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Abstract 

Background:  Next-generation sequencing (NGS) is nowadays the most used high-
throughput technology for DNA sequencing. Among others NGS enables the in-depth 
analysis of immune repertoires. Research in the field of T cell receptor (TCR) and immu‑
noglobulin (IG) repertoires aids in understanding immunological diseases. A main 
objective is the analysis of the V(D)J recombination defining the structure and speci‑
ficity of the immune repertoire. Accurate processing, evaluation and visualization of 
immune repertoire NGS data is important for better understanding immune responses 
and immunological behavior.

Results:  ImmunoDataAnalyzer (IMDA) is a pipeline we have developed for automa‑
tizing the analysis of immunological NGS data. IMDA unites the functionality from 
carefully selected immune repertoire analysis software tools and covers the whole 
spectrum from initial quality control up to the comparison of multiple immune reper‑
toires. It provides methods for automated pre-processing of barcoded and UMI tagged 
immune repertoire NGS data, facilitates the assembly of clonotypes and calculates key 
figures for describing the immune repertoire. These include commonly used clonal‑
ity and diversity measures, as well as indicators for V(D)J gene segment usage and 
between sample similarity. IMDA reports all relevant information in a compact sum‑
mary containing visualizations, calculations, and sample details, all of which serve for a 
more detailed overview. IMDA further generates an output file including key figures for 
all samples, designed to serve as input for machine learning frameworks to find models 
for differentiating between specific traits of samples.

Conclusions:  IMDA constructs TCR and IG repertoire data from raw NGS reads and 
facilitates descriptive data analysis and comparison of immune repertoires. The IMDA 
workflow focus on quality control and ease of use for non-computer scientists. The 
provided output directly facilitates the interpretation of input data and includes infor‑
mation about clonality, diversity, clonotype overlap as well as similarity, and V(D)J gene 
segment usage. IMDA further supports the detection of sample swaps and cross-sam‑
ple contamination that potentially occurred during sample preparation. In summary, 
IMDA reduces the effort usually required for immune repertoire data analysis by provid‑
ing an automated workflow for processing raw NGS data into immune repertoires and 
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subsequent analysis. The implementation is open-source and available on https://​bioin​
forma​tics.​fh-​hagen​berg.​at/​immun​oanal​yzer/.

Keywords:  Immunology, Genomics, Next-generation sequencing, Clonality, Diversity

Background
Lymphocytes play an essential role in the human immune system. Amongst other 
aspects, lymphocytes protect us from potentially pathogenic microorganisms and can-
cer cells. An essential aspect of the major lymphocyte types, T and B cells, is the ability 
of random rearrangements of the variable  (V), diversity  (D), and joining  (J) gene seg-
ments of the lymphocyte receptor. [1, 2] This V(D)J recombination is important for the 
unique antigen receptors such as T  cell receptors (TCR) and immunoglobulins (IG). 
These unique receptors and especially the third complementary-determining region 
(CDR3) are necessary to recognize and bind different peptides. These peptides are com-
monly presented by major histocompatibility complexes (MHC) and belong to poten-
tially pathogenic microorganisms or endogenous molecules. [3] V(D)J rearrangement in 
early T and B cell development contributes to the diversity of the immune system. [4]

Modern sequencing methods allow determining the V(D)J gene segment nucleo-
tide sequences. Next-generation sequencing (NGS) is the current state of the art high-
throughput technology for DNA sequencing. The advantages of this methodology, 
including lower costs and effort, supersede the automated Sanger method [5] in clinical 
and scientific research. Owing to the increased speed of DNA and RNA sequencing and 
continuous improvement of read length, usage of such high-throughput systems results 
in large amounts of data. [6]

Sequencing of the TCR and IG repertoire for deciphering the V(D)J gene segments 
and CDR3 region allows for the quantitative description of the immune repertoire and 
its clonal composition. Therefore, several different immune repertoire measures are 
used in the community as the analysis of clonality and diversity of immune repertoires 
are of fundamental interest [7]. In addition, these two measures can provide information 
about the composition of the adaptive immune response. For example, differences in the 
samples of healthy and diseased individuals can be identified.

Immune repertoire measures

First, clonotypes are defined as clonally related cells derived from a common progeni-
tor cell. Clonotype count and frequency measures are used for clonality calculations [8]. 
Within the V(D)J recombination, T cell clones have identical amino acid (AA) sequences 
of the CDR3 region and identical V and J gene segment pairings. B  cells additionally 
undergo somatic hypermutation (SHM) events. [9, 10] The CDR3 region is a unique 
or highly similar nucleotide sequence for each T or B cell clone and contributes to the 
specificity and structure of the TCR or IG. [9] Therefore, the CDR3 regions are of high 
interest when studying IG and TCR repertoires. Clonality analysis includes quantifying 
unique CDR3 regions, CDR3 AA length investigation, and examining identical V and J 
gene segments. Using these measures we can describe immune reactions and offer the 
potential for monitoring healthy and diseased individuals and innovative treatments. 
[11] Both CDR3 sequence and CDR3 sequence length may aid in determining the struc-
ture and specificity of the TCR or IG. TCR CDR3 sequence specificity, can be analyzed 
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using VDJdb1, a TCR sequence database which contains over 42,211 different TCR 
sequences [12]. Further, responses to an antigen can be described, among other factors, 
by recognizing changes in the CDR3 lengths and the AA length distribution and over-
represented clonotypes. [13, 14]

Second, as an other immune repertoire measure, the diversity describes the hetero-
geneity of the TCR or IG repertoire. In general, diversity indices are calculated using 
continuous measures of quantity [15], or more concise, the steadily increasing number 
of distinct objects in a particular context (here: identical clonotypes). It is estimated that 
there are about 1012 different T and B cells in humans [7]. A diverse lymphocyte receptor 
repertoire is essential in the defense against potentially pathogenic organisms and malig-
nant cells. [16]

Besides clonality and diversity, further crucial measures in immune repertoire analysis 
are the investigation of the V(D)J gene segments and their pairings. For instance, V and J 
gene segment pairing analysis can indicate over-represented clonotypes and aberrations 
in the clonotype fractions. [17] For immune repertoire analysis, each of these measures 
is of interest for individual samples, but also for comparison of multiple samples.

Multiple-sample analysis and comparison are essential in immunological research and 
not yet fully automated starting from raw NGS data. A comparison of two or more sam-
ples with each other aids in answering scientific questions about quality and character-
istic immunological measures. These investigations are, for instance, significant in the 
case of time-series, longitudinal samples with pre-, within- and post-treatment informa-
tion, and comparison of individuals or samples. Commonly used methods are pairwise 
clonotype overlap analysis of samples for the identification of shared clonotypes and 
quality control in the case of replicates [17, 18]. Unsupervised hierarchical clustering is 
additionally used for analyzing the similarity among input samples based on aspects of 
the TCR or IG repertoire, namely clonality, diversity, and V(D)J gene segments. Hierar-
chical clustering reveals an overview of similarities based on patient or sample charac-
teristics (e.g., treatments).

Furthermore, information about the TCR and IG repertoire analyses are relevant, 
but the quality of the entire sequencing data should also be investigated. In general, 
within each sequencing run, sequencing platform-specific adapters with sample indices 
are attached to the (c)DNA, and these indices are recorded for each read as part of the 
sequencing process. During de-multiplexing, reads are assigned to their respective sam-
ple based on these indices and are commonly written into separate files. Non-assignable 
reads that cannot be assigned with sufficient accuracy to a specific sample are routinely 
collected within a dedicated file for undetermined reads. [19, 20] Reasons for unsuc-
cessful assignments can be poor quality of indexing reads (indicated by a low average 
Phred quality score [21, 22]), missing or erroneous adapter sequences. Investigation of 
the undetermined reads reveals insight into their composition.

Over the last years, applications of machine learning (ML) have become increasingly 
important in computational immunology. Applying ML methods promotes the discov-
ery of models that describe the provided dataset and possibly aid in identifying features 

1  available at https://​vdjdb.​cdr3.​net/.
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(e.g., peculiarities in V(D)J pairings) that lead to a specific phenotype [23]. There are sev-
eral frameworks that are widely accepted and frequently used in this area of research, 
such as scikit-learn [24], keras [25], HeuristicLab [26], and WEKA [27], e.g. Therefore, 
the output of data (pre-) processing tools should adhere to the file structure required by 
these ML frameworks.

In summary, scientists in the immunological field are often forced to invest much time 
in acquiring basic information about immune repertoire NGS datasets. Therefore, tools 
which automatically process these datasets and provide the results in a compact sum-
marized format are essential for scientists. When working with TCR or IG data, clonal-
ity and diversity are commonly analyzed. Additional interesting components are overlap 
and similarity analyses to compare multiple samples. While supporting these features, 
quality control within the whole data processing workflow has to remain traceable.

Implementation
ImmunoDataAnalyzer (IMDA) is an automated processing pipeline for immune rep-
ertoire NGS data implemented in Python 3.9. It supersedes manual step-by-step pro-
cessing by providing an automated processing workflow for raw sequencing data. In 
addition, IMDA produces compact summaries and visualizations describing specific 
measures and compositions of immune repertoires. Consequently, IMDA provides 
methods for determining clonality, diversity, and measures for multiple-sample com-
parison (e.g., clonotype overlap analysis) and allows immediate first interpretations of 
immune repertoire measures and the sequencing quality. A complete overview of IMDA 
is shown in Fig. 1.

IMDA comprises four well established open-source software tools for NGS data pre-
processing, clonotype assembling, immune repertoire measure calculation, and read 
mapping to reference sequences:

(1) MIGEC2 for read assignment (de-multiplexing) by barcode and unique molecular 
identifier (UMI) consensus assembling [28], (2) MiXCR3 for gene mapping and identi-
fication and quantification of clonotypes [29], (3) and VDJtools4 for format conversion 
and calculation of additional diversity indices [30]. (4) Furthermore, Bowtie25 for map-
ping the undetermined, non-assignable reads on reference genes [31].

IMDA concerts the execution of these open-source tools. Initially, de-multiplexing, 
UMI consensus assembly and clonotype construction are performed using MIGEC and 
MiXCR. In IMDA, automated de-multiplexing and UMI clustering are performed by 
using MIGEC. If this is achieved using other open-source tools, e.g., pRESTO6 [32], the 
IMDA workflow can be started at the MiXCR entry point. MIGEC (and pRESTO) are at 
present designed for UMI tagged mRNA/cDNA. Thus, usage of MIGEC in IMDA is only 
recommended for sequenced RNA or cDNA.

2  available at https://​github.​com/​mikes​sh/​migec.
3  available at https://​github.​com/​milab​orato​ry/​mixcr.
4  available at https://​github.​com/​mikes​sh/​vdjto​ols.
5  available at https://​github.​com/​BenLa​ngmead/​bowti​e2.
6  available at https://​bitbu​cket.​org/​klein​stein/​presto/​downl​oads/.

https://github.com/mikessh/migec
https://github.com/milaboratory/mixcr
https://github.com/mikessh/vdjtools
https://github.com/BenLangmead/bowtie2
https://bitbucket.org/kleinstein/presto/downloads/
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After the initial pre-processing phase, results from clonotype construction are used as 
input for the calculation, evaluation, and visualization of commonly used immune rep-
ertoire measures such as clonality, diversity, clonotype overlap, sample similarity, and 
V(D)J gene segment usage. As part of the pre-processing, automated quality control 
is performed, and a processing resume is generated. Optional modules for cell subset 
disambiguation and contamination analysis can be included directly after the pre-pro-
cessing phase. In Fig. 1, these optional modules are surrounded by dashed lines. Using 

Fig. 1  Schematic representation of the IMDA pipeline for automated processing of barcoded and unique 
molecular identifier (UMI) tagged immune repertoire NGS data starting with input files (compressed or 
non-compressed FASTQ files) and the barcode file (barcodes.txt). Optional files are represented in dashed 
white boxes. This includes the usage of different library files for better comparability and more efficient 
performance, e.g., the IMGT library used by MiXCR. Raw data pre-processing using open-source software 
tools such as MIGEC and MiXCR runs parallel to pre-processing of the undetermined reads. However, 
Undetermined Read Mapping and Analysis can only be performed if a Bowtie2 library file is provided. A FACS 
Error Correction module is implemented for cell subset disambiguation within the sub-process named IMDA 
Prep. If different cell types of one sample separated using FACS or magnetic sorting are sequenced, cell 
sorting errors can be reduced. The Contamination Analysis module enables the identification of shared UMIs 
within all samples as a measure of quality control in the case of cross-sample contamination. These two IMDA 
Prep modules are optional (dashed lines) and not mandatory required for IMDA Core analyses. The module 
IMDA Core provides methods for calculating clonality, diversity, clonotype overlap, sample similarity and V(D)J 
gene segment analysis, and undetermined read investigations. All data describing the dataset is summarized 
in a compact format, provides a general overview, enables first interpretations and quality control, and can 
be used as input for subsequent ML. * MIGEC, MiXCR, Bowtie2 and VDJtools are called and used as third-party 
tools
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the cell subset disambiguation module (named FACS Error Correction) is intended for 
removing shared clonotypes from pairs of samples using a frequency fold change cri-
terion. This method is designed for cell fraction cleanup. Thus, it can be used for cells 
separated according to specific cell characteristics (e.g., cluster of differentiation (CD) 
antigens—especially CD4+ and CD8+) using FACS or magnetic sorting to avoid errors 
in the sorting process. The Contamination Analysis based on UMI tagging and identical 
V(D)J hits reveals information about shared reads within multiple samples. This method 
is intended to be used if cross-sample contamination is indicated. IMDA further holds 
functionality for analyzing sequencing reads that could not be assigned to any sample; 
these functionalities are implemented in the module Undetermined Read Analysis. All 
relevant information is collected and exported in different format, namely presenta-
tion, spreadsheet, and tab-delimited files. The presentation file contains essential visu-
alizations generated within the IMDA pipeline for immediate interpretation and data 
control. The spreadsheet file provides all relevant calculated numeric data. Finally, the 
tab-delimited file contains sample specific information and can be consumed by com-
monly used machine learning applications.

Implementation details

IMDA includes five semi-independent processes. The pipeline can be invoked starting 
from any of these sub-processes once the required input files are available. The execu-
tion of each process can be enabled independently of the others according to the users’ 
requirements. Within IMDA, for each analysis mentioned in Fig. 1, a Python implemen-
tation is provided.

The first sub-process performs read de-multiplexing by barcodes that are part of 
the raw sequencing reads and consensus assembling based on UMIs using the open-
source tool MIGEC (see Fig. 1—MIGEC, colored in red). For this sub-process, FASTQ 
files (in compressed or non-compressed format) and an additional text file containing 
barcode information are required. This text file has to contain the barcode sequences 
for each sample which can optionally include a UMI region (see Table 1 in “Input for-
mats” section). The second sub-process performs clonotype assembly using the open-
source tool MiXCR (see Fig.  1—MiXCR, colored in yellow). All commands necessary 
for constructing clonotypes (nucleotide and AA sequences of CDR3 region and V(D)J 
gene segments) are automatically executed. Within the third sub-process undetermined 
reads are mapped to reference genes and genomes using Bowtie2 (Fig.  1—colored in 
green). IMDA pre-processing methods implemented in the fourth sub-process named 
IMDA Prep (Fig. 1—colored in dark blue) include the cell subset disambiguation mod-
ule named FACS Error Correction and the cross-sample contamination analysis method 
based on UMIs. These methods are optional (surrounded by dashed lines). The last sub-
process named IMDA Core (Fig. 1—colored in light blue) performs the actual analysis 
of the immune repertoires and includes methods for processing, calculating, evaluating, 
and visualizing the results provided by MIGEC, MiXCR, and the methods of IMDA Prep 
as well as the undetermined read mapping results for interpretation.

Clonality, diversity, and clonotype overlap analyses are evaluated based on CDR3 AA 
sequence counts and frequency calculations. V(D)J gene segment and similarity analyses 
use the V(D)J gene segment information. IMDA Core further includes the use of the 
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open-source tool VDJtools for calculating multiple diversity indices (Fig.  1—VDJtools, 
colored in violet). In the final step, all results are stored in summary files. These contain 
all relevant information, including tool settings, read counts, alignment rates, calcula-
tions, and visualizations. All relevant results calculated and visualized using IMDA will 
be described later in “Results and discussion” section.

IMDA makes use of Python Standard Libraries and, the SciPy [33] as well as the pan-
das [34] library for data handling. For visualization we use the seaborn [35], plotly [36] 
and HoloViews [37] data visualization libraries. For summarizing and providing a com-
pact overview of all calculated and visualized information we use the libraries python-
pptx [38] and xlsxwriter [39] which is integrated in pandas. Both, python-pptx and 
xlsxwriter provide methods for writing data into a presentation and a spreadsheet file, 
respectively, which are compatible with Microsoft Office and LibreOffice.

Input formats

The main input file format for executing the first and second sub-process of IMDA, 
namely MIGEC for de-multiplexing and MiXCR for clonotype identification and quan-
tification, are compressed or non-compressed FASTQ files. Additional mandatory input 
is a tab-delimited file specifying the barcode and UMI sequence for each sample (see 
Table  1), following the format instructions defined by the open-source tool MIGEC. 
IMDA reuses this information specified in the barcode file, so no further sample, bar-
code and UMI description are necessary. By executing the MIGEC sub-process using 
IMDA, suitable files for MiXCR in FASTQ file format are generated and automatically 
processed.

Optionally, the international ImMunoGeneTics information system® (IMGT®) library 
can be used for alignment and clonotype assembly in MiXCR for better comparabil-
ity with results generated by IMGT/HighV-QUEST [40]. The library is available from 
https://​github.​com/​repse​qio/​libra​ry-​imgt/​relea​ses. IMGT/HighV-QUEST is a web based 
standalone alternative to MiXCR and provides the most complete database for immune 
repertoire analysis. In IMDA, MiXCR is used because it is a command-line tool, its ease 
of use, and it offers PCR and sequencing error correction.

If undetermined read analysis is required, the open-source tool Bowtie2 is needed, 
which requires compressed or non-compressed FASTQ or FASTA files. Furthermore, 
IMDA allows for the usage of individual Bowtie2 libraries for mapping the undeter-
mined reads. This file can easily be built from a FASTA file, including all sequences on 
which the undetermined reads should be mapped using the bowtie2-build command 
integrated in Bowtie2.

For using the optional cell subset disambiguation method named FACS Error Correc-
tion, a tab-delimited text file is required defining pairs of samples that shall be cleaned 
(see Table 2).

Usage, pipeline options and method summary

Execution of IMDA is controlled in a single settings file. This file includes all paths and 
the required methods can be activated or deactivated. As part of the general setup, the 
paths to the four open-source tools have to be defined. Analysis specific information 
comprises the paths to the input files (sample and/or undetermined) and the barcode 

https://github.com/repseqio/library-imgt/releases
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file. If a cell subset disambiguation for e.g., FACS error correction is required, the path to 
the pairs text file needs to be set. All methods implemented in IMDA are summarized in 
Table 3.

Subsequently, the entire IMDA pipeline can be invoked by running the settings file 
(settings.py).

Error handling

In IMDA, all entered file directions and file paths are checked for their existence. Fur-
thermore, during its execution, IMDA prints the most important information to the 
console. Here, possible errors that may occur during the workflow are reported.

Results and discussion
The usage of the here described ImmunoDataAnalyzer (IMDA) is exemplified using 
TCR β chain sequencing data. In this section, the inputs, visualizations, calculations, 
and functionality of the IMDA pipeline will be discussed. The following features are cov-
ered: the processing of raw data into clonotypes, the analysis of the undetermined reads, 
FACS error and cross-sample contamination correction, and the calculation of the dif-
ferent metrics for describing and comparing immune repertoires (clonality, diversity, 
clonotype overlap, V(D)J gene segment usage and repertoire similarity analysis).

Dataset

The here used dataset comprises five apparently healthy volunteers (two female, three 
male; 23–47 y/o). From those individuals, blood was collected and peripheral blood 

Fig. 2  Schematic representation of the sequenced TCR β chain region including Illumina adapters, primers, 
barcodes, UMIs, the V(D)J gene segments, and the CDR3 region. Here, both reads, forward and reverse, 
include barcodes and UMIs

Table 1  Example for tab-delimited table structure serving IMDA as input adapted from the barcode.
txt file of the provided test data. The format is analog to the one used by MIGEC. This file should 
contain for each sample: a sample ID defining the name of the sample and the barcode sequence 
containing the barcode (here: CAGAT) and optional UMI (represented by “N”). Further, if available, an 
additional barcode sequence can be defined. Mandatory inputs are the FASTQ files containing all 
sequencing reads, forward (#1) and reverse (#2)

#Sample ID Master barcode sequence 
(barcode and UMI)

Additional 
barcode 
sequence

FASTQ #1 FASTQ #2

1_A_nS_r1 NNNNNNtCA‑
GATtNNNNNNtcttgggg

idx1_R1_001.fastq.gz idx1_R2_001.fastq.gz

1_A_nS_r2 NNNNNNtCA‑
GATtNNNNNNtcttgggg

idx2_R1_001.fastq.gz idx2_R2_001.fastq.gz

2_A_nS_r1 .. .. ..

2_A_nS_r2 . . .
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mononuclear cells (PBMCs) were isolated. One way mixed lymphocyte reactions 
(MLRs) have been performed to identify an individuals T cells that respond against cells 
from one of the other potentially human leukocyte antigen system (HLA) mismatched 
individuals. Two of the five individuals (individuals A and B) were used as responders. 
The remaining three individuals were used as stimulators. MLRs were carried out sepa-
rately for each responder-stimulator pair. For each individual, a baseline sample (BL) is 
available as well as a non-stimulated (nS) sample where no MLR has been performed. In 
addition to the BL and nS samples, NGS data from MLRs with lymphocytes from three 
other individuals are provided (MLR1-3) for each individual. NGS TCR β libraries were 
constructed for all T cell bulk samples from all five individuals and the stimulator spe-
cific T cells identified in the MLRs. A data subset can be found on our website (https://​
bioin​forma​tics.​fh-​hagen​berg.​at/​immun​oanal​yzer/).

Libraries were sequenced on Illumina NextSeq500. Two sequencing runs with techni-
cal replicates were performed (1_ or 2_ in sample names). The sequencing runs were 
spiked with Illumina PhiX bacteriophage genome PhiX Control v3 in a concentration of 
30% to increase the diversity which is required by these modern NGS machines. [41, 42] 
Sample de-multiplexing based on Illumina indices was carried out during FASTQ gen-
eration and separate FASTQ files were generated for each sample. Resulting reads con-
tain barcodes and UMIs (see Fig. 2). As shown, the region of interest (the TCR β chain), 
is flanked by oligonucleotides including UMI (here: forward and reverse reads contain 
UMIs), barcode, and primers as well as adapters (here: Illumina adapters), commonly 
specified by the used sequencing platform. During cDNA synthesis, the nucleotide 
strands of each individual are tagged with oligonucleotides. [42] These oligonucleotides 
include the mentioned barcode and UMI. Compared to platform depending indices, the 
use of additional barcodes introduced directly during cDNA synthesis minimizes the 
risk of cross-sample contamination as the barcodes are introduced prior to any PCR 
amplification steps. During the cDNA synthesis and the amplification steps in the PCR, 
quantitative errors and sequencing errors are possible. [43]

The use of UMIs has multiple advantages. It allows for the quantification of the tran-
scripts, the tracing back of the amplicons to their original RNA, the elimination of PCR 
errors, and the detection of true variants. [44] Therefore, UMIs are used for making 
statements about the number of RNA strands whose cDNA was synthesized and ampli-
fied successfully during PCR.

It is additionally shown that replicates better correlate when using UMIs and consen-
sus assembling of the reads based on their UMI is performed [45]. UMIs can be further 
utilized for cross-sample contamination analysis [46]. Shared UMIs in two samples can 
indicate a cross-sample contamination. If barcodes, as described above, are used, other 
cross-sample contamination detection methods have to be applied for detecting poten-
tial contamination before cDNA synthesis.

If FACS error correction is required, an additional tab-delimited text file defining pairs 
of samples is necessary. The formats of these two tab-delimited files have been described 
before in the “Input formats” section.

https://bioinformatics.fh-hagenberg.at/immunoanalyzer/
https://bioinformatics.fh-hagenberg.at/immunoanalyzer/
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Raw data pre‑processing

As an initial step, the raw sequencing data in FASTQ file format are processed. IMDA 
automatically executes MIGEC commands for de-multiplexing and UMI consensus 
assembling (Fig.  1 - MIGEC, colored in red). Subsequently, MiXCR methods are exe-
cuted to perform clonotype construction for obtaining CDR3 sequences and V, D and J 
gene segment hits (Fig. 1—MiXCR, colored in yellow). MIGEC and MiXCR are executed 
using MIGEC and MiXCR sub-processes, respectively. Both tools implement methods 
for PCR and sequencing error correction. Especially, MiXCR takes special care of clono-
types with identical CDR3 sequence and different V(D)J gene segment sequences to be 
more robust against sequencing errors [29].

In order to be able to follow the read counts during the read assignment and UMI 
consensus assembling within MIGEC sub-process of the reads better, IMDA generates a 
Sankey diagram. This Sankey diagram is generated using plotly for an (interactive) over-
view of the read assignments from raw input data up to final assembled reads by UMIs 
(see Fig. 3) in HTML file format.

Undetermined read processing and analysis

While raw data is being processed, IMDA allows mapping of the undetermined reads 
and non-assignable reads from MIGEC checkout assigned to the undef-m file on pre-
defined reference genes within a Bowtie2 library (using Bowtie—in Fig.  1 colored in 

Fig. 3  Read assignment visualization of the number of assigned reads after executing MIGEC commands in 
MIGEC sub-process. The left column shows the raw data read counts for each available input file in FASTQ file 
format. The central column shows the number of reads after de-multiplexing and the right column shows the 
number of reads after UMI assembling and consensus sequence building. For all files, reads that could not 
be assigned to a specific sample, due to barcode or primer errors, are assigned to undef-m (=undetermined 
reads)
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green). In this analysis, we used the bowtie2-build command to build a reference library 
containing TCR reference genes and the Illumina PhiX reference genome. The undeter-
mined file(s) contain non-assignable sequences, where the assignment to a specific sam-
ple failed because of insufficient accuracy. Bowtie2 provides the mapped reads in SAM 
file format which  then will be evaluated within the IMDA Core module (Fig.  1—light 
blue).

After all sequences have been processed and mapped with or without success on 
the reference gene library using the Bowtie sub-process and the IMDA Core method 
EvaluateUndetermined is activated, all reads within the SAM output file(s) (undeter-
mined from sequencing and undef-m from MIGEC de-multiplexing) are assigned to 
one of the following five groups: (1) PhiX, (2) Low quality, (3) Junk, (4) TCR junk, and 
(5) Other: (1) PhiX includes all reads successfully aligned on the PhiX reference genome. 
(2)  If the analyzed read shows a mean Phred quality score lower than 30, the read is 
assigned to the Low quality group. (3) Else, if a read contains consecutive nucleotides 
in unexpectedly high number (here: number of nucleotide “N” > 10 or more than 1/4 of 
all nucleotides are “G”), it is assigned to Junk. Since the assignment by platform specific 
index and primer has failed, no biological relevance is assumed but for further investiga-
tion these sequences are exported to a FASTQ file. (4) TCR junk contains all reads suc-
cessfully mapped to TCR reference genes which have a mean Phred quality score greater 
than 30. (5) Reads, which are not assigned to any of the mentioned groups are assigned 
to the group Other and written into a FASTQ file for further investigations using, e.g., 
BLASTn7 [47] or other sequence alignment tools.

In the case of custom reference libraries there is no distinction between the groups 
PhiX and TCR junk. All successfully mapped reads are assigned to the same group 
named Mapped.

The analysis of the undetermined or non-assignable reads reveals information about 
the composition of the undetermined reads. As shown in Fig.  4, the majority of the 

Fig. 4  Representation of the IMDA output of the undetermined reads. All reads are assigned to one of 
the following five groups: PhiX, TCR junk, Low quality, Junk reads (which contains reads with consecutive 
nucleotides in unexpectedly high number) and the group Other, whose reads cannot be assigned to one of 
the other groups. The non-assignable reads within this group Other are stored in a FASTQ file providing the 
possibility for further analysis using, e.g., BLASTn or other sequence alignment tools

7  available at https://​blast.​ncbi.​nlm.​nih.​gov.

https://blast.ncbi.nlm.nih.gov
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undetermined reads derived from the sequencing run is assigned to the PhiX refer-
ence genome. Another large number of reads is rejected due to its poor Phred quality 
score. The amount of TCR junk, Junk and Other reads is rather low. The main reasons 
for an unsuccessful assignment of these reads to a specific sample are absent or erro-
neous Illumina adapters or barcodes when using MIGEC de-multiplexing. Additionally, 
the number of reads are compared to the successfully aligned reads by Illumina, where a 
percentage of about 70 % is expected due to the 30 % PhiX spiked samples.

Cell subset disambiguation (FACS error correction)

If subsets of T or B cells are separated using FACS or magnetic sorting, inaccurate cell 
separation can occur. To counteract cell sorting errors, IMDA Prep provides a cell subset 
disambiguation method (named FACSCorrection—colored in dark blue in Fig. 1). Pairs 
defined within the pairs text file (see format description in the “Input formats” section) 
are compared and the shared clonotypes are removed. Figure 5 shows the FACS error 
correction result of two samples. Clones that do not exceed a two-fold change difference 
between the two samples are considered ambiguously assigned. These clones are visual-
ized (in red) and finally eliminated from both samples for subsequent analysis in IMDA 
Core. Clones that clearly belong to one of the two samples are shown in green and blue, 
respectively.

Contamination analysis

Besides the cell subset disambiguation method named FACS Error Correction, IMDA 
Prep includes a cross-sample contamination analysis based on UMIs and V(D)J gene 

Fig. 5  An exemplary representation of shared clonotypes of T cell subsets by clonotype frequency as, for 
instance, CD4+ and CD8+ T cells. Blue-colored clonotypes belong to sample A; green-colored clones are 
T cell clonotypes of sample B. Shared clonotypes (shown in red) are assumed to be in both samples due to 
inaccurate FACS or magnetic sorting and will be eliminated for further analysis
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segment hits (ContaminationAnalysis—colored in dark blue in Fig. 1)). Since UMIs 
are assumed to be unique within simultaneously prepared samples, shared UMIs 
can be analyzed and indicate cross-sample contamination [46]. Large amounts of 
sequenced material may exceed the number of possible UMI combinations. Accord-
ingly, in IMDA, UMI sequences of each read are combined with V(D)J hits and are 
compared between two or more samples. For using this method, the UMI sequence 
needs to be defined in the header of the reads within the FASTQ files, as shown 
below. If the IMDA method MIGEC is used for consensus assembling of the reads by 
UMI, FASTQ files in the required format are automatically provided:

The UMIs are extracted, and the shared UMIs and V(D)J hits are calculated and 
visualized as Venn diagrams as shown in Fig. 6. Nevertheless, for the dataset used in 
this study, applying this method is not recommended as this dataset contains data 
from multiple initial samples that were mixed and sequenced together. To distin-
guish the samples from each other, the adapters contain UMIs as well as a 5 nucleo-
tides long barcode (Table 1). These 5 nucleotides long barcodes allow to assign reads 

Fig. 6  Venn diagram of shared UMIs combined with V(D)J hits for cross-sample contamination detection in 
two samples. While there are no shared UMI-V(D)J hit-combinations found in samples A and B or sample C 
and B, samples A and C show an intersection

Table 2  Example for tab-delimited table structure defining sample pairs where cell subset 
disambiguation is required based on the available pairs text file for the provided test dataset

#SampleID1 SampleID2

1_A_nS_CD4+ 1_A_nS_CD8+

1_B_BL_CD4+ 1_B_BL_CD8+
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Fig. 7  CDR3 AA length distribution (left) and top n clonotypes (here: n = 20 ) of a sample (right). Numeric 
data is provided by MiXCR output and visualized using ClonalityAnalysis method implemented in IMDA Core 
for facilitated interpretation

Table 3  All methods implemented in IMDA (Fig. 1) for automated immune repertoire analysis

Method Description Input (I)/Output (O)

MIGEC Read assignment by barcode (de-
multiplexing) and consensus assembling 
based on UMIs using the open-source 
tool MIGEC.

I: NGS files in compressed or non-com‑
pressed FASTQ file format O: assembled 
reads in FASTQ file format

MiXCR Execution of MiXCR commands for clono‑
type identification and quantification for 
receiving nucleotide and AA sequences 
of the CDR3 region and V(D)J gene seg‑
ments.

I: files in compressed or non-compressed 
FASTQ file format O: immune repertoire 
profiling measures (e.g., V(D)J gene seg‑
ments, CDRs etc.) in text file format

ContaminationAnalysis Calculates shared UMIs and V(D)J hits 
of multiple samples for cross-sample 
contamination analysis.

I: MiXCR output, MIGEC output or non-
compressed FASTQ files containing the UMI 
sequence in the read ID O: cleaned FASTQ 
files

FACSCorrection Cell subset disambiguation of clono‑
types from cells separated using FACS or 
magnetic sorting (e.g., CD4+ and CD8+) 
and elimination of clonotypes within a 
twofold change range.

I: filename of pairs for analysis (pairs.txt) and 
MiXCR output O: cleaned files in MiXCR text 
file format

VDJtools Executes methods of the open-source 
tool VDJtools (convert and calculate diver‑
sity indices) for diversity stats visualization 
later-on.

I: MiXCR output O: diversity indices for all 
samples

Bowtie Analyze undetermined reads from 
sequencing run and from MIGEC assign‑
ment using the open-source tool Bowtie2 
for non-assignable read composition 
analysis.

I: file path to the undetermined files in 
compressed or non-compressed FASTQ file 
format and to MIGEC undef-m output file, 
and path to Bowtie2 library O: mapping 
information is collected in SAM file format

EvaluateUndetermined If undetermined read analysis using Bow‑
tie2 has been performed, evaluation and 
visualization of the results is done.

I: the Bowtie2 output in SAM file format O: 
read counts for each category (see Unde‑
termined Read Processing and Analysis)

ClonalityAnalysis Clonotype and CDR3 sequence length 
analysis and visualization is performed.

I: MiXCR output O: CDR3 AA length distribu‑
tion and clonotype counts

DiversityAnalysis Diversity curves are calculated and 
visualized as well as the diversity indices 
calculated using VDJtools.

I: MiXCR output and VDJtools output O: 
diversity curves and diversity measures

OverlapAnalysis Shared clonotype analysis and visualiza‑
tion.

I: MiXCR output O: shared clonotype over‑
laps (heatmap and LM plots)

SimilarityAnalysis Hierarchical clustering of all samples is 
performed and visualized.

I: MiXCR output O: hierarchical clustering 
information

VDJAnalysis Calculation of V and J gene segment 
pairings and visualization using Chord 
diagrams.

I: MiXCR output O: chord diagrams
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to a specific sample using MIGEC. On the contrary, the contamination analysis 
method described in this section is recommended when no additional barcodes are 
used.

Clonality analysis

For answering scientific questions it is important to know the clonotypes present in a 
sample and their frequency. Another important piece of information is the length of 
the CDR3 AA sequence. Both aspects are relevant for the investigation of the func-
tionality of T and B cells. The CDR3 AA sequence is decisive for the specificity and 
structure of the TCR and IG, respectively. Information about the clone frequency, 
V(D)J hits, and CDR3 sequence of a sample are extracted from MiXCR output files. 
The  IMDA Core method ClonalityAnalysis generates a histogram of each sample 
showing the length distribution of the CDR3 AA sequences and visualizes the clone 
counts of the top n clonotypes for better interpretability.

In Fig. 7, an exemplary AA length distribution plot based on the MiXCR output files 
and the frequency of the top n (here: n = 20 ) clonotypes are visualized. In this case, 
the majority of the clonotypes have a CDR3 sequence length of 14 and 15 AAs. The 
top clonotype accounts for about 0.9% of all 229,404 different clonotypes.

Diversity analysis

The open-source tool VDJtools provides a comprehensive set of diversity measures 
for describing the immune repertoire (colored in violet in Fig. 1). These results allow 
to correlate the immunological status with immune repertoire diversity, compare 
individuals, and evaluate the number of unique clonotypes. In the step VDJtools, VDJ-
tools commands are automatically executed to calculate diversity measures. Further-
more, the diversity analysis approach described in ImmunExplorer (IMEX) [48, 49] 
can be applied to all samples for calculating and visualizing the diversity curve of each 
sample by including the DiversityAnalysis method.

To improve the comparability of diversity curves between different samples, we 
standardize their clonotype counts ( nscaled is defined as the lowest number of clono-
types, but is set to 150,000 if the lowest number of clonotypes of one sample falls 
below 150,000). For receiving the diversity curves an amount of n clonotypes (default 
nc = 2500 ) of the whole amount of clonotypes is continuously inferred and the unique 
CDR3 sequences are counted. Parameter optimization is performed using the Python 
module optimize from the SciPy library which allows to fit a function f to the previ-
ously calculated clonotype counts with a stepsize of 2500. The estimated parameters 
describing the diversity curves and the results of different diversity indices calculated 
using VDJtools can be directly interpreted by the user.

Figure 8 shows an exemplary output of the diversity analysis. The diversity plot (left) 
allows comparison of the samples using the calculated Shannon Wiener [50] index 
mean values provided by VDJtools and according to their diversity curves (right). All 
samples derived from individual B. Technical replicates of the BL samples are shown 
in blue, technical replicates of MLR2 samples are shown in orange. As expected, the 
BL samples show a higher diversity than the MLR samples. Diversity analysis using 
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the Shannon Wiener index only shows small differences, but the diversity curves 
show a clear difference. Since the samples (BL and MLR, respectively) are technical 
replicates, a high agreement of the curves and diversity indices is desired.

Fig. 8  Diversity analysis visualizations of one of the various calculated and estimated diversity indices (left, 
here: Shannon Wiener index) using VDJtools as well as diversity curves for four samples (right). Technical 
replicates of the baseline (BL) sample of individual B are shown in blue, technical replicates of the MLR2 
sample of individual B are represented in orange

Fig. 9  Within the V(D)J recombination, different V and J gene segments are combined. IMDA provides for 
each sample Chord diagrams for visualizing the clonotype distribution based on V and J gene segment pairs. 
Every connection represents a V and J gene segment pair. The top n (here: n = 5) V and J gene segments are 
labeled
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V–J gene segment analysis

In addition to the diversity analysis and for understanding V and J gene segment 
usage, Chord diagrams are generated using the visualization library HoloViews [37]. 
These diagrams show the V and J gene segment pair distribution (see Fig.  9). In 
addition, the widths of the Chord diagram show the proportion of clones containing 
specific V and J gene segments, respectively. For better interpretability, only V and J 
gene segment pairs which explain 98 % of all V and J gene segments, are visualized. 
Additionally, only the top n (here: n = 5) V and J gene segments are labeled.

V and J gene segment usage is shown in Fig. 9 and shows heterogeneous pairing. 
For example, this sample’s most occurring V and J gene segment pair is TRBV5-1 
and TRBJ2-7. Such Chord diagrams allow for visual identification of over-repre-
sented V–J pairings and to compare e.g., expanded V–J pairs in different samples.

Clonotype overlap analysis

The clonotype overlap analysis (OverlapAnalysis) reveals information about the 
shared clonotypes between two samples. It allows for detecting errors that occurred 
during the wet-lab experiments and potential sample contamination. In the case of 
replicates, clonotype overlap analysis enables to assess library prep reproducibility. 
IMDA automatically generates linear model (LM) plots visualizing pairwise com-
parisons of all samples and calculates the correlation given as Pearson R2 values (see 
Fig. 10). Additionally, a heatmap plot showing the correlations represented as Pear-
son R2 is plotted using the Python library seaborn [35]. The correlation matrix can 
be found in the spreadsheet summary file generated by IMDA.

Figure 10 shows a subset of the correlation matrix (left) generated as part of the 
clonotype overlap analysis. The correlation matrix is visualized as a heatmap. The 
heatmap shows a high accordance within the four biological and technical replicates 
( R2 > 0.75 ). An exemplary LM plot of two MLR samples shows the shared clono-
types of these two samples (right). Since the two samples in the LM plot are techni-
cal replicates, a high Pearson R2 value was expected.

Fig. 10  Examples for clonotype overlap output of two samples and their replicates. Left: Correlation matrix of 
multiple samples compared to each other are plotted as heatmap. Right: LM plot of two samples (replicates) 
for clonotype overlap analysis
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The clonotype overlap is crucial for detecting contamination and for quality con-
trol. Pairwise clonotype overlap analysis can further facilitate identifying expanded 
clonotypes in response to an immune stimulus (e.g., MLR). By calculating the over-
lap between BL and MLR samples, expanded clonotypes can be detected. Overlap 
analysis is especially important for research regarding allosensitization in transplan-
tation as well as vaccination and autoimmune diseases. [17, 51]

Similarity analysis

In addition to the clonotype overlap analysis, IMDA Core includes the method 
named Similarity Analysis for automated application of hierarchical clustering 
methods from the seaborn and SciPy [33] libraries. For reliable interpretation of the 
results, a standardized approach of the calculated values is needed. Therefore, V and 
J gene segment frequencies of every sample are used. With the use of hierarchical 
clustering, we are able to detect contamination, erroneous samples, or sample swaps 
by grouping the samples by V and J gene segment similarity.

Through using the V(D)J gene segment frequencies and the hierarchical clustering 
approach (see Fig. 11) we show the similarity and grouping of all samples. As dem-
onstrated, through clustering the samples according to their V and J gene segment 
frequencies, the samples can be divided into two groups—individual A (green) and 

Fig. 11  Hierarchical clustering is used for similarity analysis. The graphic shows the similarity of the samples 
according to V and J gene segment frequencies. Standardization within the columns (samples) is done for 
accurate comparability. The samples can be divided into two groups—individual A (green) and B (orange). 
According to this results, four samples (2_A_MLR1_r2, 2_A_MLR3_r1, 2_B_MLR3_r1, 2_B_MLR3_r2) should be 
excluded, since mishaps during laboratory work potentially occurred
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individual B (orange). However, four samples (2_A_MLR1_r2, 2_A_MLR3_r1, 2_B_
MLR3_r1, 2_B_MLR3_r2) stand out because they do not belong to the individual to 
whom they were assigned according to their V(D)J similarity. This is due to a bar-
code swap. This example confirms that by using hierarchical clustering immediate 
first interpretations can be performed and mishaps during laboratory workflow can 
be discovered.

Summary output

Throughout the processing and analyzing procedure of the data, well-selected infor-
mation is collected and written to a spreadsheet file. Included are the following 
information:

•	 important sample information like barcodes and UMI definitions,
•	 read counts and trend of the read counts,
•	 alignment rates,
•	 clone counts,
•	 average CDR3 AA sequence length and standard deviation,
•	 diversity calculations including different diversity indices and curve parameter 

description,
•	 a clonotype overlap matrix with the calculated Pearson R2 values for all samples,
•	 V, D, and J gene segment frequencies,
•	 and the used commands for the included open-source software tools.

Most relevant plots are collected in presentation file format for an immediate over-
view, quality check, first interpretations, and further research steps.

Fig. 12  Threefold cross-validation accuracies of the classification of the provided samples according to 
sample affiliation (individual A or B) using different classification algorithms provided by the Python library 
scikit-learn. LDA Linear Discriminant Analysis, KNN k-nearest neighbors classifier, CART​ decision tree classifier, 
NB Gaussian Naive Bayes, SVM support vector machine, RF random forest classifier, NC nearest centroid 
classifier, ADA AdaBoost classifier, LDA linear discriminant analysis, QDA quadratic discriminant analysis
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Data export for machine learning

Additionally, the pipeline provides a tab-delimited file (ml.csv) which contains 
selected key features for each sample and can be used as input for ML approaches. 
This file includes the diversity indices, the diversity curve parameters, and the V(D)
J gene segment counts. For more comparable results, the V(D)J frequency values 
are written to a second tab-delimited file (ml_norm.csv). These files can be used for 
unsupervised ML algorithms (e.g., clustering algorithms) and for supervised learning 
algorithms (e.g., classification or regression algorithms). An additional column defin-
ing the target has to be added for labeling the provided data for supervised learning 
algorithms. We recommend using the normalized data as input for algorithms imple-
mented in the scikit-learn [24] or keras [25] as well as for software tools providing a 
user interface for non-programmers like Weka [27] and HeuristicLab [26].

For demonstration, we applied several classification algorithms of the Python library 
scikit-learn on the data discussed before. The target variable is the correspondence to 
individual A or B. In Fig. 12 we visualized the accuracies of the different classification 
algorithms. Algorithms such as the decision tree classifier, random forest, and AdaBoost 
classifier were able to assign all samples correctly and achieve an average accuracy of 100 
% in three-fold cross-validation. All three algorithms are based on decision trees, which 
means if one V or J gene segment occurs only in one of the two individuals, all samples 
can be classified correctly.

Conclusions
The calculations and visualizations provided by our ImmunoDataAnalyzer (IMDA) 
cover a wide range of crucial aspects of TCR and IG repertoires. IMDA allows auto-
mated processing and evaluation of immune repertoire NGS data. It supports the pro-
cessing of barcoded and UMI tagged NGS data. IMDA is built around well-established 
open-source tools (MIGEC, MiXCR, VDJtools, Bowtie2) and automatizes their execu-
tion and thus alleviates NGS immune repertoire data analysis. Furthermore, IMDA 
comes with cross-sample contamination analysis and cell subset disambiguation meth-
ods that are not available elsewhere and automatically provides multiple-sample com-
parison results.

The IMDA pipeline supports compressed or non-compressed FASTQ files. In the first 
two steps, MIGEC and MiXCR, open-source software tools are used for primer trim-
ming, barcode and UMI extraction, consensus assembling (MIGEC), and reconstruction 
of the actual clonotype sequences (MiXCR). Using MIGEC, IMDA offers the oppor-
tunity to process batches of files and IMDA Core methods provide information about 
relations and differences between the input samples. The tools used are firmly anchored 
in the immunologic community and are state of the art bioinformatics tools for stud-
ying the adaptive immune system. Using IMDA, it is no longer necessary to perform 
consecutive manual execution of MIGEC and MiXCR commands. Provided results are 
automatically aggregated and the read counts, alignment rates, and all other information 
listed in the “Summary output” section are extracted from intermediary results. They are 
written into a single spreadsheet summary file.

In addition to the automated pre-processing, the undetermined reads are processed 
and mapped to reference sequences supplied as a Bowtie2 library. Undetermined 
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read analysis allows the detection of potential contamination, aberrations during the 
sequencing run and describes the composition of the undetermined reads.

For additional data cleaning, IMDA provides within the IMDA Prep module two 
methods: FACS error correction method for the elimination of shared clonotypes of two 
samples after FACS or magnetic sorting (e.g., CD4+ and CD8+ cell separation) and con-
tamination analysis method, providing information about shared UMIs combined with 
V(D)J hits within all samples.

The core of the IMDA pipeline is the evaluation of the pre-processed data. This 
includes relevant measures for the immunologic community: clonality, diversity, and 
clonotype overlap analysis in the case of replicates, time-series, or other comparable 
aspects. Additionally, visualizations of the similarity of the samples according to their V 
and J gene segments and their diversity are provided. Furthermore, sample comparison 
can be made regarding the provided Chord diagram information of the V and J gene 
segment pairings, allowing first interpretations of over-represented or extended use of 
specific V and J gene segments. This evaluation and preparation for interpretation are 
done automatically after the pre-processing. All output files, calculations, and results 
generated during the process are reported, stored, and available for further custom 
analyses, validation, and investigations. By providing results of the most crucial aspects 
of the immunologic field, IMDA supports identifying specific patterns in IG and TCR 
repertoires.

In summary, IMDA is a bioinformatics framework for quality control and process-
ing immune repertoire NGS data providing the user a broad overview. Samples can be 
processed from raw data to a well-selected set of key measures and explanatory figures 
in one go using the contiguous IMDA pipeline. In addition, the evaluation module of 
IMDA can also be used independently of the MIGEC and MiXCR sub-processes for ana-
lyzing clonotype tables obtained elsewhere.

The IMDA pipeline provides a great overview regarding the CDR3 region, the V(D)J 
gene segments, and the similarities among samples. Hence, IMDA is perfect for evalu-
ating immunologic NGS data and planning further research steps since all calculations 
and visualizations are summarized in two compact output files. Furthermore, by inves-
tigating the output information, it is further possible to improve the laboratory effort. 
An additional feature is the third summary file which contains the V and J gene segment 
information, the diversity indices, and curve parameters and serves as input for various 
ML methods. In conclusion, IMDA automatically processes FASTQ files and evaluates 
CDR3 and V(D)J specific measures, summarizes all information, visualizations, and cal-
culations for providing a general overview and provides insights into possible sources of 
error and gives inspiration for further research. Thus, the most significant advantage of 
IMDA is providing a good overview of immune repertoire NGS data in an efficient way.

Availability and requirements
Project name: ImmunoDataAnalyzer (IMDA); Project home page: https://​bioin​forma​
tics.​fh-​hagen​berg.​at/​immun​oanal​yzer/; Operating system(s): Windows and Linux OS 
(64-bit); Programming language: Python; Other requirements: Python 3.7 or higher, Java 
1.8.0, Perl 5.12.3 or higher; License: see License Agreement on IMDA website https://​

https://bioinformatics.fh-hagenberg.at/immunoanalyzer/
https://bioinformatics.fh-hagenberg.at/immunoanalyzer/
https://bioinformatics.fh-hagenberg.at/immunoanalyzer/
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bioin​forma​tics.​fh-​hagen​berg.​at/​immun​oanal​yzer/; Any restrictions to use by non-aca-
demics: None.
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