

Available online at www.sciencedirect.com

Chronic Diseases and Translational Medicine 3 (2017) 95-104

Meta Analysis

www.keaipublishing.com/en/journals/cdtm/ www.cdatm.org

Association between the rs1042522 polymorphism in *TP53* and prostate cancer risk: An updated meta-analysis

Song Fan^{a,b,c}, Zong-Yao Hao^{a,b,c}, Meng Zhang^{a,b}, Chao-Zhao Liang^{a,b,*}

^a Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China ^b Institute of Urology, Anhui Medical University, Hefei, Anhui 230032, China

> Received 16 November 2016 Available online 25 May 2017

Abstract

Objective: The proposal of the present study was to investigate whether the *TP53* rs1042522 polymorphism confers susceptibility to prostate cancer (PCa), by performing an updated meta-analysis.

Methods: Eligible publications investigating the association between the TP53 rs1042522 polymorphism and PCa susceptibility were selected from PubMed, Google Scholar, and Web of Science. We used STATA 12.0 software to conduct the analyses. Odds ratio (OR) with 95% confidence interval (CI) was calculated.

Results: A total of 17 case—control studies were retrieved reporting a total of 2683 cases and 2981 controls. However, no significant association was uncovered between the *TP53* rs1042522 polymorphism and PCa susceptibility in the overall population under the five genetic models. In the stratification analysis by source of control, an increased susceptibility to PCa was identified in the population-based (P-B) group (CG vs. GG: OR = 1.48, 95% *CI*: 1.24-1.77, P < 0.01; CC/CG vs. GG: OR = 1.32, 95% *CI*: 1.12-1.57, P < 0.01), whereas a decreased susceptibility was uncovered in the hospital-based (H-B) group (CG vs. GG: OR = 0.67, 95% *CI*: 0.46-0.96, P = 0.03; CC/CG vs. GG: OR = 0.67, 95% *CI*: 0.46-0.99, P = 0.04) under heterozygous and dominant model. **Conclusion:** This study did not find an association between the *TP53* rs1042522 polymorphism and PCa susceptibility in the overall population analysis except in the stratification analysis by source of control. The results suggest that the *TP53* rs1042522 polymorphism is not a risk factor for PCa.

© 2017 Chinese Medical Association. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: TP53; rs1042522; Polymorphism; Prostate cancer; Meta-analysis

* Corresponding author. Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.

E-mail address: liang_chaozhao@163.com (C.-Z. Liang). ^c The first two authors contributed equally to this study.

Peer review under responsibility of Chinese Medical Association.

VIER Production and Hosting by Elsevier on behalf of KeAi

Introduction

Prostate cancer (PCa) has been the second most common cancer in men around the world, with an estimated 220,800 newly diagnosed cases and 27,540 deaths in 2015 in the United States.¹ With the strong epidemiological evidence pointing to a hereditary component to the development of PCa, much research

http://dx.doi.org/10.1016/j.cdtm.2017.04.001

2095-882X/© 2017 Chinese Medical Association. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

into causative genes has been explored. Linkage studies investigating possible high-risk loci leading to PCa development identified possible loci on several chromosomes. In a recent genome-wide association study (GWAS), researchers identified a total of 76 common susceptibility loci,² with more than 1000 additional common single nucleotide polymorphisms (SNPs) predicting susceptibility to PCa.^{3,4}

Tumor protein p53 (TP53), which is located on chromosome 17p13, has been identified as one of the most commonly mutated genes in human cancers.⁵ In addition, the rs1042522 (codon 72) polymorphism, which is located on exon 4 of TP53, leads to a $CGC \rightarrow CCC$ transition resulting in an Arginine $(Arg) \rightarrow Proline (Pro)$ amino acid substitution at position 72,⁶ contributing to a variety of biochemical and biological features of p53. Several previous studies have elaborated the association between the TP53 rs1042522 polymorphism and PCa susceptibility; however, the results are inconsistent. In 2014, Khan et al⁷ conducted a meta-analysis comprising of 13 case-control studies and identified that the Arg coding G allele was significantly associated with an increased susceptibility to prostate adenocarcinoma in the Pakistani population (P < 0.001), a result consistent with another meta-analysis of six case-control studies by Zhang et al⁸ that implicated the TP53 codon 72 polymorphism in a low-penetrant susceptibility to PCa in Caucasians but not in Asians. As several more studies have been published since these meta-analyses were carried out, we conducted an updated meta-analysis to achieve a more accurate estimation of the association between the TP53 rs1042522 polymorphism and PCa susceptibility.

Materials and methods

Selection of eligible studies

We retrieved studies from PubMed, Web of Science, and Google Scholar (the last search being made on June 5, 2016) using the search terms "*TP53*," OR "*p53*," OR "codon 72," AND "prostate," AND "carcinoma," OR "neoplasm," OR "tumor," OR "cancer," AND "polymorphism," OR "variant", OR "mutations." Our search was limited to studies written in English. In addition, we adopted the PubMed option "relevant articles" for each study to search for additional possibly eligible studies. Reference lists of Reviews or Comments related to *TP53* were also checked for additional studies.

Inclusion and exclusion criteria

Studies were included when they satisfied the following criteria: (1) studies assessing the relationship between the *TP53* rs1042522 polymorphism and PCa susceptibility, (2) studies designed in a case—control format, and (3) availability of data regarding the genotype frequency of the cases and controls. Studies were removed when they were: (1) case-only studies, review articles, comments, and case reports; (2) studies without the raw data regarding the *TP53* rs1042522 polymorphism; (3) repetitive studies; (4) animal studies.

Data extraction

Two reviewers scrutinized studies on the associations between the TP53 rs1042522 polymorphism and PCa. We discussed any discrepancies, making sure that all the controversies reached a consensus. In addition, we extracted the following details: the name of the first author, year of publication, ethnicity of the sample, sample size for the cases and controls, genotype frequency, and P value for the Hardy-Weinberg equilibrium (HWE).

Statistical analysis

We calculated odds ratios (ORs) with 95% confidence interval (95% CIs) to evaluate the strength of the association between the TP53 rs1042522 polymorphism and PCa susceptibility. A total of five genetic models were selected, including allele contrasts (C vs. G), additive genetic (CC vs. GG & CG vs. GG), recessive genetic (CC vs. CG/GG) and dominant genetic (CC/CG vs. GG) models. We also conducted stratified analyses by ethnicity, source of control and the genotyping method. Heterogeneity was detected by a Chi-square based Qstatistic test. When heterogeneity existed (P < 0.10, $I^2 > 50\%$), the random effects model was adopted to calculate pooled ORs⁹; otherwise, a fixed effects model was selected. A Chi-square goodness-of-fit test was also performed to calculate the HWE in the control groups; if the P value was larger than 0.05, the HWE balance was reached. Sensitivity analyses were further performed to assess the stability of the included data; this involved individual case-control studies being excluded from the pooled data to identify the influence of the respective data set on the pooled ORs (P < 0.05 was regarded as statistically significant).¹⁰ We used Begg's funnel plot and Egger's test to look for publication bias,^{11,12} with P < 0.05 being regarded as statistically significant. We used STATA Version 12.0 (StataCorp, College Station, Texas, USA) to conduct all the statistical analyses, and P < 0.05 was considered statistically significant for any tests or genetic models.

Results

Study inclusion and study characteristics

After careful application of the inclusion criteria, a total of 17 publications were entered into our metaanalysis, including 2683 cases and 2981 controls. We present a flow chart of the study screening process in Fig. 1. The included studies and their main features are summarized in Table $1.^{7,13-28}$ The meta-analysis included 10 studies of individuals with Caucasian ethnicity, 6 of Asian, and one of African. Thirteen studies were performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), three by polymerase chain reaction (PCR) and one was conducted by TaqMan assay. The majority of the controls were sexand age-matched. Of the studies, 10 were populationbased (P-B) and 7 hospital-based (H-B). Notably, there were 5 case—control studies that deviated from the HWE (Table 1).^{7,13,14,24,28}

Meta-analysis

We summarize the main results of the present metaanalysis and the heterogeneity test in Table 2. As shown in Figs. 2–6, no significant association was identified between the *TP53* rs1042522 polymorphism and PCa susceptibility in the overall population under the five genetic models (C vs. G: OR = 0.94, 95% CI: 0.78-1.13, P = 0.50; CC vs. GG: OR = 0.73, 95% CI: 0.49-1.09, P = 0.13; CG vs. GG: OR = 1.06, 95% CI:

Fig. 1. Flow chart showing the study selection procedure.

Table 1			
Characteristics of eligible case-control studies included	l in the	meta-analy	ysis

Authors	Publication	Ethnicity	Genotyping	Source of	P (HWE)	Case,	n		Control, n		
yea	year		method	control		GG	GC	CC	GG	GC	CC
Henner et al ¹³	2001	Caucasian	PCR	P-B	0.00	66	41	2	93	38	15
Suzuki et al ¹⁴	2003	Asian	PCR-RFLP	H-B	0.03	20	46	48	7	57	41
Huang et al ¹⁵	2004	Asian	PCR-RFLP	H-B	0.10	66	92	42	54	109	84
Wu et al ¹⁶	2004	Asian	PCR	P-B	0.09	20	61	11	30	53	43
Leiros et al ¹⁷	2005	Caucasian	PCR-RFLP	P-B	0.20	2	17	20	2	23	23
Quiñones et al ¹⁸	2006	Caucasian	PCR-RFLP	H-B	0.33	14	24	22	13	45	59
Hirata et al ¹⁹	2007	Asian	PCR-RFLP	P-B	0.98	22	89	56	26	80	61
Hirata et al ²⁰	2009	Asian	PCR-RFLP	P-B	0.98	20	75	45	26	80	61
Xu et al ²¹	2010	Asian	PCR-RFLP	P-B	0.23	41	129	39	86	140	42
Ricks-Santi et al ²²	2010	African	PCR-RFLP	P-B	0.58	73	135	37	70	86	22
Mittal et al ²³	2011	Caucasian	PCR-RFLP	P-B	0.28	86	89	2	150	103	12
Doosti et al ²⁴	2011	Caucasian	PCR-RFLP	H-B	0.00	15	98	74	24	111	50
Rogler et al ²⁵	2011	Caucasian	PCR-RFLP	H-B	0.42	9	44	65	11	79	104
Bansal et al ²⁶	2012	Caucasian	PCR	P-B	0.12	21	33	51	23	61	22
Salehi et al ²⁷	2012	Caucasian	PCR-RFLP	H-B	0.55	18	37	13	23	45	17
Meyer et al ²⁸	2013	Caucasian	TaqMan	H-B	0.02	43	178	286	23	202	245
Khan et al ⁷	2014	Caucasian	PCR-RFLP	P-B	0.00	27	101	18	16	28	63

HWE: Hardy-Weinberg equilibrium; PCR: polymerase chain reaction; P-B: population-based; PCR-RFLP: polymerase chain reaction-restriction fragment length polymorphism; H-B: hospital-based.

0.81-1.37, P = 0.68; CC/CG vs. GG: OR = 0.98, 95% *CI*: 0.78-1.25, P = 0.89; CC vs. CG/GG: OR = 0.78, 95% *CI*: 0.55-1.12, P = 0.18).

In the subgroup analysis by ethnicity, genotyping method and HWE status (Yes or No), there was also a lack of association between the *TP53* rs1042522 polymorphism and PCa susceptibility (P > 0.05) (Table 2).

Nevertheless, when the stratified analysis was conducted by source of control, a certain association was explored under heterozygous and dominant model. A contradictory relationship was detected between the two paired groups. Consequently, we identified an increased susceptibility in the population-based (P-B) group (CG vs. GG: OR = 1.48, 95% CI: 1.24-1.77, P < 0.01; CC/ CG vs. GG: OR = 1.32, 95% CI: 1.12-1.57, P < 0.01), while a decreased susceptibility was uncovered in the hospital-based (H-B) group (CG vs. GG: OR = 0.67, 95% CI: 0.46-0.96, P = 0.03; CC/CG vs. GG: OR = 0.67, 95% CI: 0.46-0.99, P = 0.04) (Table 2).

Sensitivity analysis and publication bias

Sensitivity analyses were conducted to further evaluate the influence of the respective data on the integrated data through excluding one single data set from the pooled analyses one at a time; no single data set affected the pooled ORs under the allele model (Fig. 7). The similar results were obtained under the other models.

In addition, no significant publication bias was identified by the Begg's (C vs. G: Z = 1.03, P = 0.30; CC vs. GG: Z = 0.04, P = 0.97; CG vs. GG: Z = 1.44, P = 0.15; CC/CG vs. GG: Z = 1.77, P = 0.08; CC vs. CG/GG: Z = 0.87, P = 0.39) and Egger's test (C vs. G: t = -0.87, P = 0.40; CC vs. GG: t = -0.69, P = 0.50; CG vs. GG: t = -1.42, P = 0.18; CC vs. CG/GG: t = -2.16, P = 0.06; CC/CG vs. GG: t = -1.60, P = 0.13).

Discussion

Several studies have implicated the tumor suppressor gene *TP53* in the progression of many cancer types.^{29,30} In addition, the polymorphism in codon 72 of *TP53* has been associated with susceptibility to a variety of diseases, including cancers.^{31–36} This mutation is a G→C substitution at nucleotide position 313 that results in a change of Arg (CGC) to Pro (CCC). An *in vitro* study has shown that the TP53 Arg/ Arg variant stimulates apoptosis and prevents proper transformation, compared to the Pro/Pro genotype.³⁷

Although the association between the *TP53* polymorphism and PCa susceptibility has been investigated by several studies, results have been inconclusive. Khan et al⁷ identified that Arg coding G allele was significantly associated with an increased susceptibility to prostate adenocarcinoma in the Pakistani population. This is consistent with Ricks-Santi et al's²² finding that the p53 polymorphism may be associated with an increased risk of PCa. However, Henner et al¹³ found

that men with the p53 codon 72 Pro/Pro genotype were at reduced risk of prostate cancer. Subsequently, three meta-analyses examined the association between the *TP53* rs1042522 polymorphism and PCa susceptibility.

Table 2 Results of meta-analysis for *TP53* rs1042522 polymorphism and prostate cancer risk.

Comparison	Subgroup	п	$P_{\rm H}$	$P_{\rm Z}$	OR (95% CI)
C vs. G	Overall	17	0.00	0.50	0.94 (0.78-1.13)
	Asian	6	0.00	0.33	0.88 (0.68-1.14)
	Caucasian	10	0.00	0.69	0.95 (0.72-1.25)
	PCR	3	0.00	0.96	1.02 (0.55-1.87)
	PCR-RFLP	13	0.00	0.43	0.92 (0.73-1.14)
	H-B	7	0.00	0.38	0.90 (0.70-1.14)
	P-B	10	0.00	0.83	0.97 (0.74-1.27)
	Ν	5	0.00	0.39	0.83 (0.54-1.28)
	Y	12	0.00	0.91	0.90 (0.81-1.20)
CG vs. GG	Overall	17	0.00	0.68	1.06 (0.81-1.37)
	Asian	6	0.00	0.80	1.07 (0.65-1.75)
	Caucasian	10	0.00	0.94	0.99 (0.69-1.41)
	PCR	3	0.07	0.58	1.19 (0.65-2.20)
	PCR-RFLP	13	0.00	0.45	1.12 (0.84-1.48)
	H-B	7	0.09	0.03	0.67 (0.46-0.96)
	P-B	10	0.39	< 0.01	1.48 (1.24-1.77)
	Ν	5	0.00	0.84	0.93 (0.47-1.86)
	Y	12	0.02	0.36	1.13 (0.87-1.46)
CC/CG vs. GG	Overall	17	0.00	0.89	0.98 (0.78-1.25)
	Asian	6	0.00	0.83	0.95 (0.58-1.55)
	Caucasian	10	0.07	0.68	0.94 (0.71-1.25)
	PCR	3	0.99	0.49	1.13 (0.80-1.59)
	PCR-RFLP	13	0.00	0.96	0.99 (0.74-1.33)
	H-B	7	0.04	0.04	0.67 (0.46-0.99)
	P-B	10	0.59	< 0.01	1.32 (1.12-1.57)
	Ν	5	0.02	0.40	0.81 (0.49-1.32)
	Y	12	0.01	0.63	1.07 (0.82-1.40)
CC vs. GG	Overall	17	0.00	0.13	0.73 (0.49-1.09)
	Asian	6	0.00	0.30	0.74 (0.41-1.32)
	Caucasian	10	0.00	0.18	0.65 (0.35-1.21)
	PCR	3	0.00	0.55	0.62 (0.13-2.96)
	PCR-RFLP	13	0.00	0.23	0.75 (0.48-1.20)
	H-B	7	0.01	0.12	0.67 (0.41-1.11)
	P-B	10	0.00	0.38	0.77 (0.42-1.39)
	Ν	5	0.00	0.13	0.49 (0.19-1.24)
	Y	12	0.00	0.50	0.87 (0.57-1.32)
CC vs. CG/GG	Overall	17	0.00	0.18	0.78 (0.55-1.12)
	Asian	6	0.00	0.14	0.75 (0.51-1.10)
	Caucasian	10	0.00	0.36	0.75 (0.42-1.35)
	PCR	3	0.00	0.60	0.57 (0.07-4.55)
	PCR-RFLP	13	0.00	0.19	0.77 (0.53-1.14)
	H-B	7	0.00	0.87	0.97 (0.70-1.35)
	P-B	10	0.00	0.17	0.64 (0.33-1.21)
	Ν	5	0.00	0.25	0.58 (0.23-1.46)
	Y	12	0.00	0.44	0.87 (0.61 - 1.24)

 $P_{\rm H}$: *P* value of *Q* test for heterogeneity test; P_z : *P* value of *Z* test; *OR*: odds ratio; *CI*: confidence interval; PCR: polymerase chain reaction; PCR-RFLP: polymerase chain reaction-restriction fragment length polymorphism; H-B: hospital-based; P-B: population-based; Y: studies conformed to Hardy-Weinberg equilibrium; N: studies not conformed to Hardy-Weinberg equilibrium.

In Zhang et al's⁸ meta-analysis, they identified that *TP53* codon 72 polymorphism might be a low-penetrant risk factor for developing PCa in Caucasians but not in Asians. In the study conducted by Lu et al.³⁸ they concluded that Pro/Pro genotype of p53 codon 72 polymorphism was associated with increased risk for PCa, especially among Caucasians. Conversely, no association was explored between TP53 polymorphism and PCa risk by Li et al.³⁹ However, their findings needed further validation in a larger population. Therefore, we performed the present meta-analysis to more conclusively determine whether the rs1042522 polymorphism in TP53 was implicated in PCa. Nevertheless, no association between the TP53 rs1042522 polymorphism and PCa susceptibility was identified in the overall population under the five genetic models, a result that is consistent with that of a previous study.³⁹ However, when the stratified analyses were conducted by source of control, we identified an increased susceptibility in the P-B group, while a decreased susceptibility was uncovered in the H-B group under codominant and dominant models. We suggest that the discrepancy was possibly due to the relatively small sample sizes of existing studies that may be underpowered to identify a marginal influence. In addition, several random factors, including the matching standard, selection bias, adjustments in statistical analyses and publication bias may all be implicated. We also conducted a stratification analyses by ethnicity and genotyping method, but identified no association.

Although we performed a comprehensive search for all eligible publications, there are several limitations that should be considered concerning the present metaanalysis. Firstly, we included a limited number of case-control studies with small sample sizes, leading to insufficient power to identify a potential marginal influence of the polymorphism on PCa. Secondly, the majority of the included studies had enrolled individuals from the Caucasian population, with only one study of the African population eligible for inclusion in this study. Thirdly, the controls in these studies were not uniformly defined. Several studies were designed as P-B while others were H-B, which might not be representative of the general population. Fourthly, the language of included studies was restricted to English, which may have resulted in a potential bias. In addition, because of the lack of raw data, we could not conduct further analyses to assess the roles of several specific environmental or lifestyle factors, such as diet, alcohol consumption, and smoking status.

Taken together, no association was explored in overall population as well as the corresponding

	Experi	mental	Cont	trol	Weight	Odds Rat	io	Odds Ratio
Study	Events	Total	Events	Total	(%)	M-H, Random,	95% CI	M-H, Random, 95% CI
Bansal et al ²⁶	135	210	105	212	5.7	1.83 [1.24,	2.71]	
Doosti et al ²⁴	246	374	211	370	6.4	1.45 [1.08,	1.95]	
Henner et al ¹³	45	218	68	292	5.4	0.86 [0.56,	1.31]	
Hirata et al ¹⁹	201	334	202	334	6.3	0.99 [0.72,	1.35]	- + -
Hirata et al ²⁰	165	280	202	334	6.2	0.94 [0.68,	1.30]	
Huang et al ¹⁵	176	400	277	494	6.6	0.62 [0.47,	0.80]	-
Khan et al ⁷	137	292	154	214	5.8	0.34 [0.24,	2.50]	
Leiros et al ¹⁷	57	78	69	96	3.8	1.06 [0.54,	2.07]	_ +
Meyer et al ²⁸	750	1014	692	940	7.0	1.02 [0.83,	1.25]	+
Mittal et al ²³	93	354	127	530	6.3	1.13 [0.83,	1.54]	- -
Quiñones et al ¹⁸	68	120	163	234	5.2	0.57 [0.36,	0.90]	
Ricks-Santi et al ²²	209	490	130	356	6.5	1.29 [0.98,	1.71]	
Rogler et al ²⁵	174	236	287	388	5.8	0.99 [0.68,	1.43]	- + -
Salehi et al ²⁷	63	136	79	170	5.2	0.99 [0.63,	1.58]	_ + _
Suzuki et al ¹⁴	142	228	139	210	5.7	0.84 [0.57,	1.25]	
₩u et al ¹⁶	83	184	139	252	5.7	0.67 [0.46,	0.98]	
Xu et al ²¹	207	418	224	536	6.7	1.37 [1.06,	1.77]	-
Total (95% <i>CI</i>)		5366		5962	100. 0	0.94 [0.78,	1.13]	•
Total events	2951		3268				⊢	
Heterogeneity: Tau	² =0.11;	Chi²=79.	45, df=1	6 (P<0.	00001); I ² =	80%	0.01	0.1 1 10 100
Test for overall e	ffect: Z	=0.68 (.	P=0.50)				Favo	ours [experimental] Favours [control]

Fig. 2. Forest plot for the meta-analysis of the association between *TP53* rs1042522 polymorphism and prostate cancer risk under allele model (C vs. G).

	Experi	mental	Conti	rol	Weight	Odds R	atio	Odds Ratio
Study	Events	Total	Events	Total	(%)	M-H, Rando	m, 95%	CI M-H, Random, 95% CI
Bansal et al ²⁶	33	54	61	84	5.6	0.59 [0.2	9, 1.23	3]
Doosti et al ²⁴	98	113	111	135	5.8	1.41 [0.7	0, 2.84	4]
Henner et al ¹³	41	107	38	131	6.9	1.52 [0.8	8, 2.62	2]
Hirata et al ¹⁹	89	111	80	106	6.2	1.31 [0.6	9, 2.50	.0]
Hirata et al ²⁰	75	95	80	106	6.0	1.22 [0.6	3, 2.36	6]
Huang et al ¹⁵	92	158	109	163	7.6	0.69 [0.4	4, 1.09	9]
Khan et al ⁷	101	128	28	44	5.5	2.14 [1.0	1, 4.51	i]
Leiros et al ¹⁷	17	19	23	25	1.4	0.74 [0.0	9, 5.79	9]
Meyer et al ²⁸	178	221	202	225	6.9	0.47 [0.2	7, 0.81	
Mittal et al ²³	89	175	103	253	8.1	1.51 [1.0	2, 2.22	2]
Quiñones et al ¹⁸	24	38	45	58	4.5	0.50 [0.2	0, 1.22	2]
Ricks-Santi et al ²²	135	208	86	156	7.8	1.51 [0.9	8, 2.30	.0]
Rogler et al ²⁵	44	53	79	90	4.3	0.68 [0.2	6, 1.77	7]
Salehi et al ²⁷	37	55	45	68	5.4	1.05 [0.4	9, 2.23	3]
Suzuki et al ¹⁴	46	66	57	64	4.3	0.28 [0.1	1, 0.73	3]
₩u et al ¹⁶	61	81	53	83	6.0	1.73 [0.8	8, 3.39	9]
Xu et al ²¹	129	170	140	226	7.7	1.93 [1.2	4, 3.01	1] ——
								↓
Total (95% <i>CI</i>)		1852		2017	100. 0	1.06 [0.8	1, 1.37	7]
Total events	1289		1340					
Heterogeneity: Tau	² =0.18;	Chi ² =45.84	, df=16	(P=0.00	001); I²=65%	6		0.01 0.1 1 10 100
Test for overall e	ffect: 2	Z=0.41 (P=	0.68)					Favours [experimental] Favours [control]

Fig. 3. Forest plot for the meta-analysis of the association between TP53 rs1042522 polymorphism and prostate cancer risk under heterozygous model (CG vs. GG).

	Experi	mental	Con	trol	Weight	Odds Rat	io	Odds Ratio	
Study	Events	Total	Events	Total	(%)	M-H, Random,	95% CI	M-H, Random, 95% CI	
Bansal et al ²⁶	51	72	22	45	6.3	2.54 [1.17,	5.51]	_ _	_
Doosti et al ²⁴	74	89	50	74	6.5	2.37 [1.13,	4.95]	_	
Henner et al ¹³	2	68	15	108	3.8	0.19 [0.04,	0.85]		
Hirata et al ¹⁹	56	78	61	87	6.7	1.08 [0.55,	2.13]	_ _	
Hirata et al ²⁰	45	65	61	87	6.6	0.96 [0.48,	1.93]	_ _	
Huang et al ¹⁵	42	108	84	138	7.3	0.41 [0.24,	0.69]	- - -	
Khan et al ⁷	18	45	63	79	6.2	0.17 [0.08,	0.38]	_	
Leiros et al ¹⁷	20	22	23	25	2.6	0.87 [0.11,	6.75]		
Meyer et al ²⁸	286	329	245	268	7.3	0.62 [0.37,	1.07]		
Mittal et al ²³	2	88	12	162	3.8	0.29 [0.06,	1.33]		
Quiñones et al ¹⁸	22	36	59	72	5.8	0.35 [0.14,	0.85]		
Ricks-Santi et al ²²	37	110	22	92	6.9	1.61 [0.87,	3.00]	+ -	
Rogler et al ²⁵	65	74	104	115	5.7	0.76 [0.30,	1.94]	_	
Salehi et al ²⁷	13	31	17	40	5.7	0.98 [0.38,	2.53]		
Suzuki et al ¹⁴	48	68	41	48	5.6	0.41 [0.16,	1.07]	_	
₩u et al ¹⁶	11	31	43	73	6.0	0.38 [0.16,	0.92]	_	
Xu et al ²¹	39	80	42	128	7.1	1.95 [1.10,	3.45]		
						0.73 [0.49,	1.09]		
Total (95% <i>CI</i>)		1394		1641	100.0			•	
Total events	831		964				—		1
Heterogeneity: Tau	² =0.49; 0	Chi ² =66.	86, df=1	6 (P<0.0	0001); I ² =7	76%	0.01	0.1 1 10 10	00
Test for overall e	ffect: Z	=1.53 (#	P=0.13)				Favour	s [experimental] Favours [control]	

Fig. 4. Forest plot for the meta-analysis of the association between TP53 rs1042522 polymorphism and prostate cancer risk under homozygous model (CC vs. GG).

	Experi	mental	Con	trol	Weight	Odds Rati	io	Odds Ratio
Study	Events	Total	Events	Total	(%)	M-H, Random,	95% CI	M-H, Random, 95% CI
Bansal et al ²⁶	51	105	22	106	6.1	3.61 [1.97,	6.61]	_
Doosti et al ²⁴	74	187	50	185	6.7	1.77 [1.14,	2.74]	- - -
Henner et al ¹³	2	109	15	146	3.2	0.16 [0.04,	0.73]	
Hirata et al ¹⁹	56	167	61	167	6.6	0.88 [0.56,	1.37]	_
Hirata et al ²⁰	45	140	61	167	6.5	0.82 [0.51,	1.32]	
Huang et al ¹⁵	42	200	84	247	6.7	0.52 [0.34,	0.79]	- - -
Khan et al ⁷	18	146	63	107	6.0	0.10 [0.05,	0. 18]	
Leiros et al ¹⁷	20	39	23	48	5.2	1.14 [0.49,	2.67]	_
Meyer et al ²⁸	286	507	245	470	7.1	1.19 [0.92,	1.53]	
Mittal et al ²³	2	177	12	265	3.2	0.24 [0.05,	1.09]	
Quiñones et al ¹⁸	22	60	59	117	6.0	0.57 [0.30,	1.08]	
Ricks-Santi et al ²²	37	245	22	178	6.2	1.26 [0.72,	0.22]	- -
Rogler et al ²⁵	65	118	104	194	6.6	1.06 [0.67,	1.68]	_ _
Salehi et al ²⁷	13	68	17	85	5.4	0.95 [0.42,	2.11]	_
Suzuki et al ¹⁴	48	114	41	105	6.3	1.14 [0.66,	1.95]	
Wu et al ¹⁶	11	92	43	126	5.6	0.26 [0.13,	0.54]	_ _
Xu et al^{21}	39	209	42	268	6.5	1.23 [0.76,	1.99]	_ _
Total (95% CI)		2683		2981	100.0	0.78 [0.55,	1.12]	•
Total events	831		964				H	
Heterogeneity: Tau	² =0.44; (Chi2=114	.19, df=	16 (P<0.	00001); I ² :	=86%	0.01	0.1 1 10 100
Test for overall et	ffect: Z	=1.35 ()	P=0.18)				Favour	s [experimental] Favours [control]

Fig. 5. Forest plot for the meta-analysis of the association between *TP53* rs1042522 polymorphism and prostate cancer risk under recessive model (CC *vs.* CG/GG).

Fig. 6. Forest plot for the meta-analysis of the association between TP53 rs1042522 polymorphism and prostate cancer risk under dominant model (CC/CG vs. GG).

Fig. 7. Sensitivity analysis of overall odds ratio (OR) co-efficient for the TP53 rs1042522 polymorphism under allele model (C vs. G). Results were calculated by omitting each study in turn. The two ends of the dotted lines represent the 95% confidence interval.

subgroup analyses except by source of control. The present study suggests that the *TP53* rs1042522 polymorphism might not be a risk factor for PCa. However, some other well-designed prospective studies with large cohort size and various SNPs are urgently necessary to check the current findings in advanced research.

Conflicts of interest

The authors declare no conflicts of interests.

Acknowledgments

This manuscript was supported by National Natural Science Foundation of China (No. 81400757) and National College Students Innovation and Entrepreneurship Training Program (No. 201510366009).

References

- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.
- Eeles R, Goh C, Castro E, et al. The genetic epidemiology of prostate cancer and its clinical implications. *Nat Rev Urol.* 2014;11:18–31.
- Eeles RA, Olama AA, Benlloch S, et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. *Nat Genet*. 2013;45:385–391, 391e1-2.
- Park JH, Wacholder S, Gail MH, et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. *Nat Genet*. 2010;42:570–575.
- Tsui IF, Poh CF, Garnis C, Rosin MP, Zhang L, Lam WL. Multiple pathways in the FGF signaling network are frequently deregulated by gene amplification in oral dysplasias. *Int J Cancer.* 2009;125:2219–2228.
- Ara S, Lee PS, Hansen MF, Saya H. Codon 72 polymorphism of the TP53 gene. *Nucleic Acids Res.* 1990;18:4961.
- Khan MH, Rashid H, Mansoor Q, Hameed A, Ismail M. Association of the rs1042522 polymorphism with increased risk of prostate adenocarcinoma in the Pakistani population and its HuGE review. *Asian Pac J Cancer Prev.* 2014;15:3973–3980.
- Zhang J, Zhuo WL, Zheng Y, Zhang YS. Polymorphisms of TP53 codon 72 with prostate carcinoma risk: a meta-analysis. *Med Oncol.* 2010;27:540–546.
- 9. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials*. 1986;7:177–188.
- **10.** Tobias A, Campbell MJ. Modelling influenza epidemics in the relation between black smoke and total mortality. A sensitivity analysis. *J Epidemiol Commun Health.* 1999;53:583–584.
- Egger M, Davey SG, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ*. 1997;315:629–634.
- Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. *Biometrics*. 1994;50:1088–1101.
- Henner WD, Evans AJ, Hough KM, Harris EL, Lowe BA, Beer TM. Association of codon 72 polymorphism of p53 with lower prostate cancer risk. *Prostate*. 2001;49:263–266.

- 14. Suzuki K, Matsui H, Ohtake N, et al. A p53 codon 72 polymorphism associated with prostate cancer development and progression in Japanese. *J Biomed Sci.* 2003;10:430–435.
- Huang SP, Wu WJ, Chang WS, et al. p53 Codon 72 and p21 codon 31 polymorphisms in prostate cancer. *Cancer Epidemiol Biomarkers Prev.* 2004;13:2217–2224.
- Wu HC, Chang CH, Chen HY, Tsai FJ, Tsai JJ, Chen WC. p53 gene codon 72 polymorphism but not tumor necrosis factor-alpha gene is associated with prostate cancer. *Urol Int.* 2004;73:41–46.
- 17. Leiros GJ, Galliano SR, Sember ME, Kahn T, Schwarz E, Eiguchi K. Detection of human papillomavirus DNA and p53 codon 72 polymorphism in prostate carcinomas of patients from Argentina. *BMC Urol.* 2005;5:15.
- Quiñones LA, Irarrázabal CE, Rojas CR, et al. Joint effect among p53, CYP1A1, GSTM1 polymorphism combinations and smoking on prostate cancer risk: an exploratory genotypeenvironment interaction study. *Asian J Androl.* 2006;8:349–355.
- Hirata H, Hinoda Y, Kikuno N, et al. CXCL12 G801A polymorphism is a risk factor for sporadic prostate cancer susceptibility. *Clin Cancer Res.* 2007;13:5056–5062.
- Hirata H, Hinoda Y, Kikuno N, et al. Bcl2 -938C/A polymorphism carries increased risk of biochemical recurrence after radical prostatectomy. *J Urol.* 2009;181:1907–1912.
- 21. Xu B, Xu Z, Cheng G, et al. Association between polymorphisms of TP53 and MDM2 and prostate cancer risk in southern Chinese. *Cancer Genet Cytogenet*. 2010;202:76–81.
- 22. Ricks-Santi L, Mason T, Apprey V, et al. p53 Pro72Arg polymorphism and prostate cancer in men of African descent. *Prostate*. 2010;70:1739–1745.
- Mittal RD, George GP, Mishra J, Mittal T, Kapoor R. Role of functional polymorphisms of P53 and P73 genes with the risk of prostate cancer in a case-control study from Northern India. *Arch Med Res.* 2011;42:122–127.
- 24. Doosti A, Dehkordi PG. The p53 codon 72 polymorphism and association to prostate cancer in Iranian patients. *Afr J Biotechnol.* 2011;10(60):12821–12825.
- Rogler A, Rogenhofer M, Borchardt A, et al. P53 codon 72 (Arg72Pro) polymorphism and prostate cancer risk: association between disease onset and proline genotype. *Pathobiology*. 2011;78:193–200.
- 26. Bansal A, Soni A, Rao P, et al. Implication of DNA repair genes in prostate tumourigenesis in Indian males. *Indian J Med Res.* 2012;136:622–632.
- 27. Salehi Z, Hadavi M. Analysis of the codon 72 polymorphism of TP53 and human papillomavirus infection in Iranian patients with prostate cancer. *J Med Virol.* 2012;84:1423–1427.
- Meyer A, Coinac I, Bogdanova N, et al. Apoptosis gene polymorphisms and risk of prostate cancer: a hospital-based study of German patients treated with brachytherapy. Urol Oncol. 2013;31:74–81.
- 29. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. *Science*. 1991;253:49–53.
- Navone NM, Troncoso P, Pisters LL, et al. p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. *J Natl Cancer Inst.* 1993;85:1657–1669.
- Kitkumthorn N, Yanatatsaneejit P, Rabalert J, Dhammawipark C, Mutirangura A. Association of P53 codon 72 polymorphism and ameloblastoma. *Oral Dis.* 2010;16:631–635.
- Kara N, Karakus N, Ulusoy AN, Ozaslan C, Gungor B, Bagci H. P53 codon 72 and HER2 codon 655 polymorphisms in Turkish breast cancer patients. *DNA Cell Biol*. 2010;29:387–392.

- **33.** Chua HW, Ng D, Choo S, et al. Effect of MDM2 SNP309 and p53 codon 72 polymorphisms on lung cancer risk and survival among non-smoking Chinese women in Singapore. *BMC Cancer*. 2010;10:88.
- 34. Ghasemi N, Karimi-Zarchi M, Mortazavi-Zadeh MR, Atash-Afza A. Evaluation of the frequency of TP53 gene codon 72 polymorphisms in Iranian patients with endometrial cancer. *Cancer Genet Cytogenet*. 2010;196:167–170.
- 35. Mojtahedi Z, Haghshenas MR, Hosseini SV, Fattahi MJ, Ghaderi A. p 53 codon 72 polymorphism in stomach and colorectal adenocarcinomas in Iranian patients. *Indian J Cancer*. 2010;47:31–34.
- 36. El khair MM, Ennaji MM, El kebbaj R, Mhand RA, Attaleb M, El Mzibri M. p53 codon 72 polymorphism and risk of cervical carcinoma in Moroccan women. *Med Oncol.* 2010;27:861–866.
- Thomas M, Kalita A, Labrecque S, Pim D, Banks L, Matlashewski G. Two polymorphic variants of wild-type p53 differ biochemically and biologically. *Mol Cell Biol*. 1999;19:1092–1100.
- Lu Y, Liu Y, Zeng J, et al. Association of p53 codon 72 polymorphism with prostate cancer: an update meta-analysis. *Tumour Biol.* 2014;35:3997–4005.
- 39. Li MS, Liu JL, Wu Y, Wang P, Teng H. Meta-analysis demonstrates no association between p53 codon 72 polymorphism and prostate cancer risk. *Genet Mol Res.* 2011;10:2924–2933.

Edited by Pei-Fang Wei