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Intracellular vesicle fusion requires the soluble N-ethyl-
maleimide-sensitive factor attachment protein receptors
(SNAREs) and their cognate Sec1/Munc18 (SM) proteins. How
SM proteins act in concert with trans-SNARE complexes to
promote membrane fusion remains incompletely understood.
Munc18c, a broadly distributed SM protein, selectively regu-
lates multiple exocytotic pathways, including GLUT4 exocy-
tosis. Here, using an in vitro reconstituted system, we
discovered a SNARE-like peptide (SLP), conserved in Munc18-
1 of synaptic exocytosis, is crucial to the stimulatory activity of
Munc18c in vesicle fusion. The direct stimulation of the
SNARE-mediated fusion reaction by SLP further supported the
essential role of this fragment. Interestingly, we found SLP
strongly accelerates the membrane fusion rate when anchored
to the target membrane but not the vesicle membrane, sug-
gesting it primarily interacts with t-SNAREs in cis to drive
fusion. Furthermore, we determined the SLP fragment is
competitive with the full-length Munc18c protein and specific
to the cognate v-SNARE isoforms, supporting how it could
resemble Munc18c’s activity in membrane fusion. Together,
our findings demonstrate that Munc18c facilitates SNARE-
dependent membrane fusion through SLP, revealing that the
t-SNARE-SLP binding mode might be a conserved mechanism
for the stimulatory function of SM proteins in vesicle fusion.

Exocytosis is a process that delivers membrane proteins to
the cell surface or releases cargoes to the extracellular matrix
(1, 2). The fusion of exocytic vesicles and plasma membrane is
regulated by the soluble N-ethylmaleimide-sensitive factor
attachment protein receptors (SNAREs) and SNARE regula-
tors. The central event of the fusion is that the target (t-)
SNAREs pair with the vesicle (v-) SNARE to form a four-helix
trans-SNARE complex (3, 4). N- to C- terminal SNARE
zippering brings the two apposed membranes into a proximity
that releases the free energy and initiates the fusion (5–11). In
regulated exocytosis, the SNARE zippering is controlled by
multiple regulators (12–15). Significantly, the trans-SNARE
complexes are unable to efficiently assemble unless activated
by Sec1/Munc18 (SM) proteins (5, 16–18). SM proteins are
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evolutionarily conserved cytosolic proteins of 60 to 70 kDa
that fold into an arch-shaped “clasp” structure (19). As the
essential SNARE partners, SM proteins selectively recognize
cognate v- and t-SNAREs and promote their assembly (17, 18,
20–22).

Insulin-stimulated glucose transporter 4 (GLUT4) exocy-
tosis is critical in maintaining blood glucose homeostasis
(23–26). The defect of GLUT4 exocytosis ultimately leads to
insulin resistance and type 2 diabetes (27–29). In GLUT4
exocytosis, the t-SNAREs are syntaxin4 and SNAP-23 (30, 31).
While VAMP2 is the primary v-SNARE in GLUT4 SNARE-
mediated vesicle fusion, VAMP3 and VAMP8 may play
redundant or compensatory roles (32–34). Munc18c was
identified as the predominant SM protein in GLUT4 exocy-
tosis (35–38). The imbalance of Munc18c is associated with
insulin resistance and obesity (39–41). Our previous studies
suggest that Munc18c is a positive regulatory factor promoting
trans-SNARE zippering at the postdocking stage in GLUT4
SNARE-mediated vesicle fusion (17, 18). Unlike Munc18-1, a
well-studied synaptic SM protein, the Munc18c–syntaxin4
dimer does not block the formation of the binary t-SNARE
complex (17, 42–44). Munc18c and Munc18-1 recognize
different regions on the SNARE complex, further suggesting
the two SM proteins have conserved and divergent mecha-
nisms in vesicle fusion (17). Therefore, although the mecha-
nisms of Munc18-1 have been extensively studied, it remains
unclear how Munc18c interacts with t- or v-SNAREs to
regulate the SNARE zippering and vesicle fusion.

In synaptic vesicle fusion, domain 3a of Munc18-1 forms an
extended helical structure upon SNARE binding, facilitating
the SNARE assembly and vesicle priming (45–48). Our recent
study identified a SNARE-like peptide (SLP) in domain 3a of
Munc18-1 that markedly accelerates synaptic SNARE-
dependent liposome fusion (49). Synaptic SNAREs are
known to possess specialized functions not found in other
SNAREs. Thus, it is critical to determine whether the role of
SLP is also crucial in another pathway. Interestingly, the
sequence of SLP that contains heptad repeats of hydrophobic
residues aligned with the v-SNARE C-terminal domain (CTD)
is highly conserved in Munc18c (Fig. S1). However, whether
the SLP of Munc18c has a conserved fusion-stimulating
function in GLUT4 SNARE-driven membrane fusion is still
uncertain.
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Mechanism of Munc18c-stimulated membrane fusion
In this work, we performed in vitro reconstitution assays to
unravel the molecular mechanisms of Munc18c in SNARE-
mediated fusion reaction. We observed that the conserved
SLP in domain 3a is essential for the stimulatory activity of
Munc18c in GLUT4 v- and t-SNARE-mediated liposome
fusion. The short peptide fragment could resemble the stim-
ulatory function of Munc18c in SNARE-dependent vesicle
fusion. When we anchored SLP to the t-SNARE liposomes or
added soluble SLP to the reactions, SLP strongly accelerated
the fusion kinetics. In contrast, little change in the fusion rate
was observed when SLP was reconstituted to the v-SNARE
liposomes. While SLP specifically interacts with t-SNAREs, the
cognate isoform of v-SNARE is required for its fusion stimu-
lation, supporting the biological relevance of our study.
Together, our findings disclose that Munc18c binds and acti-
vates t-SNAREs to accelerate GLUT4 SNARE-mediated fusion
reaction primarily through its SLP.

Results

SLP is essential for the stimulatory function of Munc18c in
reconstituted membrane fusion

To study whether the SLP of Munc18c plays a crucial role in
membrane fusion, we replaced SLP with the N-terminal TolA,
a nonrelated bacterial helix, to make the Munc18c-TolA
chimeric protein (Fig. 1A). The circular dichroism spectra of
WT Munc18c and Munc18c-TolA chimeric protein were
similar (Fig. S2), suggesting that the overall folding of
Munc18c protein was not altered by the SLP to TolA
replacement. The lipid mixing and content mixing assays were
then employed to monitor the fusion of v- and t-SNARE li-
posomes (Fig. 1B) (49, 50). In the fluorescence resonance en-
ergy transfer (FRET)–based lipid mixing assay, GLUT4 v- and
t-SNAREs drove a basal level of lipid mixing, which was
significantly enhanced by wildtype (WT) Munc18c (Fig. 1, C
and D). We observed that the stimulatory activity of Munc18c
was abrogated when SLP was replaced by TolA (Fig. 1, C and
D).

In the content mixing assay, the soluble dye sulforhodamine
B was encapsulated in the VAMP2 liposomes in which the
fluorescence was self-quenched. The occurrence of fusion led
to the dilution of sulforhodamine B so that the fluorescence
self-quenching was relieved (17). Similarly, we observed that
WT Munc18c rather than Munc18c-TolA chimera stimulated
content mixing of the fusion reaction (Fig. 1, E and F). The
lipid or content mixing was completely reduced to background
levels by the dominant-negative inhibitor VAMP2 cytoplasmic
domain, confirming that WT Munc18c and Munc18c-TolA
chimera mediated liposome fusion through the regulation of
SNARE assembly (Fig. 1, C–F). Together, these results
demonstrate that SLP is crucial to the stimulatory activity of
Munc18c in GLUT4 SNARE-mediated membrane fusion.

Munc18c SLP directly stimulates SNARE-dependent membrane
fusion

Next, we examined how SLP regulates the GLUT4 SNARE-
mediated membrane fusion reaction. To strengthen the
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activity, we created the SLP–transmembrane domain (TMD)
fusion protein in which SLP was combined with an engineered
membrane anchor (Fig. 2A) (49). When we reconstituted SLP
to t-SNARE liposomes through the membrane anchor, it
markedly stimulated the SNARE-dependent liposome fusion
(Fig. 2, B–F). The fusion stimulation depended on the con-
centration of membrane-anchored SLP in the reaction
(Fig. S3). On the contrary, the membrane-anchored TolA helix
was unable to accelerate the fusion kinetics (Fig. 2, B–F).
Moreover, the change of the membrane anchor does not affect
the stimulatory activity of SLP, excluding the influence of the
transmembrane domain on the fusion activity (Fig. S4).

We then purified maltose-binding protein (MBP)–tagged
SLP to test the effect of soluble SLP on membrane fusion. A
tobacco etch virus (TEV) protease cleavage site was introduced
between MBP and SLP (Fig. 3A). Unexpectedly, we observed
that MBP-SLP efficiently blocked the SNARE-mediated lipo-
some fusion (Fig. 3, B–D). After removing MBP by TEV
protease digestion, the fusion kinetics was dramatically accel-
erated (Fig. 3, B–D). The concentration-dependent activities of
MBP-SLP suggest that the fusion inhibition or stimulation is
explicitly mediated by intact or TEV-digested MBP-SLP
(Fig. S5). In the control experiments, MBP-TolA fusion pro-
tein drove a liposome fusion at a level comparable to basal
fusion, whenever with or without TEV protease digestion
(Fig. 3, C and D). We postulated that the large MBP protein
might hinder the t- and v- SNARE assembly after SLP-SNARE
interaction, resulting in a fusion inhibition. Indeed, when MBP
was removed, SLP became active and accelerated the fusion
reaction (Fig. 3, C and D). All the above experimental results
demonstrated that SLP was capable of stimulating SNARE-
dependent membrane fusion.

Munc18c promotes SNARE-dependent membrane fusion
through SLP

We then attempt to delineate how Munc18c regulates
membrane fusion in the presence of SLP (Fig. 4A). The fusion
reactions containing membrane-anchored SLP were not
further stimulated by Munc18c, indicating SLP is competitive
with WT Munc18c in the membrane fusion (Fig. 4, B and C).
These data support that Munc18c promotes SNARE-
dependent membrane fusion primarily through SLP, similar
to Munc18-1 in synaptic vesicle fusion (49).

SLP interacts with t-SNAREs in cis to activate SNARE-
dependent membrane fusion

Previous studies suggested the fusion stimulation of SM
protein requires SNAREs in the restricted topology (51, 52).
We then tested whether the ability of SLP to promote mem-
brane fusion is topology dependent. SLP was reassembled into
t- or v-SNARE liposomes by the membrane anchor (Fig. 5A).
Interestingly, SLP had little effect on the kinetics of the
SNARE-mediated liposome fusion when it was anchored to v-
SNARE liposomes, indicating the activation of SLP requires it
to interact with t-SNAREs in cis but not in trans (Fig. 5, B and
C). In a liposome co-flotation assay, MBP-SLP was specifically



Figure 1. SLP is indispensable for the stimulatory function of Munc18c in membrane fusion. A, top, diagrams of WT and mutant Munc18c proteins
used in the liposome fusion assays. SLP corresponds to amino acids 327 to 351 of Munc18c. Munc18c-TolA refers to the replacement of the SLP with a
bacterial TolA sequence. Bottom, sequences of SLP and TolA. B, illustration of the reconstituted liposome fusion procedures. C, lipid mixing of the
reconstituted fusion reactions in the absence or presence of 5 μM Munc18c WT or Munc18c-TolA. Each fusion reaction contained 5 μM t-SNAREs, 1.5 μM v-
SNARE, and 100 mg/ml Ficoll 70. Negative control 20 μM of VAMP2 CD was added at the beginning of the fusion reaction. D, lipid mixing rates of the
reconstituted fusion reactions shown in (C). Data are presented as the percentage of fluorescence change per 60 min. Error bars indicate standard deviation.
Data are presented as mean ± SD (n = 3 independent replicates). p Values were calculated using ordinary one-way ANOVA with Tukey’s multiple com-
parisons test. n.s., p> 0.05. ****p< 0.0001. E, content mixing of the reconstituted fusion reactions in the absence or presence of 5 μMMunc18c or Munc18c-
TolA proteins. Each fusion reaction contained 5 μM t-SNAREs, 1.5 μM v-SNARE, and 100 mg/ml Ficoll 70. Negative control 20 μM of VAMP2 CD was added at
the beginning of the fusion reaction. F, content mixing rates of the reconstituted fusion reactions shown in (E). Data are presented as percentage of
fluorescence change per 60 min. Error bars indicate standard deviation. Data are presented as mean ± SD (n = 3 independent replicates). p Values were
calculated using ordinary one-way ANOVA with Tukey’s multiple comparisons test. n.s., p > 0.05. ****p < 0.0001. CD, cytoplasmic domain; SLP, SNARE-like
peptide; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor.

Mechanism of Munc18c-stimulated membrane fusion
bound to t-SNARE liposomes containing syntaxin4 and
SNAP-23 but not VAMP2 or protein-free liposomes (Fig. 5, D
and E). Previous studies showed syntaxin4 N-peptide interacts
with domain 1 of Munc18c (53). We then removed the N-
terminal domain from syntaxin4 (syntaxin4ΔN) to study
whether SLP mediated Munc18c binding to the SNARE motifs
(core domains) of t-SNAREs. Our results showed that WT
Munc18c but not Munc18c-TolA interacted with t-SNARE
liposomes containing syntaxin4ΔN and SNAP-23, suggesting
Munc18c can bind to the SNARE motifs of t-SNAREs through
J. Biol. Chem. (2022) 298(10) 102470 3



Figure 2. SLP activates SNARE-mediated membrane fusion when it is anchored to the membrane. A, diagrams of Munc18c SLP and TolA with an
engineered transmembrane domain (TMD, from VAMP2). B, illustration of the liposome fusion pairs. C, lipid mixing of the reconstituted fusion reactions
containing 5 μM t-SNAREs, 1.5 μM WT VAMP2, 100 mg/ml Ficoll 70, and 5 μM of the indicated chimeric protein. The fusion reactions were measured by a
FRET-based lipid mixing assay. D, lipid mixing rates of the reconstituted fusion reactions shown in (C). Data are presented as the percentage of fluorescence
change per 60 min. Error bars indicate standard deviation. Data are presented as mean ± SD (n = 3 independent replicates). p Values were calculated using
ordinary one-way ANOVA with Tukey’s multiple comparisons test. n.s., p > 0.05. ****p < 0.0001. E, content mixing of the reconstituted fusion reactions
described in (C). F, content mixing rates of the reconstituted fusion reactions shown in (E). Data are presented as the percentage of fluorescence change per
60 min. Error bars indicate standard deviation. Data are presented as mean ± SD (n = 3 independent replicates). p Values were calculated using ordinary
one-way ANOVA with Tukey’s multiple comparisons test. n.s., p > 0.05. ****p < 0.0001. FRET, fluorescence resonance energy transfer; SLP, SNARE-like
peptide; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor.

Mechanism of Munc18c-stimulated membrane fusion
SLP (Fig. S6). These data demonstrated that SLP stimulates
membrane fusion by interacting with t-SNAREs at a cis-
configuration.
The stimulatory activity of Munc18c SLP is specific to its
cognate v-SNARE isoforms

It has been well defined that SM proteins only stimulate
their cognate SNAREs-driven fusion reactions, reflecting the
precise intracellular vesicle transport (54). Our previous
studies showed although Munc18c is broadly distributed and
recognizes a series of v-SNARE isoforms, it could not stimulate
the fusion reactions containing VAMP8 or yeast v-SNAREs
(17). We then tested whether SLP has the selectivity for v-
SNARE isoforms in our reconstitution system. The t-SNARE
4 J. Biol. Chem. (2022) 298(10) 102470
liposomes containing syntaxin4/SNAP-23 and SLP were
directed to fuse with liposomes containing diverse v-SNARE
isoforms (Fig. 6A). While the cognate VAMP2 and VAMP3
supported the stimulatory activity, SLP was unable to stimulate
the fusion reactions reconstituted with VAMP8 or yeast Snc1p
(Fig. 6, B and C). These data reveal that SLP retains the
intrinsic cognate v-SNARE specificity of Munc18c, supporting
the biological relevance of the findings.
Discussion

Impairment in insulin-stimulated GLUT4 exocytosis is a
hallmark of insulin resistance and type 2 diabetes. Extensive
studies have been performed on SNARE-mediated GLUT4
exocytosis. A variety of SNARE-binding factors were identified



Figure 3. Munc18c SLP stimulates SNARE-dependent membrane fusion in solution. A, diagram of the MBP-SLP and MBP-TolA. A TEV cleavage site
(ENLYFQG) was inserted between MBP and SLP. B, illustration of the experimental procedure of the reconstituted fusion reactions. C, activation of SNARE-
mediated fusion reactions by soluble SLP. The t-SNARE liposomes containing syntaxin4 and SNAP-23 were incubated with or without 5 μM indicated protein
in the absence or presence of TEV protease at 37 �C. After 30 min, VAMP2 liposomes were introduced to initiate fusion. The fusion reactions were measured
by a FRET-based lipid mixing assay. D, lipid mixing rates of the reconstituted fusion reactions shown in (C). Data are presented as the percentage of
fluorescence change per 60 min. Error bars indicate standard deviation. Data are presented as mean ± SD (n = 3 independent replicates). p Values were
calculated using two-way ANOVA with Tukey’s multiple comparisons test. n.s., p > 0.05. ****p < 0.0001. FRET, fluorescence resonance energy transfer; MBP,
maltose-binding protein; SLP, SNARE-like peptide; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor; TEV, tobacco etch virus.

Figure 4. Munc18c activates membrane fusion through SLP. A, diagram illustrating the experimental procedure of the reconstituted fusion reactions. B,
reconstituted liposome fusion reactions in the absence or presence of 5 μM Munc18c. Each fusion reaction contained 5 μM t-SNAREs, 1.5 μM v-SNARE, and
100 mg/ml Ficoll 70. The fusion reactions were measured by a FRET-based lipid mixing assay. C, lipid mixing rates of the reconstituted fusion reactions
shown in (B). Data are presented as the percentage of fluorescence change per 60 min. Error bars indicate standard deviation. Data are presented as mean ±
SD (n = 3 independent replicates). p Values were calculated using ordinary one-way ANOVA with Tukey’s multiple comparisons test. n.s., p > 0.05. ****p <
0.0001. FRET, fluorescence resonance energy transfer; SLP, SNARE-like peptide; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein
receptor.

Mechanism of Munc18c-stimulated membrane fusion

J. Biol. Chem. (2022) 298(10) 102470 5



Figure 5. SLP interacts with t-SNAREs to activate membrane fusion in the cis-configuration. A, illustration of the liposome fusion pairs. B, lipid mixing
of the reconstituted fusion reactions containing 5 μM t-SNAREs, 1.5 μM v-SNARE, 100 mg/ml Ficoll 70. The fusion reactions were measured by a FRET-based
lipid mixing assay. C, lipid mixing rates of the reconstituted fusion reactions shown in (B). Data are presented as the percentage of fluorescence change per
60 min. Error bars indicate standard deviation. Data are presented as mean ± SD (n = 3 independent replicates). p Values were calculated using ordinary
one-way ANOVA with Tukey’s multiple comparisons test. n.s., p > 0.05. ****p < 0.0001. D, Coomassie blue–stained SDS/PAGE gel showing the binding of
Munc18c SLP to t-SNARE liposomes containing syntaxin4 and SNAP-23. The v-SNARE liposome was composed of VAMP2. The liposomes were prepared with
100% phosphatidylcholine (PC). Each binding reaction contained 5 μM SNAREs and 5 μM MBP-tagged peptide. FRET, fluorescence resonance energy
transfer; MBP, maltose-binding protein; PF, protein-free; SLP, SNARE-like peptide; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein
receptor.

Mechanism of Munc18c-stimulated membrane fusion
to control the assembly of the trans-SNARE complex, which
drives membrane fusion between the GLUT4 storage vesicles
and plasma membrane (2, 25, 55–60). It has been established
that the SM protein Munc18c positively regulates GLUT4
SNARE-mediated vesicle fusion, but the molecular mechanism
remains less understood (17, 18, 37, 39, 61). Previous studies
suggest that SM proteins take conserved and divergent
mechanisms in SNARE-mediated fusion reactions (16, 17, 44,
62, 63). Therefore, it is worth examining how Munc18c reg-
ulates its cognate t- and v-SNARE-driven membrane fusion.

Membrane fusion is initiated when v- and t-SNAREs zipper
into the trans-SNARE complex (64, 65). The N-terminal do-
mains of the SNARE motifs pair, restructuring the t-SNAREs
and setting the stage for the subsequent zippering of the CTDs
(5, 15, 66, 67). However, SNAREs may not release their full
fusion potential due to conformational constraints, which
require SM proteins to facilitate the process (15, 67). Corre-
spondingly, our previous studies showed that SM protein
accelerates membrane fusion by acting on the SNARE CTD-
mediated trans-SNARE assembly stage (17, 18, 56, 57). How
the conformational constraint is removed by Munc18c is not
fully understood. In this study, we characterized the SLP of
Munc18c in the defined reconstitution system. We found that
SLP is indispensable for Munc18c’s stimulatory activity in
fusion. SLP binds to t-SNAREs like v-SNARE CTD (Vc pep-
tide) and efficiently accelerates SNARE-dependent membrane
fusion (68, 69).

When we localized SLP to the vicinity of the t-SNAREs by
an engineered transmembrane domain, it could resemble the
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activity of WT Munc18c protein in membrane fusion. The
artificial membrane anchor may facilitate the recruitment of
SLP to SNAREs. SLP failed to accelerate the membrane fusion
rate when it was anchored to the vesicle membrane, indicating
a requirement of cis-configuration. Our findings suggest that
the stimulatory activity of SLP needs it to arrive at the nearby
region of t-SNAREs with proper orientation. While the
membrane-anchored Munc18c SLP fragment could stimulate
membrane fusion, it is still worth knowing how the non-
membrane-anchored SLP fragment acts on the fusion
kinetics. Instead of stimulation, MBP-SLP blocked SNARE-
dependent membrane fusion like a brake. Since MBP could
be located nearby the SNARE motifs by SLP-t-SNARE inter-
action, it is reasonable that the large MBP protein impedes the
next step of SNARE assembly. Actually, when MBP was
removed, SLP turned to facilitate the membrane fusion, sup-
porting the inhibitory role of the MBP protein. These results
demonstrate that Munc18c SLP alone can stimulate SNARE-
dependent membrane fusion directly.

Munc18-facilitated SNARE zippering is a conserved and
highly dynamic process. The structure and folding dynamics of
the t-SNARE complex are critical for the ternary SNARE as-
sembly (49, 68). SLP has multiple binding modes during
SNARE zippering. In addition to the t-SNARE complex, SLP
and its adjacent regions can also recognize v-SNARE, facili-
tating the formation of the syntaxin–Munc18–VAMP tem-
plate complex (16, 22, 47, 70–72). It was suggested that the
physiological SNARE assemblies might start from Munc18-
bound syntaxins (42, 44, 72). Then, Munc18 interacts with



Figure 6. The stimulatory function of SLP is sensitive to v-SNARE isoforms. A, illustration of the liposome fusion pairs. B, lipid mixing of the recon-
stituted fusion reactions containing 5 μM t-SNAREs, 1.5 μM v-SNARE, and 100 mg/ml Ficoll 70. The fusion reactions were measured by a FRET-based lipid
mixing assay. C, lipid mixing rates of the reconstituted fusion reactions shown in (B). Data are presented as the percentage of fluorescence change per
60 min. Error bars indicate standard deviation. Data are presented as mean ± SD (n = 3 independent replicates). p Values were calculated using two-way
ANOVA with Tukey’s multiple comparisons test. n.s., p > 0.05. ****p < 0.0001. FRET, fluorescence resonance energy transfer; SLP, SNARE-like peptide; SNARE,
soluble N-ethylmaleimide-sensitive factor attachment protein receptor.

Mechanism of Munc18c-stimulated membrane fusion
v-SNARE to form a syntaxin–Munc18–VAMP template
complex, which may be universally conserved for Munc18-
chaperoned SNARE assembly (16, 70–72). The template
complex guides the formation of a partially zippered trans-
SNARE complex, whereas Munc18 SLP turns to interact with
the CTDs of the intermediate t-SNARE complex. The t-
SNARE–SLP complex restructures t-SNAREs into a confor-
mation suitable for complete zippering with v-SNARE, a
mechanism similar to Vc peptide-stimulated fusion (49, 68).

While Munc18c uses its SLP to stimulate fusion, other do-
mains may play additional functions, for example, maintaining
the conformation and orientation of SLP. Beyond the direct
regulation of trans-SNARE assembly, Munc18c has multiple
other identified functions. Munc18c binds to syntaxin4, which
facilitates its location at the exocytotic sites (42, 53, 73, 74). It
also interacts with other regulatory factors, such as Doc2b, to
cooperatively regulate GLUT4 exocytosis (75, 76). Furthermore,
Munc18cmaymodulateGLUT4 exocytosis under the control of
insulin signaling through tyrosine phosphorylation (73, 77).

In summary, our findings demonstrated that Munc18c in-
teracts with t-SNAREs through its SLP and facilitates SNARE-
dependent membrane fusion. Although Munc18-1 and
Munc18c recognize distinct SNAREs and have divergent
binding modes with their individual cognate SNAREs, they
share the conserved mechanism through the action of SLP in
stimulating vesicle fusion.
Experimental procedures

Protein expression and purification

Recombinant t- and v-SNARE proteins were expressed in
E. coli and purified by affinity chromatography (21). GLUT4
exocytic t-SNAREs, comprised of the untagged syntaxin-4 and
the His6-tagged SNAP-23, were expressed using the same
procedure as previously described (17, 18). Full-length v-
SNAREs were expressed similarly as previously described and
contained no extra residues after the tags were proteolytically
removed by SUMO protease (17, 18). SNAREs were stored in a
buffer containing 25 mM Hepes (pH 7.4), 400 mM KCl, 1% n-
octyl-β-D-glucoside, 10% (vol/vol) glycerol, and 0.5 mM
Tris(2carboxyethyl) phosphine (TCEP). MBP-tagged SLP (aa.
327–351 of Munc18c) and TolA (aa. 1–25) were expressed in
E. coli and purified by nickel affinity chromatography. The
soluble proteins were stored in a buffer containing 25 mM
Hepes (pH 7.4), 150 mM KCl, 10% (vol/vol) glycerol, and
0.5 mM TCEP.

Recombinant untagged Munc18c protein was produced in
Sf9 insect cells using baculovirus infection (17). The full-
J. Biol. Chem. (2022) 298(10) 102470 7



Mechanism of Munc18c-stimulated membrane fusion
length mouse Munc18c gene was subcloned into the bacu-
lovirus transfer vector pFastBac to generate a construct
encoding a His6–Munc18c fusion protein separated by a TEV
protease cleavage site. Munc18c proteins were purified from
the Sf9 cells by nickel affinity as previously described (17).
The His6 tag was removed from Munc18c by TEV protease,
and the protein was subsequently dialyzed overnight against a
storage buffer (25 mM Hepes [pH 7.4], 150 mM KCl, 10%
glycerol, and 0.5 mM TCEP). Munc18c-TolA mutant was
generated by site-directed mutagenesis and purified similarly
to the WT protein.

The membrane-anchored SLP or TolA was expressed in
E. coli and purified in a similar way as v-SNAREs. Sequences of
chimeric proteins used in this work are listed below: (1) SLP-
TMD (SLP is derived from amino acids 327–351 of mouse
Munc18c and highlighted in bold, and TMD is derived from
the transmembrane domain of VAMP2): LTQLMKKMP
HFRKQISKQVVHLNLAKRKYWWKNLKMMIILGVICAII-
LIIIIVYFST. (2) TolA-TMD (the amino acids 1–25 of bacterial
TolA sequence is shown in bold, and TMD is derived from the
transmembrane domain of VAMP2): GGSSIDAVM
VDSGAVVEQYKRMQSQKRKYWWKNLKMMIILGVICAII-
LIIIIVYFST. (3) SLP-TMD* (SLP is derived from amino acids
327–351 of mouse Munc18c and highlighted in bold, and
TMD is derived from the transmembrane domain of syn-
taxin4): LTQLMKKMPHFRKQISKQVVHLNLAIALENQKK
ARKKKVMIAICVSVTVLILAVIIGITITVG. (4) TolA-TMD*
(the amino acids 1–25 of bacterial TolA sequence is shown in
bold, and TMD is derived from the transmembrane domain of
syntaxin4): GGSSIDAVMVDSGAVVEQYKRMQSQIALENQ
KKARKKKVMIAICVSVTVLILAVIIGITITVG.

Proteoliposome preparation

All lipids used in this work were acquired from Avanti Polar
Lipids. For t-SNARE reconstitution, 1-palmitoyl-2-oleoyl-sn-
glycero-3phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphoethanolamine, 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphoserine, and cholesterol were mixed in a molar ratio
of 60:20:10:10. To prepare v-SNARE liposomes, 1-palmitoyl-2-
oleoyl-sn-glycero-3phosphocholine, 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphoethanolamine, 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphoserine, cholesterol, N-(7-nitro-2,1,3-
benzoxadiazole-4-yl) (NBD)-1,2-dipalmitoyl phosphatidyleth-
anolamine, and N(Lissamine rhodamine B sulfonyl)-1,2-
dipalmitoyl phosphatidylethanolamine were mixed at a molar
ratio of 60:17:10:10:1.5:1.5. SNARE proteoliposomes were
prepared by detergent dilution and isolated on a Nycodenz
density gradient flotation (49, 78). Detergent was removed by
overnight dialysis using Novagen dialysis tubes against the
reconstitution buffer (25 mM Hepes [pH 7.4], 100 mM KCl,
10% [vol/vol] glycerol, and 1 mM DTT). To prepare
sulforhodamine-loaded liposomes, SNARE liposomes were
reconstituted in the presence of 50 mM sulforhodamine B
(Sigma). Free dye was removed by overnight dialysis, followed
by liposome flotation on a Nycodenz gradient. The protein-to-
lipid ratio was at 1:200 for v-SNAREs and at 1:500 for t-
SNARE liposomes.
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Liposome lipid and content mixing assays

A standard liposome fusion reaction contained 5 μM t
SNAREs, 1.5 μM v-SNARE, and 100 mg/ml of the macromo-
lecular crowding agent Ficoll 70 and was conducted in a 96-well
microplate at 37 �C. The fusion reactions were carried out in the
reaction buffer (25 mM Hepes [pH 7.4], 50 mM KCl, and 1 mM
DTT). In FRET-based lipid mixing assays, v-SNARE liposomes
containing NBD-lipids quenched by rhodamine-lipids were
directed to fuse with unlabeled t-SNARE liposomes. Increase in
NBD-fluorescence at 538 nm (excitation 460 nm) was measured
every 2 min in a BioTek Synergy HT microplate reader. At the
end of the reaction, 10 μl of 10% 3-[(3-cholamidopropyl)dime-
thylammonio]- 2-hydroxy-1-propanesulfonic acid (CHAPSO)
was added to the liposomes. For content mixing assays, unla-
beled t-SNARE liposomes were directed to fuse with sulfo-
rhodamine B-loaded v-SNARE liposomes. The sulforhodamine
B fluorescence (excitation: 565; emission: 585 nm) was
measured every 2 min. At the end of the reaction, 10 μl of 10%
CHAPSO was added to each sample. Fusion data were pre-
sented as the percentage of maximum fluorescence change. Full
accounting of statistical significance was included for each
dataset based on at least three independent experiments.

Liposome co-flotation assay

The binding of soluble factors with membranes was exam-
ined using a liposome co-flotation assay, as we previously
described (17, 49). MBP-tagged SLP or TolA was individually
incubated with protein-free liposomes, t-SNARE liposomes
containing syntaxin4 and SNAP23, or VAMP2 liposomes at 4
�C with gentle agitation. An equal volume (150 μl) of 80%
Nycodenz (wt/vol) in the reconstitution buffer was added after
1 h, and the mixture was transferred to 5 × 41-mm centrifuge
tubes. The liposomes were overlaid with 200 μl each of 35%
and 30% Nycodenz and then with 20 μl of reconstitution buffer
on the top. The gradients were centrifuged for 4 h at
48,000 rpm in a Beckman SW55 rotor. Liposome samples were
collected from the 0/30% Nycodenz interface (2 × 20 μl) and
analyzed by SDS-PAGE.

Statistical analysis

All data were presented as the mean ± SD and were
analyzed using GraphPad Prism 8.0.2 software for Windows.
Statistical significance was calculated using one-way ANOVA
or two-way ANOVA, and p-Value <0.05 was considered sta-
tistically significant.

Data availability

All data presented are contained within the main manu-
script and supporting information.
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information.
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