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Natural competence for transforma-
tion is a developmental program 

that allows certain bacteria to take up 
free extracellular DNA from the envi-
ronment and integrate this DNA into 
their genome. Thereby, natural transfor-
mation acts as mode of horizontal gene 
transfer and impacts bacterial evolution. 
The number of genes induced upon com-
petence induction varies significantly 
between organisms. However, all of the 
naturally competent bacteria possess 
competence genes that encode so-called 
DNA-uptake machineries. Some com-
ponents of these multi-protein com-
plexes resemble subunits of type IV pili 
and type II secretion systems. However, 
knowledge on the mechanistic aspects 
of such DNA-uptake complexes is still 
very limited. Here, we discuss some new 
findings regarding the DNA-uptake 
machinery of the naturally transform-
able human pathogen Vibrio cholerae. 
The potential of this organism to initiate 
the competence program was discovered 
less than a decade ago. However, recent 
studies have provided new insight into 
both the regulatory pathways of com-
petence induction and into the DNA 
uptake dynamics.

Cellular Localization  
of the DNA-Uptake Machinery 

within Naturally Competent  
V. cholerae Cells

Horizontal gene transfer (HGT) is 
a major driving force of bacterial evo-
lution. The rapid exchange of genetic 
information mediated by HGT enables 
bacteria to adapt to new environmental 

niches, to spread harmful traits such as 
antibiotic resistance cassettes or patho-
genicity islands and to maintain genome 
integrity.1-5 HGT by means of conjuga-
tion and transduction relies on cell-cell 
contacts and/or mobile genetic elements, 
whereas natural transformation con-
sists of the uptake of naked DNA from 
the environment. The ability to acquire 
exogenous DNA is called natural com-
petence, a physiological state that is 
of transient nature for most bacterial 
species.6,7 The development of natural 
competence is often a highly regulated 
process, which frequently requires envi-
ronmental cues such as nutrient avail-
ability or species-specific competence 
pheromones.7-9 Initiation of natural 
competence results from the expression 
of so-called competence genes, which 
in part encode specialized proteins that 
constitute the so-called DNA-uptake 
machinery.8,10,11 Contrary to the differ-
ent regulatory networks controlling the 
onset of natural competence, the com-
ponents of the DNA-uptake machinery 
are often conserved in Gram-positive and 
Gram-negative bacteria. Moreover, many 
of these proteins share homology with 
type IV pili (Tfp) and type II secretion 
systems (T2SS).8,11 Thus, it is tempting 
to speculate that DNA uptake by natu-
rally competent bacteria occurs via nearly 
universal machineries. However, DNA-
uptake complexes, especially their com-
position and cellular localization, have so 
far been poorly characterized. Moreover, 
most of the existing information is based 
on data that were acquired from the natu-
rally competent Gram-positive bacterium 
Bacillus subtilis12-14 and, more recently, 
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ComF, and RecA were necessary only 
for inner membrane DNA translocation 
or recombination.17 Moreover, the results 
demonstrated that all of the steps involv-
ing Tfp-related components or ComEA 
function upstream of the inner-membrane 
channel ComEC, whereas the cytoplas-
mic protein RecA was confirmed as acting 
downstream of ComEC (similar to DprA; 
Seitz and Blokesch, data not shown). 
Finally, as the comEC and comF mutant of 
V. cholerae consistently displayed the same 
phenotype with respect to the absence of 
transformability and the accumulation of 
transforming DNA within the periplas-
mic space, it was hypothesized that the 
two proteins ComEC and ComF work in 
concert in mediating the translocation of 
the incoming DNA across the inner mem-
brane (Fig. 1).17

As a second step, Seitz and Blokesch 
imaged a variety of competence-related 
proteins (Fig. 2).17 First, the authors used 
immunofluorescence labeling against an 
affinity tag that was genetically added to 
the major pilin subunit PilA. Using this 
approach, the competence-induced Tfp 
became evident. Notably, this structure 
extended well beyond the outer mem-
brane, thereby contradicting the previ-
ously hypothesized pseudopilus model 
for V. cholerae.18 For the majority of 
piliated cells (95%) only one pilus struc-
ture was detectable per cell (Fig.  2). In 
the absence of each of the Tfp-related 
components encoded by the minimum 
competence gene set, the cells appeared 
non-piliated. However, a pilus structure 
was still observable in the mutants lacking 
either a Tfp-unrelated competence gene 
(comEA, comEC, comF, and recA; all non-
transformable) or the potential retraction 
ATPase (PilT).17 Interestingly, the latter 
mutant population contained a signifi-
cantly higher fraction of cells with two or 
more Tfps.

Next, the authors sought to also local-
ize other competence proteins that were 
produced as translational fusions (with 
fluorescent proteins) and replaced the 
native proteins. All of the competence-
induced cells displayed several distinct 
foci for the secretin PilQ as well as for 
the putative traffic ATPase PilB (Fig. 2), 
whereas no localization pattern was obvi-
ous for the retraction ATPase PilT.17 

also from Streptococcus pneumoniae.15,16 
However, the situation is different and 
less well studied for Gram-negative bac-
teria, where external DNA must be first 
translocated across the outer membrane 
(and the periplasmic space).

In our recent study, we aimed to gain 
insight into the process of DNA uptake 
and to visualize the DNA-uptake machin-
ery in the human pathogen Vibrio cholerae 
using a cell-biology based approach.17 In 
this Gram-negative bacterium, natural 
competence is induced during growth on 
chitinous surfaces,7,18 which the bacte-
rium encounters in its natural reservoir.19 
Substantial information concerning the 
regulatory circuit of natural competence 
and transformation of this organism has 
been gathered in less than a decade (first 
reviewed by Seitz and Blokesch7 and later 
also by Sun et al.20). However, the DNA-
uptake machinery of V. cholerae has never 
been investigated and has remained a mys-
tery until recently.17,21,22

As a first step, Seitz and Blokesch iden-
tified the minimum competence regulon 
of V. cholerae based on previously unpub-
lished and published expression data (18,23 
and Blokesch, unpublished), locus organi-
zation, homology to other naturally com-
petent bacteria and conservation in other 
naturally transformable Vibrio species.17 
A minimal (most likely still incomplete) 
competence set of 19 genes was identi-
fied with the majority of genes encoding 

proteins with homology to biogenesis or 
structural components of Tfp.

To verify the importance of these can-
didate genes with respect to DNA uptake 
and natural transformation, each gene was 
deleted from the parental V. cholerae O1 
El Tor strain, and the mutant was assessed 
for its transformability. Notably, pilD 
was excluded in this study as the dele-
tion mutant displayed a strong growth 
defect (both in liquid culture and on 
solidified agar plates). Furthermore, the 
gene coding for the single-strand bind-
ing protein (ssb) could not be deleted.17 
The latter finding is in agreement with 
recent studies that report the essentiality 
of ssb in V. cholerae.24-26 All of the other 
mutants were impaired for transforma-
tion even though low numbers of trans-
formants were consistently obtained for 
strains lacking components of the Tfp 
portion of the DNA-uptake machinery. 
Such residual transformability was never 
observed for those mutants devoid of the 
competence genes comEA, comEC, and 
comF as well as the recA mutant, which 
served as a control in this assay.17 The 
encoded competence proteins were fur-
ther categorized (using a recently devel-
oped whole-cell duplex PCR DNA-uptake 
assay27) as required for transport across the 
outer membrane or inner membrane. All 
of the Tfp-related proteins and ComEA 
were required for DNA-uptake across 
the outer membrane, whereas ComEC, 

Figure 1. The ComEC and ComF proteins might drive DNA import into the cytoplasm. Based on 
the similar phenotypes of both the comEC and comF mutants, it was suggested that ComF works in 
concert with ComEC in the translocation of the DNA across the inner membrane.
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However, how can such a discrepancy 
between a single pilus and several outer 
membrane secretins (PilQ) and elonga-
tion ATPases (PilB) be explained? To 
address this question, Seitz and Blokesch 
demonstrated that the Tfp consistently 
co-localized with one of the PilQ foci. 
Moreover, the PilB ATPase foci were 
dynamic within the cell (which was not 
the case for a PilB variant with a mutated 
Walker B motif ) and sometimes aggre-
gated in close proximity of the PilQ pro-
tein complexes. The authors therefore 
hypothesized that each cell might con-
tain several pre-assembled Tfp complexes 
that might solely lack the major pilin sub-
unit and that pilus elongation – one at a 
time – occurs upon stimulation of pilin 
polymerization through PilB (Fig.  2). 
Such a model would suggest that a higher 

percentage of cells contain more than one 
pilus during PilB overproduction, which 
was exactly what the authors described.17

Putative Roles  
of other Competence  

Tfp-Associated Proteins

Another important finding of this 
study was that a gene cluster of five genes 
(e.g., VC0857 to VC0861) encoding 
hypothetical proteins or putative type IV 
pilins contributed significantly to effi-
cient transformation.17 Interestingly, a 
minor pilin (ComP) was recently shown 
to directly interact with the species-spe-
cific DNA of Neisseria28 thereby answer-
ing one of the many open questions in the 
field of natural transformation, namely 
“which, if any, protein acts as a receptor 

for transforming DNA”29 in Neisseria. 
However, the comP mutants of N. gon-
orrhoeae, although impaired for natural 
transformation, are properly piliated and 
exert a normal Tfp function.30 We recently 
showed that in contrast to Neisseria and 
Haemophilus influenzae, V. cholerae does 
not differentiate between species-specific 
and species-non-specific DNA at the level 
of the DNA-uptake process,27 thus exclud-
ing a role of the VC0857-0861 operon-
encoded proteins in species-specific 
DNA recognition. Notably, no pili were 
observed in any of the five mutant strains, 
consistent with the absence of transform-
ing DNA in the periplasm.17 A putative 
function of these proteins could therefore 
be to activate the Tfp assembly machinery, 
which could potentially work in a similar 
manner as recently demonstrated for three 

Figure 2. Model of the localization of the DNA-uptake machinery (including the Tfp) in V. cholerae. Top of the figure: scanning micrograph of V. cholerae 
(A). Lower part: Schematic representation of a V. cholerae cell (B). Upon induction of natural competence, several PilQ protein foci were observed (in 
blue; image: mCherry-PilQ translational fusion false-colored in blue [C]). A similar multi-foci pattern also became evident for the ATPase PilB (in red; 
image: PilB-dsRed translational fusion [D]). Nonetheless, the majority of cells only displayed a single Tfp (in green; image: immunofluorescence image 
of PilA-Strep [E]). It was therefore hypothesized that a few pre-assembled Tfp complexes containing, among other components, PilQ (blue) but lacking 
the major pilin subunit PilA exist within the cells and that PilA polymerization is only initiated after the elongation ATPase PilB (in red) co-localizes with 
one of the pre-assembled complexes.
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The Conserved Operon Structure 
of pilMNOPQ

While comparing the competence/
Tfp-related genes of different organisms, 
it became obvious that there were many 
variations with respect to the organization 
of the genes (e.g., whether they clustered 
together in operons or not). For example, 
whereas the major pilin-encoding gene 
pilA and the gene coding for the elonga-
tion ATPase PilB exist in a single operon 
in V. cholerae (supplementary table of ref. 
17), this is not the case for many other 
Tfp-containing organisms (for an exam-
ple, see the genetic map of the Tfp genes 
of Myxococcus xanthus38). Interestingly 
the pilMNOPQ operon (Fig. 4) is con-
served in many proteobacteria, including 
for example P. aeruginosa strain PAO1, 
Pseudomonas stutzeri A1501, Escherichia 
coli K12, Legionella pneumophila strain 
Paris, Legionella longbeachae strain 
NSW150, and M. xanthus (according to 
the GenoList database39; see also review40).

What is so special about these five 
genes that warrants such a conserved 
operon structure? Indeed, many studies 
have recently addressed potential pro-
tein-protein interactions between these 
five proteins,38,41-46 and all of these stud-
ies suggested that the encoded proteins 
form a complex that connects the inner 
and outer membrane (including the outer 
membrane secretin PilQ). Interestingly, 
Friedrich et  al. recently demonstrated 
that this protein complex is assembled in 
a sequential outside-in pathway,38 which 
therefore occurs opposite to the gene suc-
cession (PilQ-P-O-N-M). It is tempting 
to speculate that the genetic organization 
aims to avoid the toxic effects of the gene 
products that are encoded toward the 
end of the operon. Thus, the conserved 
gene sequence would ensure that a given 
stoichiometry is preserved and that the 
assembly is only initiated after all of the 
proteins are synthesized (e.g., full-length 
mRNA is available in the cell). Notably, 
the enhanced expression of pilQ and pilP 
in trans results in severe toxicity in both V. 
cholerae and E. coli.17

In summary, we conclude that we are 
only beginning to understand the basic 
components of the DNA-uptake machin-
ery of V. cholerae and its functionality.17,22 

minor pseudopilins involved in T2SS 
assembly in Klebsiella oxytoca.31

Another competence gene that was 
part of this study but not further inves-
tigated was VC1612. In previous studies, 
the VC1612 gene was slightly upregulated 
when V. cholerae was grown on chitin sur-
faces and was inducible by the transfor-
mation regulatory protein TfoX.18,23 The 
VC1612 gene product was initially anno-
tated as “fimbrial biogenesis and twitching 
motility protein, putative.”32 Furthermore, 
a BLAST analysis against the Neisseria 
gonorrhoeae FA1090 genome indicated 
that the VC1612 protein was homologous 
to JCVI locus NT03NG0804 (“type IV 
pilus biogenesis-stability protein PilW 
(pilF)”) (supplementary data in ref. 17). 
Indeed, as a V. cholerae VC1612 knockout 
strain behaved similar to other Tfp-related 
mutants (e.g., lack of both piliation and 
DNA uptake into the periplasm), it was 
suggested that this protein might partici-
pate in the Tfp portion of the DNA-uptake 
complex.17 Next, Seitz and Blokesch aimed 
to predict the subcellular localization of 
VC1612 using the web-based PSORTb 
3.0 algorithm.33 However, as the scores 

were similar for cytoplasmic and outer-
membrane localization, the program pro-
posed that the protein might have multiple 
localization sites. Given that a signal pep-
tide was also not predicted by the SignalP 
server,34 the authors suggested in their 
model that the localization of VC1612 is 
cytoplasmic (Fig.  3).17 Interestingly, the 
VC1612 protein shows 34% identity (and 
51% similarity) to PilF of Pseudomonas 
aeruginosa strain PAO1 (NCBI reference 
sequence: NP_252494.1). For P. aerugi-
nosa, it was initially suggested that PilF 
might be localized to the inner face of the 
cytoplasmic membrane,35 although a more 
recent study by Koo et al. challenged this 
notion and demonstrated that PilF is an 
outer membrane lipoprotein involved in 
the insertion and polymerization of the 
secretin PilQ36 (in a chaperone-like man-
ner37). Thus, given that future studies will 
also demonstrate outer membrane localiza-
tion for the VC1612 protein of V. cholerae, 
it would be tempting to speculate that the 
protein also acts as pilotin, which could 
foster PilQ secretin assembly (Fig. 3). We 
therefore propose to annotate the VC1612 
gene of V. cholerae as pilF.

Figure 3. The PilF protein of V. cholerae might act as pilotin. In our previous study, the localization 
of the VC1612 protein was not unambiguously predictable and not experimentally addressed.17 
However, BLAST comparisons with PilF of P. aeruginosa indicate that the VC1612 protein of V. chol-
erae (suggested annotation: PilF) might act as a pilotin, thereby assisting the PilQ secretin in its 
assembly.
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Moreover, the composition and mecha-
nistic aspects of type IV pili and the 
DNA-uptake machineries are generally 
not well understood, even though many 
hypothetical models of these multiprotein 
complexes exist. Notably, many of those 
models have not changed dramatically 
over the last decade (compare, for exam-
ple, refs. 47 and 48) but by now are much 
better supported by experimental data.
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