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Abstract: Microfluidic devices are gaining increasing popularity due to their wide applications
in various research areas. Herein, we propose a two-layer multi-channel microfluidic device
allowing for direct-contact cell-vessel co-culture. Using the device, we built a co-culture model of
the outer blood-retina barrier (oBRB), mimicking the in vivo retinal pigment epithelial cells-Bruch
membrane-fenestrated choroids. To demonstrate the versatility of the design, we further modified the
device by inserting platinum electrodes for trans-epithelial electrical resistance (TEER) measurement,
demonstrating the feasibility of on-chip assessment of the epithelial barrier integrity. Our proposed
design allows for direct-contact co-culture of cell–cell or cell–vessel, modifiable for real-time evaluation
of the state of the epithelial monolayers.

Keywords: microfluidics; microfabrication; organ-on-a-chip; trans-epithelial electrical resistance;
multi-culture

1. Introduction

Organ-on-a-chip, a subset of lab-on-a-chip, is often associated with replicating tissue- or organ-level
functions in integrated microfluidic devices to answer fundamental research questions such as cell
physiology or to explore disease pathophysiology [1]. Several microfabrication techniques exist,
which are used for different research applications, ranging from fabrication of biosensors and disease
models to vascularization of engineering tissues for medical studies [2–4]. Narrowing down on medical
applications, many in vitro models have been built utilizing bio-microelectromechanical systems
(Bio-MEMS) or static transwell system to study different human organs. MEMS and microfluidic
on-chip models have been covered and readers are referred to the reviews [1,3–7].

Focusing on microvessels and vasculature development, microfluidic models of microvessels and
barrier properties have been extensively studied. Some of the models particularly focus on recapitulating
the functionalities, i.e., the restrictive barrier properties or the responsiveness of the in vitro microvessels
to exogenous stimulations. Wang et al. performed a tri-culture of pericytes, astrocytes, and endothelial
cells inside microfluidic devices with embedded Ag/AgCl wire to characterize the restrictive blood–brain
barrier (BBB) [8]. To study neuroinflammation of BBB, Herland et al. performed a tri-culture of
astrocytes, pericytes, and endothelial cells in a single microchannel and subjected the model under
tumor necrosis factor-alpha (a pro-inflammatory cytokine) [7]. Functional responses of the microvessel
under stimulation (endothelial permeability and cytokine release) were analyzed. Using a similar
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approach, Price et al. tested the effect of mechanical factors on the restrictiveness of the endothelial
barriers using a single microvessel [9]. On the other hand, multi-channel microfluidic devices that
allowed examinations on the vascular formation and tracking morphology of microvessels over the
course of experiments and under different stimulations have been developed and used in various
applications [10–14].

Based on the pre-established design of a multichannel microfluidic device, we modified the
device based on the Jeon research group [15] and the Kamm research group [16] into top-down,
direct-contact cell–cell or cell–vascular co-culturing (Figure 1). Using the device, we built a model of
the outer blood–retina barrier (oBRB), mimicking the in vivo retinal pigment epithelial cells-Bruch
membrane-fenestrated choroids using human retinal pigmental epithelial cells (ARPE-19) and human
umbilical vein endothelial cells (HUVEC). To demonstrate the versatility of the device, we slightly
modified the design by embedding four Platinum electrodes (diameter 300 µm) for trans-epithelial
electrical resistance (TEER) measurement. Using the modified device, we quantified the TEER of ARPE
monolayers and the oBRB model. The device proposed in this study can be used as a multi-culturing
cell and/or vessel model for various applications with the potential of connecting individual fluidic
devices in a fluidic network, mimicking human physiology as demonstrated in the work of Edington
et al. [17].

Figure 1. Configuration of the proposed device. (A) Exploded view; medium reservoirs are marked
with asterisks (** as inlets, * as outlets when loading cells or media). (B) Top view of the assembled
device, with dye water in some of the lower microchannels. (B1) Magnified view of the black dashed box
in (B), showing the central part of the device overlaying the single top microchannel and multiple lower
microchannels. (C) Microscopic cross-sectional view of the assembled two-layer device. The dashed
blue line indicated the top microchannel; each dashed red box indicated the lower microfluidic channels
separated by micropillars. Red rectangles in the lower channel corresponded to where red dye
water was loaded. Together, the blue and red rectangles indicate the potential culturing chambers.
The detailed dimension is in Figure A1.

2. Materials and Methods

2.1. Cell Culture

GFP expressing human umbilical vein endothelial cells (GFP-HUVECs) were purchased from
Angio-Proteomie (cAP-0001GFP, Boston, MA, USA) and routinely subcultured at 4 × 103 cells/cm2

in 75-cm2 tissue culture-grade flasks coated with 0.1% gelatin. Human lung fibroblasts (NHLF) was
purchased from Lonza (CC-2512, Basel, Switzerland) and subcultured based on the supplier’s protocol.
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Human retinal pigmented epithelial cells (ARPE-19) were kindly provided by Leonard Hjelmeland
(Department of Ophthalmology, Section of Molecular and Cellular Biology, University of California,
Davis, CA, USA) on 27 November 2000, and used after receiving approval from the Tohoku University
Environmental & Safety Committee (no. 2014MdA-232-5). NHLF and ARPE-19 were cultured
in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS,
S1400-500, Biowest, France) and 1% Antibiotic-Antimycotic (100X, Gibco, 15240062) while GFP-HUVECs
were cultured in Endothelial Growth Medium (Lonza CC-3162, Basel, Switzerland). All cultures were
maintained at 37 ◦C in a humidified atmosphere containing 5% CO2. The passage number used for
the experiments for each of the respective cell types was passage 20–30 for ARPE-19, passage 6–9 for
NHLF, and passage 4–9 for GFP-HUVECs.

2.2. Fabrication of the Microfluidic Device

The microfluidic device used in the study has an upper microchannel and multiple lower
microchannels, separated by a polyethylene terephthalate (PET) porous membrane of 8 µm in diameter
(Falcon #353093). The device was made by conventional photolithography: the photomasks for the
upper microchannel were designed in LayoutEditor (Justpertor GmbH, Unterhaching, Germany) and
patterned by the Heiderlberg DWL66 laser writer. Thereafter, a master mold was made by spin-coating
a 200 µm thick layer of SU-8 2100 (Microchem, Newton, MA, USA) on a silicon wafer and patterned
by UV-lithography. Microchannels were made by liquid poly(dimethyl siloxane) (PDMS; Sylgard
184, Dow Corning, Midland, MI, USA) mixed at 10:1 ratio (wt/wt) of base polymer to curing agent,
poured over the silicon master mold, degassed under vacuum pressure and cured in a 70 ◦C oven for
at least 3 h. The cured PDMS was then cut into slabs and removed from the mold. The creation of the
master mold and PDMS soft lithography for the lower microchannel followed the same procedure,
except the lower PDMS slabs were made thin (2 mm in thickness) as opposed to the upper PDMS
slabs. The thin lower PDMS slab was for microscopic observation while the upper PDMS slab was
made thick to hold cell culturing media. The inlets and outlets of PDMS slabs were punched with the
respective dimensions (Figure A1A,B), tapped to remove dust and impurities.

The membrane for the device was cut into 7 mm× 10.5 mm (width× length) out of the conventional
PET membrane from Falcon transwell inserts (Falcon #353093). The membrane was bonded to the
upper PDMS following the protocol developed previously [18]. After baking at 120 ◦C for an hour,
the upper and lower channels treated with oxygen plasma were bonded. After a device was assembled,
it was kept in a 120 ◦C oven for at least an hour. The bonding between the upper and lower PDMS
slabs was checked (no leakage of ethanol) before use.

2.3. Design Prototype: Outer Blood–Retina Barrier Model

Prior to seeding cells into microfluidic devices, 10 µg of fibronectin (Wako 063-05591) reconstituted
in 1 mL PBS(-) filtered through 0.45µm millipore was used to coat the upper microchannel (overnight in a
37 ◦C incubator) and washed with PBS-once before cell seeding. The formation of microvasculature was
based on published work from previous studies [13,19]. Briefly, GFP-HUVECs and NHLF were detached
from the culturing surfaces and made into suspensions of 7 × 106 cells/mL. Fibrinogen precursor
(Sigma-Aldrich F8630, St. Louis, MO, USA) 10 mg reconstituted in 1 mL of PBS(-) and filtered through
0.45 µm millipore was mixed with 3 times volume of GFP-HUVECs (at 7 × 106 cells/mL) thoroughly.
Thrombin (Sigma-Aldrich T7513, St. Louis, MO, USA) pre-aliquoted at 50 U/mL (two µL for 0.25
mg fibrinogen used) was mixed thoroughly with the cell–fibrinogen mixture which was immediately
loaded into the central lower microchannel (Figure 1C, cross-section). The devices were kept in the
37 ◦C incubator for 5 min for the fibrin gel to polymerize. Thereafter, NHLF (at 7 × 106 cells/mL)
mixed with fibrinogen was loaded into both side channels (Figure 1C) following the same procedure,
resulting in GFP-HUVECs and NHLF dispersed in 2.5 mg/mL fibrin (Figure 2B). After confirmation of
the gelation, EGM supply was initiated by filling the inlet reservoirs (** in Figure 1A) and aspirating
the medium from the outlets (* in Figure 1A) using a tip-cut 1 mL pipette. The microvasculature
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was cultured for 36 h before ARPE-19 were seeded, forming the proposed oBRB model (Figure 3).
In seeding ARPE-19 into the upper channel, the medium in the upper channel was aspirated before
cell seeding (at 107 cells/mL, 10 µL per device). The devices were left in a 37 ◦C incubator for 2 h for
ARPE-19 to attach, after which 100 µL of DMEM was supplied and aspirated from the other end of the
upper channel to wash out unattached ARPE-19. The devices were then returned to the incubator for
an additional 2 h before loading the medium. The culture media (DMEM for the upper channel, EGM
for lower channels) were refreshed every 48 h.

Figure 2. Demonstration of individual culturing chambers. (A) Culturing the human retinal pigmental
epithelial cell (ARPE-19) monolayer in the upper channel. (A1) Microscopic view focusing on the upper
channel, showing monolayer of ARPE. (B) Formation of microvascular lumens in the lower channels.
“M” (medium channels) corresponded to * (lower channel) in Figure 1A. (B1) Confocal microscopic
image staining for zonula occludens-1 (ZO1) and 4′,6-diamidino-2-phenylindole (DAPI). (B2) Snapshots
taken after loading 70 kDa of FITC-dextran into one side of the lower channel immediately (top) and
30 min after (bottom).

Figure 3. The oBRB model prototype built using the proposed device. (A) Schematic showing
the anatomical structure of oBRB (retinal pigment epithelial cells–Bruch membrane-choroids).
(B–E) tri-culture of ARPE–human umbilical vein endothelial cells (HUVEC)-human lung fibroblasts
(NHLF). (B) ARPE cells stained in red were cultured in the upper channel. (C) GFP-HUVEC microvessels
were cultured in the lower channel. (D) Overlay of (B) and (C). (E) Confocal microscopic view of the
cross-section of the co-culture model.
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2.4. Modification of the Device for Trans-Epithelial Electrical Resistance (TEER) Measurement

The masks of the upper and lower channels were redesigned with four microgrooves for placement
of two electrodes in each of the upper and lower channels (Figure 4A, for dimensions, see Figure A1).
The microgrooves for platinum (Pt) wire were designed and made at 200 µm in width, but Pt wire
of 300 µm in diameter was used as it fits firmly inside the PDMS microgroove. In the last step of
fabrication, four pieces of 3 cm long Pt wires were inserted into one device. The protrusion of wire
inside the microchannel is approximately 1 mm (Figure 4D). After insertion, a drop of uncured PDMS
was applied to the electrode channel’s entrance and cured to minimize the potential displacement
of electrodes during handling alligator clippers for measurement (Figure 4E). Each microfluidic
device underwent quality checks for the following: (1) porous membrane covered the entire lower
microchannel length, except inlets and outlets, (2) the tip of an electrode protruded 1 mm into the
microchannel, (3) the upper and the central lower channel were properly aligned. Devices that met
the criteria were then kept sterilized until being used for experiments. The individual layer and the
assembled device are shown in Figure 4.

Figure 4. Demonstration of the versatility of the proposed design, with modification for measuring
TEER. (A) Exploded view of the device. (B) Top view of the assembled device. (C) Schematic view of
the cross-section showing the position of voltage and current electrodes. (D) Magnified view of (B)
focusing on the position of electrodes inside the device. (E) Part of the system set-up showing the
connection of the device to the electrode adapter, which is connected to the EVOM instrument for TEER
measurement. (F–H) Results of TEER measurement reported as unit area resistance. The inset for each
plot shows what was measured of (F) TEER of ARPE monolayer (n = 4). (G) TEER of co-culture of
HUVEC and NHLF (n = 10). (H) TEER of the oBRB model (n = 11).

2.5. TEER Measurement Setup

The Pt wires from the device were connected to four ports of an adaptor (Figure 4E) which was
connected to the EVOM (World Precision Instruments, Sarasota, FL, USA) set to Ohm mode. To be
consistent in the approach, the Pt wires were connected to current (I) and voltage (V) ports in the order
shown in Figure 4A for all the devices. Due to variability in TEER readings between devices, the blank
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(acellular device filled with culture media: DMEM in the upper channel, EGM in the lower channel)
for each sample was recorded before every experiment. Culture media were equilibrated to room
temperature (kept 20 min in the clean bench) and readings were recorded in all cases to minimize
variations in results.

2.6. Data Collection and Analysis

2.6.1. Staining for Fluorescence Imaging

Microscopic images were captured using a fluorescent microscope (Olympus, Tokyo, Japan) or
a confocal microscope (LSM700, Carl Zeiss MicroImaging, Gina, Germany). As part of the assessment
of the growth of cells inside a microfluidic device, ARPE-19 cells were stained with Cell TrackerTM
Fluorescent Probes red (5 µM, Molecular Probes) according to the manufacturer’s staining protocols.
ARPE-19 were stained prior to seeding into devices.

2.6.2. TEER Measurements

Samples (devices) used for experiments were individually labeled and the TEER readings and
microvasculature morphology specific to each device were recorded. The number of samples is
indicated in the corresponding figure captions. Due to the relatively small sample size, we did
not test for the statistical significance of the difference in TEER readings between different days of
culture. TEER values were extracted and reported as a unit area of resistance (ohm·cm2) by first
subtracting the raw values from the blank and multiplied the resulting value by area in cm2. The area
was calculated as width × length between electrodes (0.08 cm × 0.5 cm). Readings from gel-free,
acellular devices were taken as the blank for the ARPE monolayers, while the blank for HUVEC-NHLF
and ARPE-HUVEC-NHLF cultures was taken as the readings 30 min after seeding (i.e., cells embedded
in fibrin gel) to take the effect of gel contributing TEER into account. The device was individually
labeled and the blank and readings specific to each device were used in the calculation.

3. Results and Discussion

3.1. The Device as the Outer Blood–Retina Model

In building the model, we first evaluated the formation of ARPE monolayer in the device
(Figure 2A). Separately, the formation of lumens of the HUVEC vasculature was confirmed by
immunostaining of tight junction (Figure 2B1) and loading a diameter of 6 µm microbeads in one side
of the inlet of the device (Video S1). Images of the microvascular network focused on a z-plane in
Figure 2B2 were captured after flowing Fluorescein isothiocyanate (FITC)-dextran 70 kDa at 0.5 mg/mL
in one side of the lower channel inlet. Figure 2B shows the schematic cross-sectional view of the
multi-channel microfluidic device in which endothelial cells (HUVEC) and the supporting cells (NHLH)
in two side channels were cultured (media channels were indicated M in Figure 2). After confirming
the ability to culture epithelial cells and the vasculature, we attempted to demonstrate the feasibility
of the multi-culture of cells and/or vessels using our proposed device and built a model of the outer
blood–retina barrier (oBRB). The design of the microfluidic device was an extension based on previously
developed models by Noo Li Jeon and Roger Kamm research groups where models have been used to
study microvessels. Here, we further modified it to enable culturing of the ARPE-19 directly on the
top of HUVEC microvasculature, mimicking oBRB where in vivo retinal pigment epithelial cells and
the juxtaposed choriocapillaris are separated by the Bruch membrane (Figure 3). We adopted a larger
pore size here as a demonstration of the model; the diameter of the pore, however, is customizable
by using commercial membranes of different diameters. We had previously built the cell–cell oBRB
model using ARPE-19 and HUVEC cells [20], characterizing the behavior of cells under pathological
angiogenesis. We anticipate the prototype we proposed here to be used to characterize the epithelial
monolayer microvasculature such as BRB or BBB, under pathological microenvironments.
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3.2. Versatility of the Design: Modification for TEER Measurement

To demonstrate the versatility of our proposed microfluidic device, we modified it to allow for
direct TEER measurement. TEER provides a quick, non-invasive, label-free and real-time indication of
the state of cells as an alternative to perfusion of fluorescent-labeled molecules such as FITC-dextran in
the evaluation of the barrier property. Both evaluation methods have their pros and cons: TEER offers
an instant, real-time assessment of the state of cells while permeability assay is a simple yet elegant
way that is typically used as an end-point assessment of the barrier integrity of a cell monolayer. In the
designed device, two Pt wire in the upper channel corresponded for voltage and current measurements,
the same configuration for the lower central channel (Figure 4A,C and Figure A1). The four-electrode
measurement system was adopted here to be compatible with the EVOM instrument. The advantage of
the four-electrode system is the negligible effect of double-layer capacitance, as the current supply and
voltage measuring electrodes are separated [21]. As an alternative, the two-electrode measurement
system can also be used here if we wish to take the impedance spectroscopy using a potentiostat.
The two-layered microfluidic TEER device and the connection to the EVOM instrument are shown in
Figures 4E and A1E.

Many microfluidic TEER models had been proposed; a square culturing chamber was adopted
by Helm et al. [22], while some measured the TEER of cells cultured in long microchannels [23,24].
Here, we further modified our device for TEER evaluation of a top-down cell-vessel model. We first
measured the TEER of ARPE-19 monolayers and HUVEC-NHLF separately before conducting
experiments on the oBRB models. TEER readings of ARPE monolayers (Figure 4F) increased by days
after seeding, corresponding to the proliferation of cells inside the device. There was no obvious
trend from the co-culture of HUVEC-NHLF (Figure 4G), due to the nature of the fenestrated vessels.
We also evaluated the ARPE-19 of the oBRB model by measuring the TEER (Figure 4H), where the
readings indicated the proliferation of ARPE-19. TEER values for HUVEC-NHLF culture and the oBRB
model were higher than ARPE monolayer culture, perhaps due to the presence of fibrin gel and the
influence of microvessels. The readings, however, were subjected to fluctuations arising from changes
in temperature, and movement of electrodes during clipping. According to the datasheet of EVOM
from World Precision Instruments, there is a 10% variability in TEER reading using the commercial
STX2 chopstick electrodes on the transwell TEER measurement due to non-uniform current density
flowing across the membrane, arising from variations in the electrode position. Such variation is
expected to be even higher in the microfluidic system [25]. In our system, one of the possible causes
of variations in reading between devices could be due to variations in the length of protrusion of
electrodes inside the microchannel, although we attempted to keep it the same (1 mm) as much as
possible. This can be further improved with micro-patterned electrodes. In our device, as the distance
between measuring electrodes is 5 mm, we did not anticipate non-uniformity in the current density
but suspected the fluctuations in readings as the result of differences in temperature when reading was
taken [22].

3.3. Design of the Proposed Microfluidic Device

The feasibility of the proposed device as a platform for top-down multi-culture of cell-vessel
was demonstrated by building a model of the human outer blood-retina barrier (oBRB). In addition,
the versatility of the device was shown by modifying the device, allowing TEER evaluation of
a cell monolayer. Although we only demonstrated the prototype of oBRB here, the device can be
modified for specific organ-on-a-chip applications and studying physiological responses after taking
allometric scaling and fluidic shear stress into account. Cell-vascular models are widely applicable
to the human organ system, ranging from the blood–brain barrier (BBB) and glial interactions to
interactions of trophoblasts and the blood vessels in the placenta. We have been developing integrated
TEER measurement of the microfluidic system to evaluate the state of monolayer cells in real-time;
such a system is applicable to evaluating the response of a monolayer to its environment, such as
the BBB, the airway epithelium under shear stress, and mechanisms regulating intestinal epithelium.
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The model we proposed here is customizable and adaptable to different organs of origin, with potential
extensibility for quantification of physical parameters such as barrier resistance and shear stress.
We foresee that our proposed device has potential in disease modeling and drug testing.

4. Conclusions

We proposed a microfluidic device consisting of a single upper microchannel and multi-lower
microchannels for direct-contact cell–vessel co-culture. The co-culture model was demonstrated by
making the outer blood–retina barrier, made up of retinal pigment epithelial cells, endothelial cells,
and the supporting cells. The versatility of the device was demonstrated by modifying the device
for the insertion of Pt electrodes for TEER measurement. We measured the TEER of the ARPE
monolayer and that of the oBRB model (ARPE–HUVEC–NHLF culture). Although only one aspect
of the versatility design was demonstrated in this work, it is however, unlimited but extensible for
investigation of the effect of shear stress on the multi-culture model by additionally gluing PDMS
ports to the in/outlets of the device, or connect modular devices in an integrated fluidic network for
studying physiological responses.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/11/1/79/s1,
Video S1: Perfusion of microbeads demonstrating the formation of lumens.
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Appendix A

Figure A1. Dimensions of the microchannels for trans-epithelial electrical resistance (TEER)
measurement. (A) Upper channel. (B) Lower channel. (C) Magnified view of (B), showing dimensions
of multi-channels. (D) Top view of the assembled TEER device. (E) Experimental set-up for TEER
measurement showing the connection between the microfluidic device and the EVOM instrument.

http://www.mdpi.com/2072-666X/11/1/79/s1
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