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Abstract: QSAR/QSPR (quantitative structure-activity/prop-
erty relationship) modeling has been a prevalent approach
in various, overlapping sub-fields of computational, medici-
nal and environmental chemistry for decades. The gener-
ation and selection of molecular descriptors is an essential
part of this process. In typical QSAR workflows, the starting
pool of molecular descriptors is rationalized based on
filtering out descriptors which are (i) constant throughout
the whole dataset, or (ii) very strongly correlated to another
descriptor. While the former is fairly straightforward, the

latter involves a level of subjectivity when deciding what
exactly is considered to be a strong correlation. Despite
that, most QSAR modeling studies do not report on this
step. In this study, we examine in detail the effect of various
possible descriptor intercorrelation limits on the resulting
QSAR models. Statistical comparisons are carried out based
on four case studies from contemporary QSAR literature,
using a combined methodology based on sum of ranking
differences (SRD) and analysis of variance (ANOVA).
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1 Introduction

From the landmark works of Hammett in the 1930s,[1] and
Hansch and Fujita in the 1960s,[2,3] quantitative structure-
activity, and structure-property relationships (QSAR/QSPR)
have come a long way, evolving into a ubiquitous concept,
present in many sub-fields of chemistry. QSAR studies are
the subjects of hundreds of publications yearly, and the
state of the field is thoroughly summarized from time to
time.[4]

The importance of QSAR was even recognized by the
Organization for Economic Co-operation and Development
(OECD), who have published a set of principles (along with
a detailed guidance document) for QSAR model validation.[5]

Also, in the last decades, researchers of this field have been
concerned with identifying and promoting best practices
for QSAR modelling and validation.[6–9]

Descriptor (pre-)selection is an integral part of QSAR
workflows. It usually involves the removal of descriptors
with missing values, constant values across the whole
dataset, or collinear (inter-correlated) descriptors. The entire
process is called variable reduction according to terms of
Todeschini and Consonni: “Variable reduction consists of the
selection of a subset of variables able to preserve the
essential information contained in the whole dataset but
eliminating redundancy, too highly correlated variables, etc.
Variable reduction differs from variable selection in the fact
that the subset of variables is selected independently from
the response of interest.”[10] While the removal of constant
(or nearly constant) variables is relatively straightforward,
there is no clear consensus on the choice of the specific

intercorrelation limit in QSAR studies: a random sample
from the QSAR literature of the recent years reveals choices
of 1.000,[6] 0.98,[11] 0.95,[12,13] 0.90,[14,15] 0.80,[16] and even
0.70.[17] Moreover, most studies either do not report the
selected intercorrelation limit,[18,19] or simply omit this step.

It should be noted that some of the new-generation
variable selection and QSAR modeling methods (such as
PLS regression or principal component regression, PCR)
inherently neglect redundant variables (rendering variable
reduction unnecessary for small datasets), however these
methods are not necessarily implemented in the relevant
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and popular QSAR modeling software. Also, variable
reduction is useful especially in the case of large datasets to
save computational time even (and especially) for advanced
regression methods, and similarly to variable selection tools
such as genetic algorithms.

A relatively straightforward and popular method (the
QUIK rule) was proposed in 2004 by Todeschini et al. for
collinearity detection among the descriptors (it is even
suggested by OECD in their guidance document).[20] The
QUIK rule is based on checking the total correlation of the
set of descriptors in the QSAR model (KXX, based on the K
multivariate correlation index) against that of the model
descriptors plus the response variable (KXY) and rejecting
any model where the difference of the two is not large
enough. While this is a successful and popular method to
check for collinearity after modelling, it does not provide
guidance regarding the amount of descriptors to remove
from the dataset (in order to improve the model), if the
collinearity is found to be too large.

Our goal with this work is to propose guidelines for
selecting the intercorrelation limit for descriptor selection in
QSAR modelling. (Throughout the article, we use the term
“intercorrelation” to refer to the correlation between two
descriptors, rather than a descriptor and the modeled
property.) We report a detailed statistical comparison of
QSAR models generated with a wide range of intercorrela-
tion limits, based on four case studies from the literature,
with diverse endpoints. It is worth to stress that our
purpose was to compare the intercorrelation limits fairly,
and not to build the best models, which has already been
done in the original publications.[23–27] We hope to provide
general conclusions using these highly diverse data sets. In
any modeling task, there are many suboptimal solutions
indistinguishable in the statistical sense. SRD as a multi-
criteria decision making tool is able to distinguish subopti-
mal solutions.[6,21] Following our recent comparative stud-
ies,[22,23] the combination of sum of ranking differences (SRD)
and analysis of variance (ANOVA) is applied for the
evaluations.

2 Materials and Methods

2.1 Datasets

Four case studies were used for the analysis. The first
dataset (Dataset 1) contained IC50 values of novel N-
benzoyl-L-biphenylalanine derivatives as potent inhibitors
for a4 integrins.[24] The second (Dataset 2) was an ADME
properties evaluation study, which contained the logBB
values (blood-brain partitioning coefficient) of more than
three hundred compounds.[25] The third (Dataset 3) was a
toxicology study of benzene derivatives, where the toxicity
values were expressed as acute toxicities (pLC50) for the
fathead minnow (Pimephales promelas).[26] In the fourth case
study (Dataset 4), pIC50 values were reported for the hMGL

enzyme (human monoglyceride lipase) for a set of N-
substituted maleimides.[27] Specific details of the used data-
sets are summarized in Table 1. Smiles and SDF files of the
datasets were used for molecular descriptor generation.[28]

2.2 Molecular Descriptor Generation

In total 3839 (2D) descriptors were generated with the
DRAGON 7 software.[29] Descriptors with constant values
and descriptors with at least one missing value were
excluded. Next, the absolute intercorrelation limit between
descriptors was set to: 0.8000, 0.8500, 0.9000, 0.9500,
0.9700, 0.9900, 0.9950, 0.9970, 0.9990, 0.9999, 1.0000 or
None (no limit). For each pair of correlated descriptors, the
one showing the highest pair correlation with the other
descriptors was automatically excluded.[30] Every descriptor
set, corresponding to different limits, was saved for the
model building phase. The selected number of descriptors
can be seen in Figure 1 for each dataset. This figure also
highlights the dataset dependence of the number of
descriptors selected by the different intercorrelation limits.

Table 1. Number of compounds in the training and test sets with
endpoints and references, for the four case studies.

Endpoint Applicability domain No.
training

No.
test

Ref.

1 pIC50 N-benzoyl-L-biphenylalanine
derivatives

99 43 [24]

2 logBB Diverse compounds 287 81 [25]
3 pLC50 Benzene derivatives 51 18 [26]
4 pIC50 N-substituted maleimides 48 14 [19,27]

Figure 1. Numbers of selected descriptors for the four datasets, for
each intercorrelation limit. (“none” means that no correlation limit
was used.)
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2.3 Model Building

In the next step, Gramatica and coworkers’ QSARINS 2.2.2
software (http://www.qsar.it) was used for model build-
ing.[31,32] This software has a rich toolbox of statistical
methods for model generation, validation (internal and
external) and it can output several performance parameters
for the models, as well.[6] To focus solely on the effect of the
intercorrelation limits, we have used the same settings for
all of the four case studies during model building.

The models were calculated by multiple linear regres-
sion (MLR) with ordinary least squares (OLS), and a genetic
algorithm (GA) was used for variable selection.[33] The Q2 for
leave-one-out cross-validation (Q2

LOO) was applied as the
objective function in GA, which is a standard and widely-
accepted choice for regression models.[34–36] The number of
populations was 100, and 100 iterations were performed.
The mutation probability was set to 20 %, and the maximum
number of variables included in the model was ten.

The datasets were split into training and test sets based
on the original articles, and were kept fixed. For model
selection, we suggest – in compliance with generally
approved practices – using the same performance parame-
ter that was used as the objective function during variable
selection (here, Q2

LOO). However, in the present study,
typically more than one model was produced (for each
specific dataset and intercorrelation limit) with very similar
Q2

LOO values (having statistically insignificant differences
only). From these, the final models were selected based on
their R2 values for the further evaluations.

2.4 Statistical Comparison

Sum of ranking differences (SRD) was used for the
comparison of the selected models.[37,38] SRD is a novel,
robust statistical method for model/method comparison,
based on the use of an “ideal” reference method (gold
standard, benchmark). The reference can be a set of
experimentally determined values, but it is possible to use a
hypothetical consensus method based on data fusion
possibilities (e. g.: average, minimum, maximum, etc.), as
well. By convention, the input matrix contains the variables
(models, methods) in the columns and the samples (here,
molecules) in the rows. The procedure is based on the
following steps: (i) ranking the samples in order of
magnitude according to each models and the reference, (ii)
calculating the absolute rank differences for each molecule,
between each model and the reference, and (iii) summing
up the calculated differences for each model. The resulting
sums are called SRD (sum of ranking differences) values (or
SRD scores) and they represent the City block (Manhattan)
distances of the models from the reference. (A smaller SRD
value thus means proximity to the “ideal” reference, hence
the smaller the better.) A detailed illustration about the SRD
procedure can be found as a supplement to our earlier

work.[39] SRD values can be compared for different studies
with the use of normalized SRD (SRDnor) values:

SRDnor ¼ 100 SRD=SRDmax ð1Þ

where SRDmax means the theoretical maximum of SRD
values.

Sum of ranking differences employs two types of
validation. Comparison of ranks with random numbers
(CRRN) is a randomization test, which gives a distribution of
SRD values with randomized ranks. Based on this validation,
one can conclude whether the SRD value characterizing a
model overlaps with the use of random numbers (if so, then
the model is statistically not distinguishable from randomly
assigned ranks). N-fold cross-validation (or leave-one-out or
leave-many-out cross-validation) is applied to check
whether the SRD values of two models (methods, etc.) are
significantly different. Here, the contiguous (block-wise) and
a repeated sampling version of sevenfold cross-validation
was used. (This version corresponds to Monte Carlo
sampling, which allows overlap between the training/test
splits of the different iterations.)

In the present study, QSAR/QSPR models – calculated
with descriptors that were selected with different intercorre-
lation limits – were compared. The input matrices contained
endpoints (pIC50, logBB, etc.) predicted by the various QSAR
models (columns) for each molecule of the datasets (rows),
with the experimentally determined endpoints as the
reference in each case. Two forms of SRD analysis were
carried out: i) predicted values of the training and test sets
together, ii) leave-one-out cross-validated predictions for
the training samples.

Analysis of variance (ANOVA) was used for the statistical
comparison of the SRD results for the four datasets. This
method is based on the pairwise comparison of the average
values of the different groups of samples. Cross-validated
SRD values were used (28 rows for each dataset) for the
analysis and the intercorrelation limits were used as groups.
STATISTICA 13 (TIBCO Software Inc., Palo Alto, USA) was
applied for the ANOVA evaluation. The complete workflow
of the procedure is summarized in Figure 2.

3 Results and Discussion

As a first level of comparison, some important performance
parameters of the models were compared, to check if these
parameters can differentiate between the models with
different intercorrelation limits. The goodness of fit for the
calibration (R2), cross-validation (Q2), and external validation
(R2

ext), root mean squared error of cross-validation (RMSECV)
and coefficient of concordance (CCCCV)[36] parameters were
selected for this evaluation based on our previous find-
ings.[6] Figure 3 shows the distribution of these values for
the four datasets. It can be clearly seen that the R2, Q2 and
CCCCV values are very close to each other and they have

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2019, 38, 1800154 (3 of 6) 1800154

www.molinf.com


1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

narrow distributions. The (Pearson) correlation coefficient
between R2 and Q2 values for the datasets was higher than
0.90. On the other hand, R2

ext has a much wider distribution.
The RMSECV values are more dataset dependent, but they
are on the same scale. The same information, broken down
to separate datasets, is shown in Supplementary Material
Figure S1, highlighting the limited discriminatory power of
these performance parameters (at least for these datasets).
Thus, the classical performance parameters, though well-
known and accepted, are inadequate to unravel small

changes and effects. Since SRD was recently shown to
surpass them in this capacity,[41] we have decided to employ
it for further analysis. The SRD analysis was based on the
predicted endpoints, according to each model, and was
carried out for each dataset in two variations: i) with the use
of predicted values for the training and test set molecules,
and ii) with the use of leave-one-out cross-validated values
for the training set molecules (omitting the test set). One
example of the SRD results can be seen in Figure 4.

In the case illustrated in Figure 4, all models were much
better than the use of random numbers. The vertical bars
denote the models with different intercorrelation limits.
From the SRD results, we used 28 rows of 7-fold Monte
Carlo cross-validated SRD values (for each intercorrelation
limit) for the comparison with ANOVA. An example of these
values can be seen in Supplementary material Table S1
(Dataset 2, leave-one-out cross-validation).

The intercorrelation limit as the categorical factor in the
ANOVA procedure was statistically significant based on the
results of the four datasets (a = 0.05) one-by-one and
together as well. The outcome of the ANOVA analyses can
be found in Supplementary Material Table S2. Thus, the use
of different intercorrelation limits during descriptor selec-
tion has a significant effect on the final outcome of QSAR
model building.

A comparison based on average values across the four
datasets, and variances (calculated by error propagation[41])

Figure 2. Workflow of the applied procedure from descriptor
generation to ANOVA.

Figure 3. Distribution of the examined performance parameter
values. The blue dashed line means the R2 distribution, and the
orange dashed-dotted line means the Q2 distribution.

Figure 4. An example SRD result with the full plot (above) and a
magnified part (below). Vertical bars denote the models with
different intercorrelation limits. The black curve corresponds to the
cumulative distribution of SRD values based on random rankings.
On the left Y and X axes, normalized SRD [%] values are plotted,
while the right Y axis shows the percentages for the distribution of
random rankings.
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is shown in Figure 5. This step was necessary because SRD
values depend on the performance of the models. (If a
dataset provides better models, they will have smaller SRD
values in the normalized form as well.) As a consequence,
we can compare the error bars only if we take into account
the law of error propagation.[42]

As shown in Figure 5 and the separate results for the
four datasets (Supplementary Figure S2), the use of an
intercorrelation limit for the descriptors is always recom-
mended, but choosing a specific value is not straightfor-
ward. In general, a too low value (such as 0.80 or 0.85)
usually deteriorates the results. On the other hand, the
range between 0.95 and 0.9999 can always yield one or two
specific values that present a significant improvement
regarding the resulting models.

4 Conclusions

Molecular descriptor selection plays an important role in
QSAR/QSPR model building. This is usually not reported in
detail in research articles, but based on our findings, the
choice of intercorrelation limits during molecular descriptor
preselection has a significant effect on the outcome. SRD
and ANOVA analyses of the applied four datasets show that
overall the lower (around 0.80) limits deteriorate the
resulting models (by removing valuable descriptors). The
region between 0.95 and 0.9999 is applicable (recom-
mended) for variable reduction, keeping in mind that it is
worth to check more than one limit before finalizing the
selection, as the specific choice is inherently dataset-
dependent. Also, we have shown that even a seemingly
insignificant change (like a setting of 0.9999 instead of
0.999) can remove a significant number of descriptors. As
such, in addition to proposing the above detailed approach
for selecting the intercorrelation limit, we would strongly
suggest to authors of future QSAR studies to disclose the

specific intercorrelation limit they applied, for the sake of
the reproducibility of the whole modeling workflow.
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Biomed. Anal. 2016, 127, 81–93.
[41] H. H. Ku, J. Res. Natl. Bur. Stand. Sect. C 1966, 70, 263–273.
[42] A. R�cz, D. Bajusz, M. Fodor, K. H�berger, Chemom. Intell. Lab.

Syst. 2016, 151, 34–43.

Received: November 19, 2018
Accepted: March 13, 2019

Published online on April 4, 2019

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2019, 38, 1800154 (6 of 6) 1800154

www.molinf.com

