
patients with MCI who have molecular evidence of AD
from MCI patients who likely do not have AD and that
discrimination would be better than the AD signature alone
(i.e., not adjusted for age-related cortical atrophy) or the ag-
ing signature. This would support the predictive pathological
validity of this biomarker. We further hypothesized that a
pADi cut-point derived from this MRI measure based on
molecular biomarkers would predict progression from
MCI to dementia with effect sizes similar to CSF biomarkers
themselves, potentially supporting the use of this quantita-
tive MRI measure probabilistically as a less expensive and
invasive corollary of amyloid PET or CSF. This would sup-
port the predictive clinical validity of this biomarker.
2. Methods

The data and methods for biomarker (MRI, CSF) process-
ing reported below are similar to those previously described in
Dickerson and Wolk [24]. In addition, we provide a detailed
analysis plan to test our hypotheses about an individualized
MRI-derived, cortical age-adjusted AD biomarker, the pADi.

2.1. Participants

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial MRI, PET,
other biological markers and clinical and neuropsychologi-
cal assessment can be combined to measure the progression
of MCI and early AD.

For the current analysis, we selected individuals with a
baseline diagnosis of MCI who had baseline CSF and MRI
data available. Detailed diagnostic, inclusion, and exclusion
criteria are described on the ADNI website (http://www.
adni-info.org/). Methods for clinically characterizing pa-
tients as MCI or dementia have been described previously
[29]; biomarkers were not used to facilitate the clinical diag-
noses. “Conversion to AD Dementia” was defined as an
ADNI diagnosis of AD dementia at follow-up assessments
in patients who were initially classified as MCI at baseline.

2.2. Standard protocol approvals, registrations, and
patient consents

Each participant gave written informed consent in accor-
dance with institutional Human Subjects Research Commit-
tee guidelines.

2.3. MRI and analysis

We performed this analysis with a discovery sample and a
validation sample. The discovery sample consisted of 149
MRI scans collected on a 3T scanner. One hundred ten of
these 3T scans used a standardized magnetization prepared
rapid acquisition gradient echo (MPRAGE) protocol on

http://www.adni-info.org/
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Fig. 1. AD signature and aging-only signature ROIs [23]. (Top) “AD signa-

ture” ROIs. Labels A, B, C, F, and H are AD-specific ROIs, where atrophy

is seen primarily in AD. Labels D, E, G, and I are aging-AD overlap ROIs,

where atrophy is seen in both aging and AD. (Bottom) “aging-specific”

ROIs, where atrophy is seen primarily in normal agingwithminimal additional

effects of AD. Abbreviations: AD, Alzheimer’s disease; ROI, region of inter-

est; A, medial temporal; B, inferior temporal; C, temporal pole; D, angular; E,

superior frontal; F, superior parietal; G, supramarginal; H, precuneus; I, middle

frontal; J, calcarine; K, caudal insula; L, cuneus; M, caudal fusiform; N, dor-

somedial frontal; O, lateral occipital; P, precentral; Q, inferior frontal.
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Siemens scanner: sagittal plane, repetition time/time to
echo/time for inversion (TR/TE/TI) 2300/2.98/900 ms, flip
angle 9�, 25.6 cm field of view 240 ! 256 in-plane matrix,
1.2 mm slice thickness. The remaining 39 3T scans used a
standardized spoiled gradient recalled protocol on a GE
scanner: sagittal plane, TR/TE/TI 6.984/2.84/400 ms, flip
angle 11�, 26.0 cm field of view 256 ! 256, 1.2 mm slice
thickness. The independent validation sample consisted of
167 MRI scans collected on a 1.5T Siemens scanner using
a standardized magnetization prepared rapid acquisition
gradient echo protocol: sagittal plane, TR/TE/TI 2400/3/
1000 ms, flip angle 8�, 24 cm field of view, 192 ! 192 in-
plane matrix, 1.2 mm slice thickness. Fully preprocessed
scans were downloaded for analysis [30,31].

For both samples, T1 image volumeswere examined quan-
titatively by a cortical surface-based reconstruction and anal-
ysis of cortical thickness, using a hypothesis-driven approach
as described in multiple previous publications [17,18,23].
Briefly, we used nine ROIs ( see Fig. 1) previously determined
to be associated with AD, the “cortical signature” of AD. For
the purposes of this study, we used a primary diagnostic
biomarker, the single summary “AD signature measure,” the
average thickness of all nine ROIs. We also calculated a
cortical signature of aging using eight ROIs where atrophy
is seen primarily in normal aging with minimal additional ef-
fects of AD (“aging-only signature”) [23]. We again calcu-
lated a single summary “aging-only signature measure” as
the average thickness of these eight ROIs (Fig. 1). We calcu-
lated the pADi as the ratio of aging-only cortical thickness to
AD-related cortical thickness scaled by a factor of 10 (i.e.,
[aging-only signature/AD signature] ! 10). Thus, larger
values indicate greater AD-related atrophy relative to aging-
related atrophy, and values closer to or higher than 10 are
considered more AD-like. There was no overlap between
the current sample and the samples used to generate the AD
[17] and aging [23] signatures.

To compare the pADi to a commonly used MRI
biomarker in the field, we analyzed hippocampal volume us-
ing the measures provided by the automated segmentation
procedure from FreeSurfer (summed across hemispheres)
divided by total intracranial volume (ICV). We dichoto-
mized ICV-corrected hippocampal volume for analysis
based on a previously published threshold of 4.65 [32].
2.4. Baseline cerebrospinal fluid measures

We also examined baseline CSF levels of Ab and phos-
phorylated tau (p-tau). We used previously published cut-
point values [33] to classify participants as positive or nega-
tive for Ab42 (Ab421, 192), p-tau (p-tau1. 23), and the
ratio of p-tau to Ab42 (p-tau/Ab42 ratio 1 .0.10).
2.5. Statistical analysis

We performed receiver operating characteristic (ROC)
curve analysis to determine how well the pADi discriminates
MCI patients with and without molecular evidence of preclin-
ical AD and to determine a cut-point to dichotomize the pADi
based on this discrimination. Patients were stratified as being
positive or negative for Ab and p-tau based on cut-points
described in Section 2.4. In the ROC analysis, we compared
patients who were positive for both Ab and p-tau (Ab1/p-
tau1) compared to patients who were negative for both Ab
and p-tau (Ab2/p-tau2). Patients who were positive for
either Ab or p-tau but not both were excluded from the
ROC analysis but not subsequent regression analyses.

For comparison, we repeated this ROC analysis using the
AD signature and the aging-only signature instead of the
pADi. We report area under the curve (AUC), which is an
effective and combined measure of sensitivity and speci-
ficity that describes the inherent validity of a diagnostic
test [34]. Our primary model was a parametric probit model
fit with bootstrapping (1000 replications). We also per-
formed analyses using maximum likelihood to test for
robustness across different ROC approaches.

To investigate the clinical utility of the pADi to identify
individuals with MCI who are at high or low risk of pro-
gressing to dementia, we developed cut-points based on
three methods: the Liu method maximizes the product of
the sensitivity and specificity and thus optimizes test
discrimination [35]; the Youden method is defined as



Table 1

Sample characteristics

Sample characteristic

Discovery 3T

sample

(N 5 149)

Validation 1.5 T

sample

(N 5 167)

Age, years; mean (SD) 71.44 (7.3) 74.4 (7.5)

Sex, female; n (%) 71 (48) 58 (35)

Education, years; mean (SD) 16.2 (2.7) 15.6 (3.1)

APOE41; n (%) 64 (45) 93 (56)

MMSE; mean (SD) 28.2 (1.6) 26.9 (1.8)

CSF p-tau; mean (SD) 25.61 (14.6) 36.3 (18.7)

CSF p-tau1; n (%) 70 (47) 117 (70.1)

CSF Ab42; mean (SD) 216.7 (74.4) 163.1 (53.2)

CSF Ab421; n (%) 64 (43) 124 (74.3)

CSF p-tau/Ab42 ratio; mean (SD) 0.15 (0.12) 0.27 (0.19)

CSF p-tau/Ab42 ratio1; n (%) 76 (51) 131 (78.4)

Adjusted hippocampal volume;

mean (SD)

4.85 (0.73) 4.07 (0.56)

Adjusted hippocampal volume1; n (%) 62 (42) 144 (86)

AD signature, mm; mean (SD) 2.57 (0.13) 2.43 (0.16)

Aging-only signature, mm; mean (SD) 2.24 (0.08) 2.07 (0.11)

Personalized AD cortical thickness

index (pADi); mean (SD)

8.73 (0.34) 8.56 (0.33)

AD by 1-year follow-up; n/N (%)* N/A 30/155 (19)

AD by 3-year follow-up; n/N (%)* N/A 73/135 (54)

Abbreviations: AD, Alzheimer’s disease; Adjusted hippocampal volume,

bilateral hippocampal volume corrected for intracranial volume; APOE,

apolipoprotein E; CSF, cerebrospinal fluid; MMSE, Mini Mental State Ex-
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“(sensitivity 1 specificity) 2 1” and thus maximizes the
ROC AUC [36,37]; and the nearest method finds the cut-
point on the ROC curve closest to (0,1), that is, the point
with perfect sensitivity and specificity. Because some studies
may wish to optimize sensitivity or specificity (rather than
both), we also report cut-points based on the value on the
AUC curve closest to 90% sensitivity and 90% specificity.

We first performed the ROC analysis and cut-point deter-
mination in the Discovery 3T sample. We then replicated the
analysis in the validation 1.5T sample to see if similar AUCs
and cut-points were observed across data collected on scan-
ners of different field strengths. Because a 3T scanner pro-
vides a stronger MRI signal, we then applied the cut-point
derived in the discovery 3T sample to the data in the valida-
tion 1.5T sample for further analyses. To test the robustness
of our findings, we repeated the ROC and cut-point analyses
in the discovery 3T sample with alternative criteria for cases
and controls using the well-established p-tau/Ab42 ratio (p-
tau/Ab42 ratio1 vs. p-tau/Ab42 ratio2; no patients were
excluded).

We performed logistic regression with conversion to AD
dementia as the outcome variable and the dichotomized
pADi as the independent variable, controlling for age, sex,
and education. We examined conversion to AD dementia
by 1-year and 3-year follow-up. We report the effect sizes
(odds ratio [OR]) to models using dichotomized ICV-
corrected hippocampal volume and CSF biomarkers for
Ab, p-tau, and p-tau/Ab42 for comparison. Finally, we
examined a model with dichotomized variables for pADi,
p-tau, and Ab42 simultaneously to see if the pADi adds pre-
dictive value in models that already account for molecular
evidence of AD pathology.

To be as inclusive as possible initially, we included all in-
dividuals meeting a clinical diagnosis of AD dementia at the
follow-up in our main logistic regression analysis. However,
several of the identified converters did not have CSF
biomarker evidence of AD (elevated Ab and/or tau) at base-
line, suggesting that they may have had dementia due to
another cause other than AD, despite their clinical diagnosis.
Unfortunately, not all of these participants had CSF
biomarker data available at the 1- and 3-year assessments,
so it is not known if these patients progressed to biomarker
positivity (coinciding with their transition to AD dementia),
despite being biomarker negative at baseline. Therefore, we
performed two sensitivity analyses: the first excluded all pa-
tients who were negative for CSF Ab and/or tau at baseline
but converted to dementia at the follow-up (regardless of
whether they had biomarker data available at the 1- and 3-
year visits); the second excluded only those patients who con-
verted to dementia who also had a known biomarker-negative
status at the follow-up.
amination; p-tau, phosphorylated tau; SD, standard deviation.

*Progression to ADwas assessed in the validation 1.5 T sample only; pro-

gression to AD by 1-year follow-up was assessed in the n5 155 who devel-

oped AD by or were followed for at least 1 year; progression to AD by 3-

year follow-up was assessed in the N 5 135 who developed AD by or

were followed for at least 3 years.
3. Results

Baseline characteristics of the two samples are described
in Table 1.
The ROC results were similar using either the maximum
likelihood or bootstrapping approaches; bootstrapping
yielded slightly higher AUCs and provided bias-corrected
95% confidence intervals (CIs) and so are reported and dis-
played in Fig. 2. The AUC for the ROC analysis of pADi
discriminating MCI Ab1/p-tau1 from MCI Ab2/p-tau2
was 0.69 and 0.72 for the discovery 3T and validation 1.5T
samples, respectfully. This is roughly equivalent to a Co-
hen’s d of 0.7 or a point biserial correlation coefficient of
0.4 and thus constitutes a moderate effect size [38] and
good diagnostic accuracy [39]. The pADi had a higher
AUC than either the AD signature or the aging-only signa-
ture. However, statistical tests for the equality of the ROC
areas between the pADi and the AD and aging signatures re-
vealed that the pADi AUC was significantly higher
compared to the aging Signature in the 1.5 sample
(c2 5 7.9, P 5 .005) but not the 3T sample (c2 5 3.4,
P 5 .066), and that the differences between the pADi and
the AD signature were not statistically significant in either
sample (1.5T: c2 5 1.8, P 5 .18; 3T: c2 5 0.5, P 5 .45).

The Liu, Youden, and nearest methods all identified a cut-
point of 8.69 in the discovery 3T sample and 8.65 in the vali-
dation 1.5T sample. Cut-points corresponding to 90% sensi-
tivity and 90% specificity were 8.44 and 9.03, respectively,
in the discovery 3T sample; these values were 8.23 and



Fig. 2. ROC curves for discriminatingMCI patients with and without molecular evidence of AD (Ab1/p-tau1 vs. Ab2/p-tau2). ROC curves are displayed for

the pADi (left), the AD signature (middle), and the aging-only signature (right) for the discovery 3T sample (A, top) and validation 1.5T sample (B, bottom).

AUC and bias-corrected 95% CIs are reported for each curve and a fit line (AUC 5 0.50) is displayed for reference. X-axis: false-positive rate; Y-axis: true-

positive rate (ROC). Abbreviations: AD, Alzheimer’s disease; AUC, area under the curve; CIs, confidence intervals; ROC, receiver operating characteristic;

MCI, mild cognitive impairment; pADi, personalized AD cortical thickness index.
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8.71 in the validation 1.5T sample. Sensitivity, specificity,
percent correctly classified, and positive and negative likeli-
hood ratios for the cut-points are provided in Table 2 [40].

When we instead classified patients based on positivity of
the p-tau/Ab42 ratio in the discovery 3T sample, results
were consistent with those observed in our primary analysis:
the AUCs for the pADi, AD signature, and aging signature
were 0.69, 0.60, and 0.50, respectively. Furthermore, the
cut-point analysis using the p-tau/Ab42 ratio identified the
same cut-point as our primary analysis (8.69) using the
Table 2

Empirical estimation of cut-point from ROC analysis

Method Cut-point 95% CI

Sensitivity at

cut-point

Discovery 3 T sample

Liu 8.69 8.56, 8.82 0.69

Youden 8.69 8.45, 8.93 0.69

Nearest 8.69 8.58, 8.80 0.69

90% Sensitivity 8.44 N/A 0.90

90% Specificity 9.03 N/A 0.27

Validation 1.5T sample

Liu 8.65 8.37, 8.94 0.52

Youden 8.65 8.40, 8.91 0.52

Nearest 8.65 8.41, 8.90 0.52

90% Sensitivity 8.23 N/A 0.90

90% Specificity 8.71 N/A 0.48

Abbreviations: CI, confidence interval; ROC, receiver operating characteristic.

NOTE. LR1 5 Positive likelihood ratio; a LR1 greater than one indicates the

diagnostic accuracy. LR25Negative likelihood ratio; a LR2 less than one (0–1) i

values indicate better diagnostic accuracy.
Liu and nearest methods, while the Youden method identi-
fied 8.55 as the optimal cut-point. These findings provide
further confidence in the clinical utility of the cut-point of
8.69 for our subsequent validation analyses.

Next, we dichotomized patients in the validation 1.5T
sample based on three cut-points derived from our primary
analysis in the discovery 3T sample: the cut-points for
90% sensitivity, 90% specificity, and the three empirical
methods. The sensitivity cut-point of 8.44 derived in the dis-
covery 3T sample identified 97/167 (58%) MCI patients in
Specificity at

cut-point

Percent correctly

classified LR1 LR2

0.62 65 1.85 0.49

0.62 65 1.85 0.49

0.62 65 1.85 0.49

0.22 51 1.15 0.47

0.89 62 2.43 0.82

0.88 61 4.41 0.55

0.88 61 4.41 0.55

0.88 61 4.41 0.55

0.26 75 1.22 0.39

0.91 58 5.46 0.57

cut-point is associated with the disease state; larger values indicate better

ndicates the cut-point is associated with absence of the disease state; smaller



Fig. 3. Odds of progressing to AD dementia by 1-year (left) or 3-year (right) follow-up. Odds ratios and 95% confidence intervals (horizontal bar) are displayed

for each the dichotomized biomarkers of interest on the y-axis on a logarithmic scale. The dashed referenced line is displayed at odds ratio5 1. Hippocampus

and CSF biomarker cut-points were based on previously published thresholds. Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; pADi, person-

alized AD cortical thickness index (dichotomized by one of three methods indicated in the parentheses).
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the validation 1.5T sample as pADi1; the specificity cut-
point of 9.03 derived in the discovery 3T sample identified
13 (8%) in the validation 1.5T sample as pADi1; and the
empirical cut-point of 8.69 derived in the discovery 3T sam-
ple identified 63 (38%) of the validation 1.5T sample as
pADi1. Of those MCI patients who were pADi1, 73%
(71/97) were positive for both CSF Ab42 and p-tau using
the sensitivity cut-point, 77% (10/13) were positive for
both using the specificity cut-point, and 83% (52/63) were
positive using the empirical cut-point.
Table 3

Odds of progressing from MCI to AD dementia in the validation 1.5T sample

Biomarker (dichotomous) N (%) positive Odds ratio

1-year follow-up (N 5 156)

pADi (empirical)1 60 (39%) 2.90

pADi (sens)1 90 (58%) 3.12

pADi (spec)1 13 (8%) 5.57

p-tau1 110 (71%) 2.41

Ab421 115 (74%) 1.91

p-tau/Ab42 ratio1 122 (79%) 2.89

Hippocampus1 133 (86%) 8.30

3-year follow-up (N 5 136)

pADi (empirical)1 55 (41%) 2.59

pADi (sens)1 80 (59%) 2.16

pADi (spec)1 12 (9%) 4.48

p-tau1 101 (75%) 3.63

Ab421 104 (77%) 5.73

p-tau/Ab42 ratio1 108 (80%) 5.48

Hippocampus1 117 (87%) 7.30

Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; MCI, mild c

NOTE. pADi cut-points were derived in the discovery 3T sample. Empirical cut

est); patients were classified as being pADi1 if their pADi was greater than or equa

pADi1 if their pADi was greater than or equal to 8.44. Spec5 90% specificity cut-

or equal to 9.03. Hippocampus and CSF biomarker cut-points were based on prev
pADi positivity by all three cut-points predicted conver-
sion to AD dementia by a 1-year follow-up, but only the
empirical cut-point and the sensitivity cut-point predicted
progression to AD dementia by a 3-year follow-up
(Table 3, Fig. 3). In contrast, the CSF biomarkers did not
predict conversion by 1-year follow-up but did predict con-
version by 3-year follow-up (Table 3, Fig. 3). ICV-
corrected hippocampal volume predicted AD by a 1- and
3-year follow-up, but CIs were large, likely because the
vast majority of patients in the 1.5T test sample were
Confidence interval P value Pseudo R2

1.37, 6.63 .011 0.07

1.22, 8.00 .018 0.07

1.64, 18.85 .006 0.08

0.83, 6.97 .10 0.05

0.67, 5.49 .23 0.04

0.80, 10.46 .11 0.05

1.03, 66.52 .046 0.07

1.25, 5.39 .011 0.06

1.06, 4.43 .034 0.05

0.92, 21.75 .063 0.05

1.53, 8.61 .003 0.07

2.22, 14.82 ,.001 0.10

2.01, 14.99 .001 0.09

2.08, 25.70 .002 0.09

ognitive impairment; pADi, personalized AD cortical thickness index.

-point5 the average cut-point across three methods (Liu, Youden, and near-

l to 8.69. Sens5 90% sensitivity cut-point; patients were classified as being

point; patients were classified as being pADi1 if their pADi was greater than

iously published thresholds.
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classified as hippocampus1, including 77% of patients
who remained stable over 3 years. Sensitivity analyses
excluding patients who converted to dementia but who
lacked CSF biomarker evidence of AD at baseline or
follow-up yielded similar results for the three dichotomous
pADi variables, suggesting that these patients were not
strongly influencing our main results.

Finally, we investigated whether pADi positivity would
add predictive value to models that also included p-tau and
Ab42 positivity. Because p-tau1 and Ab421 did not signif-
icantly predict progression to AD at a 1-year follow-up, we
investigated this combined model for 3-year follow-up only
and focused on the empirical cut-point. In the combined
model, only Ab421 (OR 5 3.76, 95% CI [1.21, 11.71],
P 5 .022) but not p-tau1 (OR 5 1.56, 95% CI [0.54,
4.54], P 5 .42) or pADi1 (OR 5 1.96, 95% CI [0.91,
4.25], P 5 .088) predicted progression to AD by a 3-year
follow-up. However, this combined model had higher
pseudo R2 (0.13) than any of the models with a single
biomarker, and the pseudo R2-change after adding pADi
into the combined model was 0.016 compared to 0.030 for
Ab42 and 0.004 for p-tau.
4. Discussion

The pADi is an MRI-derived, brain-age-adjusted AD
biomarker that can discriminate MCI patients with molecular
markers of AD (CSFAb1/p-tau1) from those without (CSF
Ab2/p-tau2) with good diagnostic accuracy and (although
not statistically different) larger AUCs than either the AD
or aging-only cortical signatures, supporting the predictive
pathological validity of this biomarker. Importantly, our re-
sults were consistent across two well-characterized samples
of MCI patients with MRI data collected on scanners of
two different field strengths. The optimal cut-point across
three empirical methods of 8.69 had a moderate AUC effect
size and good diagnostic accuracy. Moreover, pADi positivity
outperformed CSF biomarkers (p-tau1/2, Ab421/2, p-tau/
Ab42 ratio1/2) in predicting odds of progressing to AD de-
mentia over 1 year, supporting the predictive clinical validity
of the pADi biomarker. CSF biomarker positivity had higher
ORs than the pADi for predicting progression to dementia due
to AD over 3 years, but the pADi performed in a similar range
as p-tau. In a combined model with dichotomous predictors
for AD-index, p-tau, and Ab42, only Ab42 positivity signifi-
cantly predicted conversion toADdementia by 3-year follow-
up, but inclusion of pADi improved the model. Together,
these results suggest that the pADi is a useful MRI biomarker
that can identify MCI likely due to AD in individual patients.
The pADi may even be a better prognosticator than CSF bio-
markers for shorter intervals (e.g., �1 year) in some popula-
tions (e.g., MCI).

The pADi represents an individualized measure of cortical
atrophy in a pattern suggestive of AD pathology, scaled by the
amount of age-related brain atrophy. While many studies have
previously shown that the AD signature is a valuable
biomarker in predicting important clinical outcomes [17–
19,22,23], this study suggests that it may perform better if
adjusted for an estimate of cortical age. Moreover, as these
models included chronological age as a covariate, the current
findings suggest that adjusting for “brain age,” beyond
chronological age, is important in enhancing diagnostic and
prognostic precision. Although the regional pattern of
atrophy measureable by MRI and associated with AD varies
as a function of age [41], this pattern is probabilistically asso-
ciated with AD neuropathology—particularly neurofibrillary
tau pathology [12]. We showed that the pADi is better at
discriminatingMCI patients with AD pathology fromMCI pa-
tients without AD pathology than the AD signature itself, sup-
porting our theory that the pADi is more specific to AD than
the AD signature without adjustment for cortical age.

Previous studies have also shown that an age-corrected AD
signature [24] and the uncorrected AD signature [18] are bet-
ter (continuous) predictors of progression to AD dementia
than other regional atrophy measures like hippocampal vol-
ume. In this study, hippocampus positivity was associated
with larger OR point estimates compared to pADi positivity
for both the 1- and 3-year follow-up, but also much larger
CIs, suggesting greater variability in the measurement; as a
result, z-values were larger for all three pADi cut-points
compared to hippocampal volume for conversion to AD de-
mentia by 1 year. It is important to note that unlike cortical
thickness, hippocampal volumes may be biased by different
scanners and field strengths [42] and scale with head size,
which are in turn related to sex [43]. For these reasons, our
group and others [44] prefer to use cortical thickness mea-
sures over brain volumes when possible.

The aging-only signature, which comprises brain regions
where atrophy is seen primarily in normal aging with mini-
mal additional effects of AD, performed equivalently to a
random classification model, and thus has poor diagnostic
accuracy for AD. That is, measures that include these re-
gions are likely adding noise to the analysis. Importantly, un-
like our previous study [24], which relied on group-level
regression data to derive an age-adjusted biomarker, the
pADi can be calculated in an individual patient without
relying on group data that may be less generalizable. Indeed,
the extension of this approach to individuals drawing on ra-
tios of regional cortical thickness measures provides an op-
portunity to examine the generalizability of this type of
measure to MRI data collected using different instrumenta-
tion. Our study showed that the pADi is relatively consistent
across scanners of different field strengths, and that the index
derived from data collected on a 3T scanner (our discovery
sample) can be applied to data collected on a 1.5 scanner
(our validation sample).

We further extended our previous work by dichotomizing
the cortical thickness biomarker based on multiple types of
cut-point criteria. Our results showed that an empirically
derived cut-point to dichotomize the pADi has good predictive
ability for progression to AD over the short (1 year) and longer
(3 years) term. These results suggest that the pADi could be
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useful for screening MCI patients into AD clinical trials,
particularly for trials with designs aiming to enroll patients ex-
pected to progress at a relatively more rapid rate. Furthermore,
because cortical thickness has been shown to be highly reliable
within and across scanner manufacturers, sequences, and field
strengths [16], the pADi is expected to perform robustly in
multicenter trials, which we plan to study directly.

Finally, our analysis with dichotomous predictors for
pADi, p-tau, and Ab42 in a single model showed that Ab
was the strongest predictor of progression to AD dementia
over three years, but that model fit was higher in the combined
model than models with the individual biomarkers. Although
our sample was too small to investigate the recently proposed
A/T/N framework directly [45], this model provides evidence
that the dichotomized pADi could be useful as a measure for
neurodegeneration (N1/2) in models with biomarkers for
amyloid (A1/2) and tau (T1/2). Further investigation
should illuminate the specificity of the pADi to AD pathology
versus other neurodegenerative pathologies because we need
methods to help differentiate various neurodegenerative pa-
thologies while we work toward the development of specific
molecular biomarkers for the entire family of neurodegener-
ative diseases.

ROC analysis is a common approach in biomarker
research to derive cut-points [46]. We evaluated three
methods for maximizing sensitivity and specificity from
an ROC analysis, all of which identified the same cut-
point (within each sample). However, other criteria to
define cut-points are worth consideration. For instance,
Jack et al. [44] recently recommended that cut-points
for cortical thickness be based on the accuracy of
discriminating cognitively impaired versus young cogni-
tively normal controls (or vs. age-matched cognitively
normal controls for a more conservative estimate); this
approach aims to discriminate people with preclinical
AD from those with age-related atrophy. In contrast, we
chose a cut-point that best differentiated MCI patients
with and without molecular biomarkers of AD. These
populations were selected for our study because the etiol-
ogy of MCI is variable and can be due to a number of
causes including degenerative, vascular, depressive, trau-
matic, medical comorbidities, or mixed disease. Patients
meeting the core clinical criteria for MCI who also
have positive biomarkers for both Ab and neuronal injury
(e.g., CSF Ab1 and p-tau1) have the highest level of cer-
tainty for “MCI due to AD” and progression to AD de-
mentia over time; in contrast, MCI patients who have
negative biomarkers for both Ab and neuronal injury
(e.g., CSF Ab2 and p-tau2) are considered to have the
lowest likelihood of underlying AD pathophysiology
[47]. Thus, our approach was chosen to optimize a cut-
point that discriminates high likelihood of AD and high
progression to dementia from low likelihood of AD and
low likelihood of progression to dementia. Because the
selected cut-point was optimized in an MCI sample, it
is possible that other cut-points may be more appropriate
for different samples including those representing the pre-
clinical phase of AD or with richer racial, ethnic, and so-
cioeconomic diversity. Because ADNI may not be
representative of the heterogeneous populations seen in
the clinic and in large clinical trials, it will be important
to replicate these analyses in other samples.

Although the pADi has good diagnostic accuracy, using
the recommended cut-point will still incorrectly classify
some patients. Incorrect classification may in part be due to
heterogeneity of atrophy within the AD spectrum [48,49].
Currently, the pADi is based on a single, noninvasive
imaging modality that is relatively widely available and
largely fully automated; but this index could be refined as
technological and computational developments make it
possible to measure subtler features of brain atrophy and
account for intersubject variability. Even with these
limitations in mind, this study provides support for the use
of the pADi as anMRI-derived AD biomarker than can be in-
terpreted in individual patients and which has relevance for
predicting both pathology and clinical outcomes.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional (e.g., PubMed) sources and
meeting abstracts and presentations. Multiple previ-
ous studies have investigated magnetic resonance
imaging–derived Alzheimer’s disease (AD) bio-
markers and signatures, which are appropriately
cited.

2. Interpretation: The personalized AD cortical thick-
ness index is a magnetic resonance imaging–derived,
brain-age-adjusted AD biomarker that can discrimi-
nate patients with molecular markers of AD from
those without. We recommend a cut-point for
dichotomizing the personalized AD cortical thick-
ness index that identifies mild cognitive impairment
likely due to AD in individual patients.

3. Future directions: Our results were consistent across
two well-characterized samples of mild cognitive
impairment patients, but additional studies are
needed to determine generalizability to other pop-
ulations. Future studies may also include using the
personalized AD cortical thickness index to catego-
rize large populations into classification schemes for
AD biomarkers to enrich for clinical trials or research
studies or to identify patients at high risk for AD
dementia who may be candidates for additional
biomarker testing or interventions.
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