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Previous studies showed that CXCR7 expression was upregulated after enzalutamide
(ENZ) treatment, and an increased level of CXCR7 could increase the invasion, migration,
and angiogenesis of castration-resistant prostate cancer (CRPC) cells. This study
demonstrated that the levels of p-JAK2, p-STAT1, C-Myc, and VEGFR2 were
significantly reduced after CCX771, a specific CXCR7 inhibitor, treatment. This effect
further increased after the combination treatment of ENZ and CCX771. Then, we verified
that targeting the inhibition of JAK2 or STAT1 could remarkably increase apoptosis and
DNA damage and decrease the migration of CRPC cells. More importantly, the
combination treatment of ENZ + JAK2/STAT1 led to much greater suppression than
the single-agent treatment of JAK2 or STAT1. Subcutaneous CRPC xenograft tumor
growth was also reduced by single-agent ENZ treatment and single-agent FLUD, a
specific STAT1 antagonist, treatment; but much superior effect was elicited by the
combination treatment of ENZ + FLUD. The proliferative indices significantly decreased
following combination treatment in tumor tissues compared with control-treatment tissues
and single-agent-treatment tissues. Our results demonstrated that CXCR7, which signifies
an androgen receptor (AR)-independent signaling pathway, caused CRPC progression via
the downstream JAK2/STAT1 signal transduction cascade. Combined inhibition targeting
both the AR and JAK2/STAT1 resulted in substantial tumor suppression due to the
reduction in DNA damage repair ability and increment in apoptosis.
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INTRODUCTION

Castration-resistant prostate cancer (CRPC) is an extremely advanced state of prostate cancer progression,
which indicates a complete failure of traditional androgen deprivation therapy (ADT) and has a very
inadequate prognosis. ENZ, a second-generation androgen receptor (AR) antagonist, is an important
treatment option for patients with CRPC, which significantly prolongs the median overall survival of
CRPC to 32.4months (Beer et al., 2014). However, about 42% of patients with CRPC are not sensitive to
ENZ treatment (Azuma, 2018). Even if the treatment is effective, ENZ resistance (Beer et al., 2014) usually
occurs after 11.2months. This modest survival benefit is related to a significant variation in the rate of
development of resistance pathways among individuals in clinical trials. It also indicates the need for a
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deeper understanding of the molecular mechanisms that lead to
androgen ablation resistance and the development of more effective
predictive biomarkers and therapeutic approaches for CRPC.
Therefore, how to overcome ENZ resistance has become a critical
research focus in this field.

Extensive research suggests that, among several risk factors,
inflammation plays an important role in the development and
progression of primary PCa to metastatic disease (Carver et al.,
2011). Elucidating the details of inflammatory signaling pathways not
only promotes the understanding of the tumor progression
mechanism but also helps confirm the molecular characteristics of
cases vulnerable to immunotherapy. Additionally, chemokines and
chemokine receptor networks are fundamental components of the
complex interactions between inflammatory cells and PCa cells. The
key essence of ENZ resistance is the process in which AR activity is
usually suppressed by drugs; meanwhile, the AR bypass pathways are
continuously activated. Our previous study (Luo et al., 2018)
confirmed that CXCR7 derepression was closely associated with
ENZ resistance. When AR activity was inhibited by ENZ, CXCR7
began to derepress fromAR suppression and further drove CRPC cell
progression through increasing the potency of anti-apoptosis, rapid
proliferation, DNA repair, and angiogenesis. After combination with
the CXCR7 antagonist (CCX771), the ENZ treatment response was
significantly improved in both CRPC cellular and animal models. Li
also demonstrated that elevated CXCR7 expression activatedMAPK/
ERK signaling through ligand-independent, but β-arrestin
2–dependent, mechanisms and led to tumor progression upon
enzalutamide resistance. The inhibition of MAPK/ERK activation
could remarkably suppress ENZ-resistant CRPC (Li et al., 2019).
Rafiei found that CXCR7 derepression induced by macrophage
migration inhibitory factor could upregulate the expression of cell
cycle genes through activating the Akt signaling pathway and drive
cellular ENZ-resistant growth (Rafiei et al., 2019). More recent
reports confirmed that CXCR7 derepression was closely involved
in the androgen ablation–resistant process. However, the underlying
mechanism of how CXCR7 triggers CRPC progression and survival
remains unclear.

The Janus kinase/signal transducer and activator of transcription
(JAK/STAT) signal transduction pathway is a master signaling
pathway that always regulates cell survival, apoptosis, hypertrophy,
and collagen synthesis in the heart of mammals and is activated in
response to oxidative stress, inflammatory cytokines, and growth
factors. The JAK/STAT signaling pathway plays an important role in
various physiological processes of cell proliferation, differentiation,
tumorigenesis, immune function, and hematopoiesis (Bolli et al.,
2003). The present study verified that CXCR7 derepression drove
CRPC cell progression and migration via the JAK2/STAT1 pathway.
It also reported the synergistic effect of ENZ plus specific JAK/STAT
inhibitor to inhibit the survival, invasion, and migration of CRPC
cells and suppress the growth of CRPC xenograft tumors.

MATERIALS AND METHODS

Cell Line and Reagents
The human androgen-independent prostate cancer cell line C4-
2B (American Type Culture Collection, VA, United States) was

validated by short tandem repeat DNA fingerprinting with an
AmpFLSTR Identifiler Kit (Applied Biosystems, CA,
United States) at MD Anderson’s Characterized Cell Line Core
Facility. The cells were cultured in DMEM containing 1 mM
sodium pyruvate, 2.5 mM glutamine, 10% FBS, 100 U/ml
penicillin, and 100 μg/ml streptomycin at 37°C in a humidified
incubator containing 5% CO2. The serum-free medium was
regularly used in the cell transfection trials. Enzalutamide (AR
inhibitor), AMD3100 (CXCR4 inhibitor), and AZD1480 (ATP
competitive antagonist of JAK2) were purchased from
SelleckChem, and SDF-1 (CXCR4/7 activated ligand) was
purchased from GenScript. CCX771 (CXCR7-specific
inhibitor) and CCX704 (the control inhibitor of CXCR7, with
the molecular structure similar to CCX771 but not binding to
CXCR7) were provided by ChemoCentryx (CA, United States).
Fludarabine (STAT1 synthesis inhibitor) and GSI-XII (Notch-1
inhibitor) were obtained from MedChemExpress. In addition,
C4-2B cells were seeded at desired densities (5 × 105/well in a six-
well plate for western blotting and wound-healing assay; 1 × 105/
well in a 24-well plate for flow cytometry; and 1.5 × 104/well in a
six-well plate for ELISA).

In Vitro ENZ and CCX771 Treatment
C4-2B cells were pretreated with 100 ng/ml SDF-1 + 1 M ENZ or
100 ng/ml SDF-1 + 800 nM CCX771 for 24 h. On the following
day, the cells were again treated with 20 μg/ml AMD3100, 25 µM
GSI-XII, or 1 µM CCX704 for 48 h. Additionally, the cells in the
ENZ and CCX771 groups were treated with a single drug for 72 h.
After treatment, the cellular protein was extracted for western
blotting to assess the downstream factors of the CXCR7 signaling
pathway.

In Vitro JAK2 and STAT1 Inhibition
Treatment
C4-2B cells were transfected with siRNA to knock down JAK2 or
STAT1 and further cultured for 72 h. Meanwhile, the cells were
treated with 5 µM AZD1480 or 5 µM fludarabine for 72 h to
inhibit the activity of JAK2 and STAT1, respectively. After
treatment, cellular extraction was used for western blotting to
assess the downstream factors of the JAK2/STAT1 pathway.

In Vitro Combined Inhibition of JAK2/STAT1
and AR or CXCR7
C4-2B cells were transfected with siRNA for 24 h. On the
following day, the cells were further treated with vehicle
control DMSO, 100 ng/ml SDF-1 + 800 nM CCX771, or
100 ng/ml SDF-1 + 1 µM ENZ for 48 h. After treatment, all
samples were comparatively evaluated for the change profile of
apoptosis, migration, and DNA damage.

siRNA and Plasmid Transfection
The cells were seeded 1 day before siRNA transfection. JAK2
(clone ID: OHu24049, GenScript), the STAT1 (clone ID:
OHu15845, GenScript) plasmid, and the control vector were
transfected into cells using X-tremeGENE HP DNA
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transfection reagent (Roche). All samples were prepared 72 h
after plasmid transfection for western blotting, wound-healing
assay, flow cytometry analysis, and ELISA.

Western Blotting
Clarified protein lysates were separated on denaturing SDS-PAGE
and electro-transferred onto nitrocellulose membranes. The
membranes were initially incubated with 5% non-fat dry milk in
TBS for 2 h and then probed at 4°C overnight with the following
antibodies: anti-CXCR7 (ab138509, 1:250), anti-DNA-PKCs
(ab44815, 1:500), anti-VEGFR2 (ab39638, 1:50) (Abcam, MA,
United States), anti-JAK2 (cs4040, 1:1,000), anti-P-JAK2 (cs4406,
Tyr1007, 1:500), anti-STAT1 (cs9176, 1:1,000), anti-P-STAT1
(cs8826, Ser727, 1:500), anti-C-Myc (cs9402, 1:1,000), anti-cleaved-
PARP-1 (cs5625, 1:500), anti-Bcl-2 (cs4223, 1:1,000), anti-γH2AX
(cs7631, 1:250) (Cell Signaling,MA,United States), and anti-GAPDH
(sc47724, 1:1,000) (Santa Cruz Biotechnology, CA, United States).
The membranes were then hybridized with horseradish peroxidase
(HRP)-conjugated secondary antibody (sc2004/2005, Santa Cruz
Biotechnology) for 2 h at room temperature. An enhanced
chemiluminescence system (AMRESCO, Inc., OH, United States)
was used to detect the immunopositive protein bands. Additionally,
the cell lysis buffer containing phosphatase inhibitors (Na3VO4/
1mM) was regularly applied during phosphorylated protein
extraction and detection. Each experiment was repeated five times.

Flow Cytometry
The cells were harvested and stained with propidium iodide for
30 min at room temperature. The analysis was performed at
405 nm excitation and emission with a 450/50 band-pass filter
using a FACSCanto II Flow Cytometer (BD Biosciences, NJ,
United States). The histograms of DNA content were analyzed
using the FlowJo software (Tree Star, Inc., OR, United States) to
determine cell cycle distribution. Each experiment was repeated
three times.

Wound-Healing Assay
The cells were grown to 80% confluence in six-well plates in
RPMI with 10% FBS and antibiotics. A straight scratch was made
using a 10 µl pipette tip at three different sites (top, middle, and
bottom) in triplicate experiments. Themediumwas removed, and
the cells were washed with the culture medium to remove the
floating cell debris. After treatment, the cells were fixed and
stained with crystal violet dye. Wound closure was measured
using MRIWound Healing Tool macro for ImageJ (v1.50b). Each
experiment was repeated three times.

DNA Fragmentation Assay
A DNA fragmentation assay was performed for apoptotic
evaluation following the protocol of the Cell Death Detection
ELISA Kit. Each experiment was repeated three times.

Subcutaneous C4-2B Xenografts
The cells (1 × 106) were resuspended in serum-free DMEM,
mixed 1:1 with Matrigel (BD Biosciences, NJ, United States), and
then injected subcutaneously into the left flanks of previously
castrated SCID mice (Charles River Laboratories, MA,

United States). When palpable tumors reached a volume of
30–50 mm3, the mice were randomly divided into different
experimental groups to receive one of the following treatments
for 28 days: DMSO, ENZ (10 mg/kg, oral gavage, daily),
fludarabine (1 mg/kg, IP, 5 days/2 weeks), and ENZ +
fludarabine. Tumor size was monitored by measuring two
dimensions, and the volume was calculated as length ×
width2/2. When the 28-day protocol was finished, all mice
were euthanized by carbon dioxide inhalation, and the tumors
were harvested. The CO2 displaced the euthanized chamber at the
rate of 10–30% of chamber volume per minute. The mice were
also euthanized ahead of the protocol if they became severely
weak or if the tumor size reached 20 mm.

Immunohistochemistry
Ki67 immunohistochemistry was carried out on formalin-fixed
and paraffin-embedded tissue sections from the 28-day C4-2B
xenografts after in vivo treatment. After tissue sections were
deparaffinized and rehydrated through graded alcohol, they
were heated in a microwave in 0.01 mol/L citrate buffer at pH
6.0 for 10 min to retrieve antigens. After a 30 min incubation in
Dako protein blockage solution, the tissue sections were
incubated in rabbit monoclonal antibody against Ki67 (1:300;
Santa Cruz Biotechnology) for 90 min, followed by incubation in
an HRP polymer−conjugated secondary antibody (Dako,
Glostrup, Denmark) for 40 min. The immunoreaction was
visualized in DAB/H2O2. The specificity of immunoreactions
was verified by replacing the primary antibodies with PBS.
Ten high-power fields were selected randomly in slides of each
group, and the numbers of positively stained cells were counted
and the percentage of positive cells was calculated.

Statistical Analysis
Data were presented as mean ± standard deviation and analyzed
with ANOVA with Tukey’s post hoc test. Statistical analysis was
undertaken using SPSS 13.0 for Windows (SPSS, Inc., IL,
United States). Two-sided p values < 0.05 indicated a
statistically significant difference.

RESULTS

Inhibition of CXCR7 Activity Decreased the
Phosphorylation of JAK2/STAT1
To explain how combination treatment of ENZ + CCX771
inhibited CRPC development, we detected some critical
proteins of the JAK/STAT signaling pathway in C4-2B cells
under different treatment conditions. Western blotting
revealed a possible signaling mechanism of combined
treatment. As shown in Figure 1, we demonstrated that the
phosphorylation of JAK2 and STAT1 could be reduced
significantly by CCX771-based treatment than ENZ-based
treatment in C4-2B cells. In addition, the expression levels of
C-Myc, an important proliferative regulator, and VEGFR, a
critical angiogenesis producer, also markedly decreased in
CCX771-based treatment cells, but the expression of cleaved-
PARP-1 increased in CCX771-based treatment cells. More
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interestingly, the addition of ENZ to CCX771-treated cells
(combination treatment group) exhibited much greater
synergistic suppression of phosphorylated JAK2,
phosphorylated STAT1, C-Myc, and VEGFR. ENZ
treatment−induced CXCR7 upregulation was verified as the
activator of the JAK2/STAT1 signaling pathway.

Inhibition of JAK2/STAT1 Activity Led to
Cellular DNA Damage and Apoptosis
The effect of JAK2/STAT1 activity on the expression of
downstream functional proteins was confirmed by western
blotting. After knocking down the expression of JAK2 by
siRNA transfection and repressing the activity of JAK2 with
AZD1480 in C4-2B cells, the expression of CXCR7 did not
display any change, but the expression of p-STAT1 decreased
significantly. In addition, the expression of oncogene C-Myc
and anti-apoptotic protein Bcl-2 apparently decreased, while
the expression of DNA damage marker γH2AX increased.
Moreover, the expression of non-homologous end-joining
(NHEJ) repairing protein DNA-PKCs significantly
decreased, but the expression of homologous repairing
(HR) protein C-PARP-1 increased (Figure 2). Similarly,
the inhibition of STAT1 activity did not affect the
expression of CXCR7 and phosphorylated JAK2. The
expression of C-Myc, Bcl-2, and DNA-PKCs remarkably
decreased, while the expression of γH2AX and C-PARP-1
significantly increased (Figure 3).

ENZ + JAK2/STAT1si Synergistically
Suppressed the Survival, Migration, and
DNA Damage Repair of CRPC Cells
We further observed the change pattern of sub-G1 cells,
aggressive potency, and DNA damaging extent in CRPC C4-
2B cells under different treatment conditions to analyze the
specific biological effects of the combination treatment of ENZ
+ JAK2/STAT1si that might result from the suppression of JAK/
STAT-mediated signaling. As shown in Figures 4A–D, FACS
confirmed that JAK2si and STAT1si could remarkably increase
the percentage of sub-G1 cells compared with the control
condition in C4-2B cells (JAK2si: p � 2.85E-06; STAT1si: p �
4.29E-08). Single-agent CCX771 and ENZ treatment also
increased the percentage of sub-G1 cells compared with
control treatment in C4-2B cells (CCX771: p � 1.62E-05; ENZ:
8.46E-09). The combination treatment of ENZ + JAK2si showed a
significantly superior effect compared with single-agent JAK2si
treatment (p � 3.84E-08), single-agent CCX771 treatment (p �
4.28E-08), single-agent ENZ treatment (p � 9.91E-07), and the
combination treatment of CCX771 + JAK2si (p � 1.54E-06). The
combination treatment of ENZ + STAT1si also showed a much
better effect compared with single-agent STAT1si treatment (p �
5.92E-09), single-agent CCX771 treatment (p � 4.21E-09), single-
agent ENZ treatment (p � 2.01E-08), and the combination
treatment of CCX771 + STAT1si (p � 1.20E-07).

As displayed in Figures 4E–H, the wound-healing assay
showed that C4-2B cells treated with JAK2si or STAT1si

FIGURE 1 | Comparison of CXCR7 downstream signaling proteins between CCX771-based treatment and ENZ-based treatment. (A) Western blotting
demonstrated that the expression of phosphorylated JAK2, phosphorylated STAT1, C-Myc, and VEGFR markedly decreased, but the expression of cleaved-PARP-1
increased in CCX771-based treatment cells. The combination treatment of CCX771 + ENZ exhibited much greater synergistic suppression of phosphorylated JAK2,
phosphorylated STAT1, C-Myc, and VEGFR. (B) All western blot band densities were quantitatively analyzed.
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showed a significant reduction in cell migration compared with
control conditions (JAK2si: p � 0.0371; STAT1si: p � 0.0031),
whereas the combination treatment of ENZ + JAK2si displayed a
greater effect compared with single-agent JAK2si treatment (p �
0.0088) and the combination treatment of CCX771 + JAK2si (p �
0.0379). However, a significant difference was not observed
between the combination treatment of ENZ + JAK2si and
single-agent ENZ/CCX771 treatment. In addition, the
combination treatment of ENZ + STAT1si showed a similar
suppressing effect on cell migration compared with single-agent
STAT1si treatment (p � 0.0043), single-agent CCX771 treatment
(p � 0.0470), single-agent ENZ treatment (p � 0.0495), and the
combination treatment of CCX771 + STAT1si (p � 0.0483).

As presented in Figures 4I,J, ELISA showed that JAK2si or
STAT1si treatment in C4-2B cells significantly resulted in an
increase in the number of DNA fragments compared with the
control condition (JAK2si: p � 1.20E-05; STAT1si: p � 5.92E-06).
More importantly, the combination treatment of ENZ + JAK2si
exhibited much stronger induction of DNA damage compared
with single-agent JAK2si treatment (p � 0.0002), single-agent
CCX771 treatment (p � 0.0006), single-agent ENZ treatment (p �
0.0117), and the combination treatment of CCX771 + JAK2si (p �
0.0325). ENZ + STAT1si also showed a better treatment effect
compared with single-agent STAT1si treatment (p � 1.27E-05),
single-agent CCX771 treatment (p � 4.46E-07), single-agent ENZ

treatment (p � 4.62E-05), and the combination treatment of
CCX771 + STAT1si (p � 0.0002). These data demonstrated that
the combination treatment targeting JAK2/STAT1 and AR
displayed a much stronger effect of inducing apoptosis and
repressing migration in CRPC cells.

ENZ + FLUD Strategy Synergistically
Inhibited the Growth of CRPC Xenografts
We used an AR-positive, androgen-independent, C4-2B
subcutaneous CRPC model to further testify our hypothesis
that the combination treatment of ENZ + JAK2/STAT1 was a
promising therapy for CRPC. We treated mice bearing C4-2B
subcutaneous tumors with ENZ alone, FLUD alone, and a
combination of ENZ + FLUD and monitored their tumor
progression following the protocol shown in Figure 5A.

DISCUSSION

The AR is an extremely important regulator that drives the
progression of CRPC depending on not only self-
transcriptional activity but also other signaling pathways, such
as Jagged1/Notch1 pathway (Wang et al., 2010), CXCR4–CXCR7
dimer (Sun et al., 2010), EGFR/Ras/ERK (Singh and Lokeshwar,

FIGURE 2 | Change profile of downstream functional proteins after the inhibition of JAK2 activity. (A) Western blotting revealed that, after knocking down the
expression of JAK2 by siRNA transfection and repressing the activity of JAK2 by AZD1480 in C4-2B cells, the expression of CXCR7 did not display any change, but the
expression of p-STAT1, oncogene C-Myc, and anti-apoptotic protein Bcl-2 decreased significantly. In addition, the expression of DNA damage marker γH2AX
increased, the expression of non-homologous end-joining (NHEJ) repairing protein DNA-PKCs significantly decreased, but the expression of homologous
repairing (HR) protein C-PARP-1 increased. (B) All WB band densities were quantitatively analyzed.

Frontiers in Molecular Biosciences | www.frontiersin.org October 2021 | Volume 8 | Article 6524435

Luo et al. JAK2/STAT1 in Enzalutamide-Resistant CRPC

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


2011), EGFR/PI3K/Akt (Mittal et al., 2009), and C-Myc
(Karanika et al., 2015). The crucial step of ENZ treatment is
to block the binding of androgen and AR to the maximum extent
in patients with CRPC. It can suppress the transcriptional activity
of the AR pathway and achieve the therapeutic purpose of
promoting apoptosis and destroying DNA repair. Therefore,
ENZ resistance strongly suggests the presence of alternative
signaling pathways beside the AR pathway to elicit and
maintain the drug-resistant progression of CRPC.

The androgen receptor shear variant AR-v7 is the first drug-
resistant gene confirmed in ENZ-resistant CRPC cells. After AR-v7
was knocked out, the cell proliferation and growth were remarkably
inhibited (Li et al., 2013). Clinical research further demonstrated that
if tumor cells of patients with CRPC positively expressed AR-v7
(Antonarakis et al., 2014), these patients would be resistant to ENZ
treatment. Therefore, AR-v7might be a breakthrough target for ENZ
resistance. In addition, our previous study also demonstrated one
possible ENZ-resistance–related AR bypass pathway in which the
functional role of the CXCR4–CXCR7 heterodimer shifted from
CXCR4-driven to CXCR7-driven after ENZ treatment (Luo et al.,
2018). However, the downstream signal transduction process of the
CXCR7 pathway is still unclear.

Truncated AR splice variants (AR-Vs) are mainly due to aberrant
RNA splicing intragenic and DNA rearrangement (Zhu and Luo,
2020a), resulting in the loss of the ligand-binding domain (LBD) of

the AR protein. The absence of LBD makes the AR protein lose the
drug-binding domain, further leading to the drug resistance of AR
(Kanayama et al., 2021). Several studies attempted to explore the
details of how ARv7 activated the downstream survival signal. The
genomics of three ENZ-resistant CRPC PDX models, which were
derived from the biopsy of skin metastasis, liver metastasis, and
primary cancer, were comparatively analyzed. The results showed no
consistent requirement for mutations in TP53, RB1, BRCA2,
PIK3CA, or MSH2, as well as the expression of SOX2 or ERG,
while all drug-resistant PDX tissues lacked PTEN expression (Zhu
et al., 2020b). Additionally, enzalutamide resistance requires both
AR-FL expressionwith at least a fiftyfold increase andAR-V7 protein
expression at least sevenfold to eightfold higher than AR-FL
expression in the normal prostate epithelium (Zhu et al., 2020b).
Another study also involved genetic analyses in three 22RV1-based
models constructed by the concomitant treatment of ADT with ABI,
ENZ, and their combination on 22RV1 cells. The final results in these
drug-resistant cellular models confirmed that the expression of
several AR target genes, such as FKBP5, PMEPA1, and
TMPRSS2, significantly increased except for the general increase
in the expression of AR-FL and AR-v7 (Simon et al., 2021). Our
previous research screened four genes from ENZ-resistant C4-2B
cells, which were CCNA2, CKAP2L, NCAPG, and NUSAP1, and
confirmed that the protein levels of these four genes also remained
higher in ENZ-resistant xenograft tumor tissues (Feng et al., 2021a;

FIGURE 3 | Change profile of downstream functional proteins after the inhibition of STAT1 activity. (A) Western blotting revealed that, after knocking down the
expression of JAK2 by siRNA transfection and repressing the activity of JAK2 by FLUD in C4-2B cells, the expression of CXCR7 and P-JAK2 did not display any change,
but the expression of C-Myc and Bcl-2 decreased remarkably. In contrast, the expression of DNA damage marker γH2AX increased apparently, the expression of
homologous repairing (HR) protein C-PARP-1 increased accordingly, but the expression of non-homologous end-joining (NHEJ) repairing protein DNA-PKCs
decreased measurably. (B) All WB band densities were quantitative analyzed.
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FIGURE 4 | ENZ + JAK2/STAT1si synergistically suppressed survival, migration, and DNA damage repair of CRPC cells. (A,B) Flow cytometry demonstrated that
single-agent JAK2si treatment remarkably increased the percentage of sub-G1 cells, and the combination treatment of ENZ + JAK2si showed a significantly superior
effect compared with single-agent JAK2si treatment and the combination treatment of CCX771 + JAK2si. (C,D) Similarly, STAT1si significantly increased the percentage
of sub-G1 cells, and the combination treatment of ENZ + STAT1si also showed a much greater effect compared with single-agent STAT1si treatment and the
combination treatment of CCX771 + STAT1si. (E,F) Wound-healing assay results showed that the combination treatment of ENZ + JAK2si could reduce migration
compared with single-agent JAK2si treatment and the combination treatment of CCX771 + JAK2si. (G,H) Wound-healing assay results showed that the combination

(Continued )
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Feng et al., 2021b). Although several genes with significant expression
variation have been screened in different ENZ-resistant models, how
these genes participate in the growth of CRPC cells is still unclear. In a
previous study, we found that, after the ARwas inhibited by ENZ, the
activity of the TopBP1–ATR–Chk1 signaling pathway increased,
resulting in the enhancement of the DDR ability of cells, which
weakened the therapeutic effect of ENZ. The combination treatment
of AR + ENZ and Chk1 inhibition with AZD7762 demonstrated
synergistic effects with regard to decreased TopBP1–ATR–Chk1
signaling and markedly increased ATM phosphorylation and
apoptosis (Karanika et al., 2017). The present study did not verify
the underlying correlation between the JAK2/STAT1 pathway and
the TopBP1–ATR–Chk1/DDRpathway. However, we found that the
inhibition of JAK2/STAT1 activity indeed promoted apoptosis and
reduced DDR. Therefore, we think that a cross-regulation
mechanism exists between these two pathways.

Available evidence indicated that the activation of the JAK/STAT
pathway was involved in the oncogenesis and progression of PCa.
Once stimuli acted on growth factors or cytokine receptors, the
autophosphorylation of one of the Janus kinases, usually JAK2,
occurred. Consequently, JAK2 in turn phosphorylated a STAT
family member. In particular, STAT3 is generally considered an
oncogene that promotes cell survival, proliferation, motility,
angiogenesis, immune tolerance, and chemotherapy resistance
(Kroon et al., 2013; Ham et al., 2019; Olender et al., 2019). It is
not only overexpressed in pathology specimens from prostatectomy
(Barton et al., 2004) but also activated in CRPC cell lines (Agarwal
et al., 2007). The upregulation of the IL-6/JAK/STAT3 cascade may
contribute to promoting cell growth and survival in CRPC
independent of the AR (Lou et al., 2000; Lee et al., 2003; Jia et al.,
2004; Tam et al., 2007). Clinical research also found that the
expression levels of phosphorylated JAK and phosphorylated
STAT both positively correlated with the Gleason score and
clinical stage of patients with PCa but had a negative correlation
with the recurrence-free survival rates (Liu et al., 2012). Once the
activation of STAT3 was inhibited, significant apoptosis could be
induced inCRPC cells (Agarwal et al., 2007; Kroon et al., 2013). These
reports suggested that P-STAT3 was essential for cell invasion,
metastasis, and progression in patients with CRPC, especially after
ADT resistance.

However, our present study demonstrated that STAT1 worked
as the main signal transducer in CXCR7-driven CRPC progression.
STAT1 always plays opposite roles to STAT3 in tumorigenesis and
mostly triggers antiproliferative and pro-apoptotic responses while
enhancing anti-tumor immunity (Huang et al., 2000; Stephanou
and Latchman, 2003; Olbrich and Freeman, 2018). We found that
the activation of STAT1 displayed the anomalous role of tumor-
promoting factors. After the targeted inhibition of STAT1 activity,
the potency of cellular survival and migration remarkably
decreased, and the extent of DNA damage response and
apoptosis significantly increased. It may be related to the

imbalance of reciprocal regulation between STAT1 and STAT3
(Avalle et al., 2012). STAT1 was derepressed after ENZ treatment
(Eiro et al., 2017). In addition, the perturbation in their
phosphorylation levels may re-direct cytokine/growth factor
signals from proliferative to apoptotic, or from inflammatory to
anti-inflammatory (Costa-Pereira et al., 2002; Maritano et al., 2004;
Shim et al., 2009; Schiavone et al., 2011; Souissi et al., 2011; Avalle
et al., 2012). Several research studies suggested that the functional
role of STAT1 in CRPC progression also depended on other factors,
such as exon deletion (Magor et al., 2016), DNAmethylation status
(Dellafiore et al., 2020), different JAK family proteins (Coricello
et al., 2020), and CXCR4–CXCR7 activating imbalance (Tomchuck
et al., 2012; Lim et al., 2018).

Although abiraterone (ABI) does not directly antagonize AR
transcriptional activity, it can maximally limit androgen
synthesis, reduce the stimulating effect of androgen on AR
transcriptional activity, and achieve the therapeutic purpose.
Therefore, the mechanism of ENZ resistance represented by
the activation of the AR bypass pathway may also be the
potential mechanism of ABI resistance. Systematic evaluation
of a number of clinical research studies also confirmed that the
proportion of ARv7-positive patients with CRPC increased
significantly after receiving new hormone therapy (NHT)
(Wang et al., 2020a). This suggested that ARv7 might be
involved in the cross-resistance between ENZ and ABI.
Although ARv7-positive patients showed much worse
treatment responses to NHT (Armstrong et al., 2020; Wang
et al., 2020a; Wang et al., 2020b), the clinical data analysis
demonstrated that these patients could significantly benefit
from taxane chemotherapy, which was possibly related to the
higher activity of the E2F1/AR3 feed-forward loop (Xu et al.,
2020). The CXCR7–JAK2/STAT1 signaling pathway, as an
independent AR bypass pathway, may also participate in
resistance to androgen target therapy. Loss-of-function
mutations in BRCA1/2 lead to a deficiency in the DNA
damage repairing pathway called homologous recombination,
which could render cancer cells exquisitely vulnerable to the
PARP inhibitor (olaparib, OLA). However, BRCA mutations are
present in only ∼20% of patients with PCa, and therefore, OLA
failed to achieve the satisfied effect. Our previous study (Li et al.,
2017) demonstrated that CRPC cells showed increased
expression of a set of HR-associated genes, including BRCA1,
RAD54L, and RMI2. Although androgen-targeted therapy is not
typically effective in patients with CRPC, ENZ could significantly
suppress the expression of these HR genes in CRPC cells, thus
creating HR deficiency and BRCA function mutation.
Pharmaceutical induction of BRCA mutation could expand the
use of PARP inhibitors. Therefore, the ENZ-resistant process may
synchronize with the OLA-sensitive process. The “lead-in”
treatment strategy of ENZ followed by OLA may be much
more effective for patients with CRPC.

FIGURE 4 | treatment of ENZ + STAT1si also reduced migration compared with single-agent STAT1si treatment and the combination treatment of CCX771 + STAT1si.
(I) ELISA results showed that the combination treatment of ENZ + JAK2si exhibited much stronger ability to induce DNA damage compared with single-agent JAK2si
treatment and the combination treatment of CCX771 + JAK2si. (J) Similarly, the combination treatment of ENZ + STAT1si also led to much apparent DNA damage
compared with single-agent STAT1si treatment and the combination treatment of CCX771 + STAT1si.
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FIGURE 5 | ENZ + FLUD strategy synergistically inhibited the growth of CRPC xenografts. (A) Drug protocol of each treatment group. (B) Representative C4-2B
subcutaneous tumor of each treatment group. (C) Tumor volumemeasurements using calipers every 3–5 days. (D)Wet tumor weight at the end of 28 days of treatment.
(E) Immunohistochemistry of Ki67 in each treatment group. (F) Ratio of Ki67-positive cells in each treatment group.
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Exploring the details of the AR bypass pathway may help not
only clarify the ENZ-resistant mechanism but also improve the
treatment sensitivity of other NHT drugs, PARP inhibitors, and
chemotherapy. The present study demonstrated that the JAK2/
STAT1 signaling pathway was closely involved in the ENZ
resistance process induced by CXCR7 derepression. Also, the
inhibition of JAK2/STAT1 could notably improve the ENZ
treatment effect and lead to the downregulation of C-Myc,
decreasing motility and proliferation and increasing apoptosis
and DNA damage. Target inhibition of the CXCR7–JAK2/
STAT1–C-Myc signaling pathway may be an important and
effective strategy to overcome ENZ resistance in patients
with CRPC.
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