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Fibrosis, a pathologic process featured by the excessive deposition of connective
tissue components, can affect virtually every organ and has no satisfactory therapy yet.
Fibrotic diseases are often associated with organ dysfunction which leads to high
morbidity and mortality. Biomechanical stmuli and the corresponding cellular response
havebeen identified in fibrogenesis, as the fibrotic remodeling could be seen as the
incapacity to reestablish mechanical homeostasis: along with extracellular matrix
accumulating, the physical property became more “stiff” and could in turn induce
fibrosis. In this review, we provide a comprehensive overview of mechanoregulation in
fibrosis, from initialing cellular mechanosensing to intracellular mechanotransduction
and processing, and ends up in mechanoeffecting. Our contents are not limited to the
cellular mechanism, but further expand to the disorders involved and current clinical
trials, providing an insight into the disease and hopefully inspiring new approaches for
the treatment of tissue fibrosis.
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1 INTRODUCTION

Fibrosis is a process featuring excessive deposition of extracellular matrix (ECM) proteins, which leads to
scarring and thickening of the affected tissue (Rockey et al., 2015). With the up-to-date understanding of
fibrosis, biomechanics have been recognized in numerous fibroproliferative diseases (Eckes et al., 2000;
Tomasek et al., 2002; Gao et al., 2019). Under physiological conditions, cells are constantly exposed to
mechanical forces, such as blood pressure and shear stress generated by blood flow, expiratory and
inspiratory forces, and compressive or tensile stresses from the skin and musculoskeletal system
(Mammoto et al., 2013). Cells can sense changes in the physical environment, and subsequently
transduce extracellular mechanical signals into intracellular biochemical reactions and gene
expression regulation (Saucerman et al., 2019). When the mechanical homeostasis is disrupted,
fibroblast activation becomes uncontrolled and finally results in amplified ECM generation
(Tschumperlin et al., 2018). The progressive deposition of ECM results in tissue stiffening, leading to
a self-amplifying loop of fibroblast activation, and finally providing a greater mechanical context for
fibrogenesis. In addition, mechanical stress regulates cellular mechanosensitive signaling pathways
(Provenzano et al., 2009), which influence cell metabolism (Zhao et al., 2020) and remodel the
immune microenvironment (Brown and Marshall, 2019), and epithelial-mesenchymal transition
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(EMT) (Stone et al., 2016). Therefore, understanding how
biophysical parameters of the mechanical environment regulate
cell behavior is of great importance in fibrosis.

In this review, we summarize the progress of the cell
response to physical forces and discuss the cell
mechanosensation, mechanotransduction and
mechanoeffecting. We predominantly focus on the shared
mechanism. This review also expands our vision from the
laboratory bench to the clinical bedside, considering the
related diseases and the latest clinical trials. We believe that
a deeper understanding of biomechanics could provide new
insights into mechanoregulation in fibrotic tissue remodeling,
and help us identify novel therapies.

2 CELLULAR MECHANOSENSING IN
FIBROSIS

A number of sensory elements and mechanisms enable cells to
detect and react to extracellular forces through a process named
mechanosensing. This force-sensing process can occur through
force-induced conformational or organizational changes in
cellular molecules and structures, including stretch-sensitive
ion channels (Wang et al., 2015; Northey et al., 2017),
cadherin complexes (Leckband and de Rooij, 2014), G protein-
coupled receptors (GPCRs) and integrins (Herrmann et al.,
2020). The ion channels on the cell membrane have both
mechanosensing and mechanotransduction functions and will

FIGURE 1 |Cellular mechanosensingmechanism in fibrosis. Cell could receive and intergrate mechanical signals through integrin-based cell–ECM interactions and
cadherin-based cell–cell interactions, transforming the extracellular physical cues into membrane tension and cytoskeleton deformation.
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be discussed in the next section. In this section, we classify the
cellular mechanosensing into cell–matrix and cell–cell
mechanosensing (Figure 1), and the detailed mechanism,
diseases involved, and recent clinical trials will be discussed.

2.1 Mechanisms of Cell-ECM
Mechanosensing
Integrins provide a mechanical linkage between the ECM and the
cytoskeleton (Humphrey et al., 2014). In addition, integrins can
also act as mechanosensors (Papusheva and Heisenberg, 2010)
and morphogenetic regulators that modify cell–ECM adhesion
(Herrmann et al., 2020). As the name suggests, integrins are cell
surface receptors that integrate the cytoskeleton into the
extracellular environment. They are composed of noncovalent
α, ß heterodimers. Not all integrins are constitutively active, and
their activation starts with conformational changes in the integrin
ectodomain (Sun et al., 2016). Kindlin and talin bind integrin
cytoplasmic tails to promote integrin activation (Gough and
Goult, 2018). Once bound, integrins recruit numerous
proteins, such as LIM domains, to their short cytoplasmic
tails, resulting in the assembly of various adhesion structures
(Schiller and Fässler, 2013). Thus, the molecular clutch, a
mechanical linkage composed of dynamic associations between
the ECM-bound integrins and the force-generating actomyosin
cytoskeleton, is formed (Mitchison and Kirschner, 1988). Sensing
the matrix rigidity, cells employ this molecular clutch to transmit
forces to their surrounding matrix (Elosegui-Artola et al., 2014)
and then transduce biomechanical into biochemical signals
(Dupont, 2016). For example, in response to elevated
mechanical loading, integrin clustering can recruite and
phosphorylate focal adhesion kinase (FAK), and phospho-FAK
initiates a cascade of signaling events, such as cell migration and
inflammatory signaling (Wong et al., 2011), to induce fibrosis.
The adhesions are also able to transmit retrograde pushing forces
from the polymerizing branched actin network in membrane
protrusions to the ECM via proteins such as talin and vinculin
(Hu et al., 2007). Interestingly, integrin is also recognized in the
TGFβ signaling pathway, which is one of the most important
regulators of fibrosis (Meng et al., 2016). Integrins are highly
expressed in activated fibroblasts (Reed et al., 2015) and interact
with a linear arginine-glycine-aspartic acid (RGD) motif present
in TGFβ complexes with latency-associated peptide (LAP) to
transform TGFβ to its active form (Distler et al., 2019).

Increased expression of αvβ3 or αvβ5 integrins is observed in
the dermis of scleroderma patients (Hinchcliff and O’Reilly,
2020), and these integrins induce autocrine TGFβ signaling in
patient fibroblasts in vitro (Santos and Lagares, 2018), suggesting
that αvβ3/5-mediated TGFβ activation could be important under
pathological conditions (Brown and Marshall, 2019).

2.2 Mechanisms of Cell–Cell
Mechanosensing
Mechanical forces exerted on cell–cell adhesions that link
adjacent cells also play an important role. Intercellular
contacts, particularly cadherin-based intercellular junctions, are

the major means of transmitting force within tissues (Herrmann
et al., 2020). The classical extracellular cadherin domain folds into
five ß-barrel parts and embeds the primary adhesion site. There is
a single-pass transmembrane domain and a cytoplasmic domain,
which bind different cytoplasmic and cytoskeletal proteins. For
the cytodomain, the main interactors include p120ctn, ß-catenin
and a-catenin, which can bind to F-actin directly or through
vinculin (Buckley et al., 2014). The adhesion of cadherin requires
the formation of cadherin–cadherin bonds, which include
different structural regions and exhibit different kinetic and
mechanical properties (Rakshit et al., 2012; Priest et al., 2017).
F-actin-associated classical cadherin complexes have been shown
to be mechanosensors (Leckband and de Rooij, 2014; Bays and
DeMali, 2017; Dasgupta and McCollum, 2019; Hur et al., 2020).
a-catenin, which links E-cadherin-associated ß-catenin to F-actin
(Desai et al., 2013), is the central molecule in this system. The best
characterized effector of the tension-dependent conformational
regulation of a-catenin is its closest homolog, vinculin (Leckband
and de Rooij, 2014), which can be recruited to cell–cell
interactions in response to endogenous myosin II–dependent
contractility (Kuehlmann et al., 2020) and externally applied
tension (Thomas et al., 2013). Cadherins have also been
identified in the transcriptional regulation of the Wnt/β-
catenin (Sun et al., 2014) and Hippo pathways (Gumbiner and
Kim, 2014). Beyond sensing, cell–cell adhesions are critical for the
formation of barriers between organs or between the body and the
external environment (Hintermann and Christen, 2019).

Defects in cadherin can result in multiple disorders,
including skin and hair malfunctions, cardiomyopathies,
sensory defects associated with deafness and blindness and
psychiatric disorders (El-Amraoui and Petit, 2013). An
upregulation of cadherin has been observed in fibrotic lung
and skin tissue (Agarwal, 2014; Madarampalli et al., 2019).
Recent studies have also confirmed that cadherin-11
contributes to liver fibrosis caused by carbon tetrachloride
(Pedroza et al., 2019) and that the level of cadherin-11
correlates with the fibrosis stage (Ruan et al., 2019). In the
process of EMT, a cadherin switch, the upregulation of
N-cadherin and the downregulation of E-cadherin, has been
found (Loh et al., 2019). Taken together, these findings suggest
that cadherin could be a potential target for fibrotic treatments.
In the FOXF1-deleted mouse model, an increase in the switch
from N-cadherin to cadherin-11, which is a critical step in the
acquisition of the profibrotic phenotype, was observed (Black
et al., 2018), suggesting that FOXF1 inhibited pulmonary
fibrosis by regulating the cadherin switch.

3 CELLULAR MECHANOTRANSDUCTION
IN FIBROSIS

Once the mechanical cue passes through the cell membrane,
multiple downstream biochemical pathways, including
calcium-dependent pathways, nitric oxide (NO) signaling,
mitogen-activated protein kinases (MAPK), Rho GTPases,
and phosphoinositol-3-kinase (PI3K), are activated
(Isermann and Lammerding, 2013). Apart from these
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signaling pathways, some biomechanical-related transcription
factors and coregulators, mechanosensitive ion channels and
microRNAs are also involved (Wang et al., 2015). The
mechanotransduction process transforms biomechanical

into biochemical or electrochemical signals, which can be
recognized by intracellular components. In this section, we
will focus on the ion channels and signaling pathways
(Figure 2).

FIGURE 2 |Cellular mechanotransductionmechanism in fibrosis. Themembrane tension activates variousmechanosensitive ion channels, such as piezo and TRP,
resulting in the change of intracellular ion concentration, which in turn leads to the upregulation of signaling pathways including ERK, RhoA. The cytoskeleton deformation
regulates fibrotic gene expression mainly through FAK, Hippo and Wnt/β-catenin pathways.
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3.1 Ion Channels in Cellular
Mechanotransduction
Mechanical stimuli are observed to induce ionic currents through
different ion channels in the cell membrane (Del Favero and
Kraegeloh, 2020). Channels previously considered voltage-gated,
such as potassium and sodium channels, are also found to be
mechanically sensitive (Wang et al., 2015). The opening of ion
channels in response to pressure stimulation or shear stress is the
earliest cellular event that induces cell depolarization (Douguet
et al., 2019).

3.1.1 Transient Receptor Potential Channels
The TRP protein superfamily functions as calcium channels
and is widely expressed in various organs. There are 28
mammalian TRP subunits, categorized into six related
protein subfamilies (TRPC1-7, TRPV1-6, TRPM1-8,
TRPA1, TRPML1-3, TRPP1-2) based on sequence
homology (Jiao et al., 2017). The universal expression of
TRP proteins may explain their active participation in
different organs and their involvement in various
mechanosensory processes, including blood pressure
regulation, touch sensation, and bone loading. TRP
channels can be directly mechanically gated or gated
through a multistep cascade. The mechanical force exerted
on the TRP channels or on the membrane opens the ion
channel by switching the conformation of TRPs or by altering
the curvature of the lipid bilayer. Similarly, a nonmechanical
stimulus, such as light or a chemical agonist, can trigger a
signaling cascade on the lipid bilayer and generate forces to
mechanically activate TRP channels (Liu and Montell, 2015).
This cascade starts with the activation of a GPCR, and then the
phospholipase C is activated to hydrolyze the
phosphatidylinositol 4,5-bisphosphate and produce the
inositol 1,4,5-trisphosphate and diacylglycerol (DAG). The
cleavage of the DAG causes a change in the cell membrane and
leads to the activation of TRP channels.

TRPM7 is markedly upregulated in atrial fibrillation (AF)
patients, activating the calcineurin pathway and producing a
synergistic effect with TGFβ1, and resulting in the activation of
fibroblasts. These activities are eliminated with usage of the
TRPM7 blocker 2-APB or RNA interference specific for
TRPM7 (Nattel, 2017). In human AF patients and dog AF
models, TRPC3 expression is upregulated with enhanced
nonselective cation influxes and increased a-smooth muscle
actin (α-SMA) expression and extracellular regulated protein
kinases 1/2 (ERK 1/2) phosphorylation, which can be
suppressed by the TRPC3-selective blocker Pyrazol-3
(Harada et al., 2012; Hall et al., 2019). The expression of
TRPC1 and TRPM7 has also been evaluated, which was
much higher than that of TRPC3, and remained unaffected
under AF-inducing conditions, suggesting that TRPC3-ERK
signaling is of greater significance in fibrogenesis (Inoue et al.,
2019).

In a bleomycin-induced pulmonary fibrosis model, TRPC6-
deficient mice show reduced production of collagen and an
almost normal function of the respiratory system, which can be

explained by the upregulation of TRPC6, increased calcium
flow and localization of nuclear factor of activated T cells
(NFAT) in wild-type primary murine lung fibroblasts
(Hofmann et al., 2017). In addition, TRPC6 gain-of-
function mutations contributed to focal segmental
glomerulosclerosis (FSGS) (Szabó et al., 2015). Renal
interstitial fibrosis induced by unilateral ureteral obstruction
(UUO) is associated with increased expression of TGFβ1,
a-SMA, collagen and other fibrosis-related markers and a
dramatic upregulation of TRPC3/C6, which can be
abrogated by genetic knockout of these channels in mice
(Hofmann et al., 2017). A further study on the role of
TRPC6 in dermal fibroblasts revealed the TGFβ1-mediated
signaling cascade, which starts with the p38-MAPK
phosphorylation and nuclear translocation of serum
responsive factor and ends in the TRPC6 gene expression
(Davis et al., 2012).

Inflammatory bowel diseases (IBDs) featuring chronic
intestinal inflammation, which includes ulcerative colitis
(UC) and Crohn’s disease (CD), can cause detrimental
fibrosis. In the intestinal myofibroblast cell line, TGFβ1
intervention enhances α-SMA stress fiber formation, TRPC6
mRNA and protein expression and calcium influxes.
Inhibition of TRPC6 by RNA interference or dominant-
negative mutations effectively suppresses TGFβ1-induced
calcium influxes, a-SMA expression, and stress fiber
formation and increases ERK 1/2, Smad 2 and p38
phosphorylation and antifibrotic cytokines, such as IL-10
and IL-11 (Kurahara et al., 2015). These results indicate
that the augmented calcium influxes caused by TRPC6
upregulation facilitate stress fiber formation by
downregulating TGFβ1/ERK-mediated IL-10 and IL-11
production. Interestingly not all TRP channels have
profibrotic roles. The activation of TRPA1 can lead to the
release of inflammatory tachykinins, such as substance P and
neurokinin A, and calcitonin gene related peptide (CGRP),
which has been shown to be protective in the dextran sodium
sulfate (DSS)-induced colitis model as well as in UC patients
(López-Requena et al., 2017; Utsumi et al., 2018). The IBD
activity index is significantly elevated in TRPA1 knockout
compared with the wild-type mice, with a greater level of
substance P, neurokinins A and other inflammatory
neuropeptides, cytokines and chemokines (Kun et al., 2014).
Collectively, these results confirm the anti-inflammatory role
of TRPA1.

Apart from organ fibrosis, TRPs are also linked with tumor
progression and fibrosis, as fibrosis commonly occurs and
affects tissue rigidity (Petho et al., 2019). Overexpression of
TRPC1 promotes EMT in breast cancer (Azimi et al., 2017)
and TGFβ stimulation in invasive ductal breast carcinoma
(Schaar et al., 2016). TRPM7 channel expression can regulate
epidermal growth factor (EGF)-induced signal transducer and
activator of transcription 3 (STAT3) phosphorylation and
expression of the EMT marker vimentin in human breast
cancer cells (Davis et al., 2014). TRPV4 can promote cell
stiffness through the calcium-dependent/AKT/E-cadherin
signaling axis (Lee et al., 2017), thus influencing tumor cell
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metastasis (Lee et al., 2016). Considering that the production
of extracellular protein metalloproteinase-9 (MMP-9) is
mediated by AKT signaling in cancer (Lee et al., 2017),
TRPV4 may also affect tissue stiffness in this manner.

3.1.2 Piezo Ion Channel
The Piezo family, including Piezo1 and Piezo2, is activated by
various types of mechanical stimuli and functions as a
biological pressure sensor. Piezo proteins contain
2,100–4,700 amino acids, encompassing 29–34
transmembrane segments, and do not bear sequence
homology to other already known voltage-sensitive channels
(Wang and Xiao, 2018). It has been proposed that Piezo
proteins consist of discrete pore modules and
mechanotransduction modules, which are coordinated for
ion conduction, mechanical force sensing, and transduction
(Ge et al., 2015; Zhao Q et al., 2016). The
mechanotransduction module does not require any
additional proteins to perform its mechanical sensing
function (Wang and Xiao, 2018). Piezo 1/2 cationic
channels are nonselective and permeable to sodium,
potassium, and calcium (Murthy et al., 2017).

In zebrafish outflow tract valve morphogenesis, Piezo was
found to regulate Yes-associated protein (YAP) localization
and the expression of Klf-2 and ECM proteins, suggesting that
Piezo channels function through the YAP1 and Klf2-Notch
signaling axes (Duchemin et al., 2019). In liver sinusoidal
endothelial cells, mechanical stress can be sensed via
integrins, and the molecular interactions between integrins
and Piezo1 then activated Piezo channels and cause them to
bind to the Notch1 receptor, leading to the expression of the
downstream transcription factors, Hes1 and Hey1 and finally
upregualting CXCL1 production (Hilscher et al., 2019).
CXCL1, as a neutrophil chemoattractant, induces sinusoidal
thromboses, portal hypertension and fibrogenesis. In a recent
study, increased Piezo1 expression was found in hypertrophic
scars and was shown to participate in scar formation (He et al.,
2021).

3.1.3 Calcium Channels
The major downstream effect of ion channel activation in cellular
mechanotransduction is the change in cytoplasmic calcium
concentration (Malakou et al., 2018). An oscillation of the
intracellular calcium level induced by mechanical stimuli has
been observed in cardiomyocytes (Takahashi et al., 2019),
keratinocytes (Elsholz et al., 2014), and myofibroblasts
(Godbout et al., 2013), indicating that mechanical stimuli may
directly regulate the fate of these cells by modulating calcium
signals (Lv et al., 2015). Apart from nonspecific cation channels,
such as TRP and Piezo, which have been discussed previously,
voltage-gated calcium channels (Cav) (Atlas, 2014) and calcium-
sensing receptors (CaSR) (Lee and Lee, 2018) also participate in
the control of calcium homeostasis.

CaSR is a member of the class C GPCR. A study found that
CaSR expression in zebrafish lateral-line hair cells regulates
mechanotransducer-channel-mediated calcium entry (Lin
et al., 2018), suggesting that CaSR is involved in

mechanotransduction and could be a potential therapeutic
target. In renal ischemia–reperfusion mice, a sustained influx
of Orai1+ CD4 T cells with increased IL-17 expression and
intracellular calcium concentration was observed. Blockade of
the store-operated calcium channel Orai1 using 2APB could
attenuate IL-17 + cell activation and aggravate the
inflammation, fibrosis, and impaired renal function (Mehrotra
et al., 2019). Another study in which Orai1 was blocked in a UUO
mouse model also showed decreased expression of fibronectin, α-
SMA, and TGFβ1 in the kidney cortex (Mai et al., 2016). In an in
vivo experiment examining L-phenylalanine, a fibroblast
suppressor targeting CaSR, a release of endoplasmic reticulum
calcium stores was observed, accompanied by disruption of
intracellular calcium homeostasis triggering cell apoptosis via
the endoplasmic reticulum or mitochondrial pathways (Wang B
et al., 2018). In animal models of fibrosis following tissue injury,
poly (p-dioxanone-co-L-phenylalanine) reduces skin scarring and
suppresses peritoneal fibrosis and postoperation adhesion (Wang
B et al., 2018), making it a promising translational agent.

3.2 Signaling Pathways in Cellular
Mechanotransduction
The activation of signaling pathways in response to mechanical
cues shows significant importance in normal physiology, while its
complexity presents an obstruction to potential therapeutic
intervention (Tschumperlin et al., 2018). A number of
transcription factors regulated by mechanical stress have been
identified (Mendez and Janmey, 2012). Here, we focus on the
Hippo, Wnt/β-catenin, and focal adhesion kinase (FAK)
pathways, which are central coordinators of fibrosis-relevant
mechanical responses.

3.2.1 Hippo Signaling Pathway
The Hippo pathway is an evolutionarily conserved signaling
cascade regulating numerous biological processes, including
organ development and maintenance of tissue homeostasis. It
comprises a core kinase cascade, MST1/2 and LATS1/2, and the
downstream transcriptional coactivators YAP and WW domain-
containing transcription regulator protein 1 (TAZ) (Dupont,
2016). In normal cells, YAP/TAZ are localized in the
cytoplasm in their inactivated phosphorylated form, when
activated, they localize to the nucleus and upregulate their
target genes. The primary binding partners of YAP/TAZ are
TEAD family transcription factors (Zhou et al., 2016). Their
translocation and binding to TEAD can induce transcriptional
programs that are important for cell proliferation, survival, and
migration (Ma et al., 2019). The Hippo signaling pathway can be
regulated by upstream mechanical signals (Totaro et al., 2018).
For example, the increase in matrix stiffness leads to
multiplication of the adhesive area, which promotes YAP/TAZ
nuclear localization and targeted gene induction (Dupont, 2016).
RhoA GTPase, which is modulated by changes in cell geometry
and controls YAP/TAZ translocation by promoting actin
polymerization, is believed to be the key characteristic in
transducing stiffness signals (Meliambro et al., 2017). C-Jun
N-terminal kinase (JNK) and its phosphorylation of LIMD1,
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which can directly bind to LATS1/2 to downregulate its kinase
activities in increased matrix stiffness, have also been observed
(Codelia et al., 2014), suggesting that the Hippo pathway,
particularly the LATS1/2-mediated YAP phosphorylation, is
involved in YAP regulation by matrix stiffening. These studies
show that YAP/TAZ play pivotal roles in relaying physical cues to
gene expression and cellular responses. However, the exact
mechanism by which YAP/TAZ is regulated by various
mechanical signals is not entirely understood.

The Hippo signaling pathway has been shown to contribute
to the pathogenesis of fibrosis in organs, including the lung,
kidney, liver and cardiac tissue, with hyperactive YAP/TAZ
accumulation (Kim et al., 2019). Upon skin wounding, an
increase in nuclear YAP/TAZ has been observed in the basal
cell layer of the migrating epidermal tongue at the wound edge
(Walko et al., 2017), and also in suprabasal cells (Elbediwy
et al., 2016). It is likely that mechanical stress influences the
intracellular localization of YAP/TAZ in lung fibroblasts, and
YAP/TAZ increase the expression of connective tissue growth
factor (CTGF, also known as cellular communication network
factor 2, CCN2), Serpine one and ECM-related proteins such
as collagens and fibronectin (Liu et al., 2015). In a UUO mouse
model, YAP/TAZ activation led to TGFβ-induced EMT-like
features in renal tubulointerstitial fibrosis (Seo et al., 2016). In
liver fibrosis, TAZ-mediated Indian hedgehog gene expression
plays a key role in the transition from steatosis to nonalcoholic
steatohepatitis (Wang et al., 2016). In addition, the Hippo
signaling pathway can regulate the renewal and regeneration of
cardiomyocytes (Heallen et al., 2013), and it was found to be
pathologically activated in arrhythmogenic cardiomyopathy, a
myocardial disease characterized by the replacement of cardiac
myocytes by fibro-adipocytes, cardiac dysfunction, and
arrhythmia (Chen et al., 2014). Apart from fibrotic
disorders, the Hippo pathway was also found to be
associated with tumor fibrosis (Rognoni and Walko, 2019;
Zheng and Pan, 2019). In mammary cancer-associated
fibroblasts (CAFs), YAP activation is responsible for ECM
remodeling (Calvo et al., 2013) and cytoskeletal reorganization
(Foster et al., 2017). The myocardin-related transcription
factor (MRTF) pathway, another mechanosensitive
transcriptional regulatory network, was found to be
activated in CAFs (Medjkane et al., 2009). The YAP and
MRTF pathways exhibited mutual dependence and formed a
positive feedback loop (Foster et al., 2017), that is governed by
cytoskeleton dynamics.

3.2.2 Wnt/β-Catenin Signaling Pathway
β-catenin is a component that consisting of intercellular
adhesive junctions. ß-catenin directly binds to α-catenin,
which mechanically links type-I classical cadherins to F-actin
(Leckband and de Rooij, 2014). Isolated ß-catenin can stretch
and refold in discrete steps, and this conformational change
mechanically regulates interactions of ß-catenin domains with
other cytosolic proteins (Valbuena et al., 2012). However, in this
mechanical connection, α-catenin acts as an essential physical
linker between the cadherin-β-catenin complex and the actin
cytoskeleton (Desai et al., 2013; Veeraval et al., 2020), while ß-

catenin is required only to link cadherin to α-catenin (Jung et al.,
2019).

In the mouse model that expresses K14-ROCK:ER,
actomyosin contractility, collagen density, and tissue stiffness
are increased as a consequence of ROCK activation. Following the
activation of ROCK, ß-catenin localization changes from
membranous to cytoplasmic and nuclear, with an apparent
increase in the overall ß-catenin level, and more importantly,
nuclear ß-catenin is found in its activated form (Kümper and
Marshall, 2011; Li and Wang, 2020).

In the UUO model of renal fibrosis, the expression of 19 Wnt
proteins and 10 Fzd receptors has been found to be increased in
renal tubular cells (Malik et al., 2020), and the accumulation of
active ß-catenin induces fibrogenesis progression, including EMT
and epithelial dedifferentiation (Zhou et al., 2013). Dickkopf1, a
Wnt antagonist that binds the LRP5/6 receptor and inhibits the
canonical Wnt pathway, reduces ß-catenin accumulation and
fibrosis, downregulates collagen deposition, decreases interstitial
expansion and reduces α-SMA production (Malik et al., 2020).
Some small molecules, such as the vitamin D analog paricalcitol,
have been suggested to inhibit the Wnt pathway by competing
with TCF-4 (Boughanem et al., 2020).

In HBV/HCV-associated hepatocellular carcinoma, HCV
upregulates the expression of ß-catenin and MYC, and HBV
upregulates the expression of EPCAM, ß-catenin and MYC and
activates nuclear factor κ-B (NF-κB) signaling (Arzumanyan
et al., 2013). In human fibrotic liver tissue, roof plate-specific
spondin protein, a Wnt pathway agonist, is overexpressed and
enhances Wnt pathway activity, promoting hepatic stellate cell
(HSC) activation (Yin et al., 2016).

In pulmonary fibrosis, airway damage in alveolar epithelial
cells can promote canonical WNT/β-catenin signaling pathway
activation, inducing the remodeling of interstitial fibroblasts, and
the persistent remodeling finally results in pulmonary fibrosis
(Knudsen et al., 2017). In pulmonary capillary endothelial cells,
repeated injury can cause the suppression of CXCR7 expression
and the recruitment of vascular endothelial growth factor
receptor 1-expressing perivascular macrophages, which
upregulates the Notch ligand Jagged1 in a Wnt/β-catenin-
dependent manner and in turn stimulates Notch signaling to
enhance fibrosis (Cao et al., 2016).

3.2.3 FAK Signaling Pathway
FAK, also known as protein tyrosine kinase 2 (PTK2), is
composed of an N-terminal FERM (protein 4.1, ezrin, radixin
and moesin sequence homology) domain, a central kinase
domain, three proline-rich regions and a C-terminal focal-
adhesion targeting (FAT) domain (Murphy et al., 2020). It
functions as an important mediator of integrin and growth
factor signaling. FAK is recruited by the integrin-binding
proteins paxillin and talin to focal contacts (Samarel, 2014),
where the ECM, integrins, and the cell cytoskeleton interact.
FAK can be activated by autophosphorylation (Miller et al.,
2020), creating an SH2-domain-containing protein binding
motif (Lagares and Kapoor, 2013) and, thereby creating a
functional bipartite kinase complex (Burridge et al., 2019),
which in turn further phosphorylates FAK and releases its full
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enzymatic activity (Miller et al., 2020). The activity of FAK is
dependent on integrin-mediated cell adhesion, and it also
participates in transduction pathways that are activated by
growth factors (Lagares and Kapoor, 2013). Many integrin
complexes are able to sense ECM stiffness and consolidate the
adhesive bonds formed through vinculin-dependent
reinforcement, which promotes mechanotransduction and
enhances FAK activation (Sun et al., 2016).

In the human gingival fibroblast model, increased expression
of FAK with type I collagen production and stress fiber formation
has been observed in response to mechanical stress (Wei et al.,
2020). The FAK signaling pathway is also associated with dermal
fibrosis. In human scleroderma fibroblasts, increased FAK
expression, induced by autocrine TGFβ signaling, can enhance
the a-SMA production (Van De Water et al., 2013). FAK is
activated under cutaneous injury conditions, and physical
loadings can potentiate this process. By inhibiting FAK, scar
formation is attenuated with reduced monocyte chemoattractant
protein-1 signaling and inflammatory cell recruitment, indicating
that mechanical cues regulate dermal fibrosis through the
inflammatory FAK-ERK-MCP-1 pathway (Wong et al., 2011).

The FAK signaling pathway is also involved in tumor induced
fibrosis. In the p48-Cre; LSL-Kras(G12D); Trp53 (flox/+) (KPC)
mouse model of human pancreatic ductal adenocarcinoma
(PDAC), FAK inhibition can downregulate the fibrosis with a
decrease in collagen deposition, fibroblasts, and α-SMA
production, and without an acceleration of tumor progression
(Jiang et al., 2016). By applying cyclic mechanical stretching to
RAW264.7 murine macrophagess, the cells showed enhanced M1
polarization and tumoricidal effects with the activation of the
FAK/NF-κB signaling pathway. Furthermore, while injecting the
mechanical stretch-preconditioned macrophages into murine
melanomas in vivo, a decrease in tumor cell proliferation and
increase in tumor cell apoptosis has been observed by inhibiting
hyperactive PI3K/AKT signaling (Shan et al., 2019). These
research outcomes suggest the potential of the FAK signaling
pathway as a therapeutic target in the tumor microenvironment
regulation and tumorigenesis.

In pulmonary fibroblasts, FAK expression and activity are
upregulated with JNK activation and profibrotic gene expression.
When inhibited by the targeted siRNAs in a bleomycin-induced
lung fibrosis mouse model, abrogation of fibrosis has been
observed (Zhao X.-K et al., 2016). Recombinant IL-32γ could
significantly attenuates collagen deposition and α-SMA
production through the integrin-FAK-paxillin signaling axis in
both bleomycin-induced pulmonary fibrosis mouse models
(Hong et al., 2018).

Similarly, the FAK signaling pathway plays an essential role in
the activation of HSCs and liver fibrosis progression. TGFβ-
induced FAK activation promotes the α-SMA expression, while
the inhibition of FAK activation blocks the α-SMA and collagen
expression and inhibits the formation of stress fibers (Zhao et al.,
2017).

In a TGFβ1-or UUO-induced renal fibrosis model,
overexpression of phosphatase and tensin homolog deleted on
chromosome ten (PTEN) inhibits the FAK signaling pathway.
Silencing PTEN enhances fibrosis, which can be significantly

reversed by the FAK inhibitor PF567721. These findings suggest
that PTEN can promote renal fibrosis through the FAK/AKT
signaling pathway (Du et al., 2019).

4 CELLULAR MECHANOEFFECTING IN
FIBROSIS

Cellular mechanoeffecting is the final link in the response to
mechanical cues, which includes the activation and transcription
of specific genes, translation of microRNAs, and expression and
effect of the corresponding proteins. The intracellular part is
tightly controlled by epigenetic modifications, and the cytoplasm
part is regulated by microRNAs. In this part, we mainly focus on
epigenetic modifications and mechanosensitive microRNAs.

4.1 DNA Methylation
DNA can be methylated at position C5 of the pyrimidine ring of
cytosine residues by DNA methyltransferases (DNMTs), and the
process comprises three steps: enzyme addition of a methyl group
onto cytosine, enzyme removal of the methyl group, and DNMT
recognition and binding to the methyl group to eventually
influence gene expression (Moore et al., 2013). A study
revealed that hemodynamic force and shear stress can regulate
endothelial nitric oxide synthase gene expression through
posttranscriptional mechanisms (Chen and Fu, 2020). In 5-
azacytidine-treated cells plated on soft matrix, a decrease in
DNA methylation levels has been observed, accompanied by a
decrease in histone deacetylase 1 (HDAC1) transcription, an
increase in the expression of pluripotency genes and activation
of the Hippo signaling pathway (Pennarossa et al., 2018),
suggesting that the cells could sense matrix rigidity and react
through epigenetic mechanisms.

DNA methylation is globally upregulated in pulmonary
fibrosis. However, DNA hypermethylation and
hypomethylation can both be observed at locus specific
methylation levels (O’Reilly, 2017). Thy-1, an important
regulator of cell–cell and cell–ECM interactions, is
downregulated in lung fibroblasts by DNA hypermethylation,
and its absence promotes the myofibroblast differentiation.
Similarly, cyclooxygenase-2/prostaglandin E2, a key antifibrotic
pathway inhibiting fibroblast activation and collagen deposition,
is diminished with upregulated DNMT3a expression and activity
in pulmonary fibrosis (Dowson and O’Reilly, 2016). Desmoplaki
(DSP) is a known ECM stiffness-regulated mechanosensitive
gene. In stiff matrix circumstances, a conserved region in the
proximal DSP promoter becomes hypomethylated or even
demethylated, resulting in the EGR1-dependent DSP
overexpression, the effects of which can be blocked by
CRISPR/dCas9/DNMT3A-mediated epigenetic editing (Qu
et al., 2018).

4.2 Histone Modification and Chromatin
Remodeling
Histone modification is a reversible process that indicates the
covalent posttranslational modification of histone proteins,
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includingmethylation, acetylation, phosphorylation, adenylation,
ubiquitination, sumoylation, and ADP ribosylation (Lyu et al.,
2019). Histone acetylation is the most studied process and is
controlled by histone acetyltransferases (HATs) and histone
deacetylases. Hemodynamic forces, pulsatile shear and
oscillatory shear can modulate the expression of HDAC to
regulate anti-inflammatory and antioxidant signaling by
altering the acetylation of transcription factors (Lee and Chiu,
2019). Furthermore, a study identified that mechanical stress can
alter histone acetylation through actin filament-mediated
sequestration, suggesting the role of the cell cytoskeleton in
the nuclear-cytosolic shuttle of HDACs (Li et al., 2013).

The dysfunction of the HDACs is associated with various
fibrotic diseases. Class IIa HDACs can interact with myocyte
enhancer factor 2 (MEF2), decrease its expression, and
attenuate myocardial hypertrophy (Zhang D et al., 2018).
Class I and IIb HDACs are also involved in cardiac
remodeling (Jin et al., 2017). Apart from acetylation,
histone lysine demethylase (KDM) has shown regulatory
effects in cardiac hypertrophy and fibrosis. In response to
pressure overload, KDM3A, an H3K9me2-specific
demethylase, activates Timp1 transcription to promote left
ventricular hypertrophy and fibrosis. JIB-04, a pan-KDM
inhibitor, suppresses pressure overload-induced hypertrophy
and fibrosis (Zhang Q.-J et al., 2018).

In a bile duct ligation-induced liver fibrosis mouse model,
HDACI intervention was found to effectively reduce the HSC
activity and ameliorated hepatic dysfunction (Park et al.,
2014). In Schistosomiasis-induced liver cirrhosis, HDACIs
induce apoptosis of the larvae and adult form of
schistosomula by inhibiting the NF-κB signaling pathway,
while inducing the production of anti-inflammatory
cytokines and reducing the number of activated
macrophages (de Oliveira et al., 2017). These observations
suggest a role for HDACI in dampening the inflammatory
reaction, reducing hepatic injury and ameliorating hepatic
fibrogenesis.

In UUO-induced renal fibrosis, all four class IIa HDAC
isoforms are upregulated in renal epithelial cells.
Administration of MC1568, a selective class IIa HDACI,
suppresses the expression of α-SMA, fibronectin, and type I
collagen, reduces the phosphorylation of Smad3 and NF-κB,
and induces the production of ɑvβ6 integrin, suggesting that it
alleviates renal fibrosis by inhibiting the TGFβ1-induced
response and promoting antifibrotic protein production
(Xiong et al., 2019). Histone modifications are also found to
be involved in renal fibrosis in diabetic kidney disease by
promoting the expression of profibrotic factors, accelerating
the accumulation of ECM and stimulating EMT progression
(Sun et al., 2017).

In IPF pulmonary tissues, a significant upregulation of Class I and
II HDAC activation has been reported (Korfei et al., 2015). NCC170,
an HDAC8-selective inhibitor, could ameliorates TGFβ1-induced
fibroblast contraction and α-SMA expression in normal human lung
fibroblasts. Furthermore, NCC170 significantly reduces the
expression of type I collagen and fibronectin in a bleomycin-
induced pulmonary fibrosis mouse model (Saito et al., 2019).

These studies reveal the contribution of HDACs in pulmonary
fibrosis and support their potential as therapeutic targets.

4.3 Mechanosensitive microRNAs in the
Cellular Response
MicroRNAs (miRNAs) are a group of small noncoding RNAs
with a strictly regulated biogenesis that function as negative
regulators by binding to the 3′UTR of target mRNAs and
degrading them. Arpproximately 50 miRNAs have been
implicated in the pathogenesis of fibrotic disease (O’Reilly,
2017; Vettori et al., 2012). Figure 3 lists the mechanosensitive
miRNAs involved in fibrogenesis, and the details of each
miRNA are provided below.

MiR-19a/b belong to the miR-17–92 cluster. MiR-19a has
been shown to regulate CTGF and thrombospondin-1 (TSP-1)
with widespread ECM accumulation in a mouse model of age-
related heart failure (Vettori et al., 2012), and laminar shear
stress has been found to increase the expression of miR-19a
(Kumar et al., 2014), suggesting its antifibrotic effect in cardiac
remodeling. Interestingly, in response to mechanical stress,
miR-19b downregulates PTEN in human lung epithelial cells,
leading to activation of the AKT pathway and mechanical
stretch-induced EMT phenotypes (Mao et al., 2017), which
make it a profibrotic miRNA.

MiR-29 is the most studied direct regulator of ECM
synthesis, which has been reported to be downregulated,
accompanied by the consequent elevation of collagen
expression in a myocardial infarction model (Ren et al.,
2020), human systemic scleroderma (SSc) dermal fibroblasts
and a SSc skin (Saveria Fioretto et al., 2020), salt-induced
hypertensive renal fibrosis (Liu Y et al., 2010), a bleomycin-
induced pulmonary fibrosis mouse model (Cushing et al.,
2011), and a nonalcoholic steatohepatitis mouse model
(Jiang et al., 2017). The expression of miR-29 was found to
be under the control of mechanotransduction pathways,
particularly in a YAP/TEAD-dependent manner. Further
study verified that in IPF, mechanotransduction of ECM
stiffness can negatively regulate miR-29 (Klinkhammer
et al., 2018).

MiR-133 and miR-30 are two major regulators of CTGF
expression in cardiac fibrosis. MiR-133 is a cardiac-specific
miRNA, while miR-30 is not limited to heart tissues (Vettori
et al., 2012). MiR-133 and miR-30 both mediate the expression
of CTGF in a mechanical pressure overload-induced heart
disease animal model, with downregulation of the two miRNA
families and upregulation of CTGF in vivo (Tang et al., 2020).
MiR-133 was further found to downregulate TGFβ1 in a
canine model of nicotine-induced AF (Yousefi et al., 2020).
A recent study indicated that miR-30 can regulate osteoblast
differentiation under mechanical pressure in a
mechanosensitive manner (Zhang et al., 2020).

Cells can store memories of cumulative mechanical stress
exposure, with YAP/TAZ acting as an intracellular mechanical
regulator and potentially including genetic, epigenetic or
structural changes (Yang et al., 2014). In mesenchymal cells
(MSCs), miR-21 has been recognized as a long-term memory
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keeper of the fibrogenic program (Li et al., 2017). In mouse
MSCs, ECM stiffness causes the upregulation of miR-21, which
is under the control of MRTF-A nuclear translocation. After
the removal of mechanical stimuli, the miR-21 level remains
high for over 2 weeks. Moreover, knocking down miR-21 by
the end of the stiff-priming period erases the mechanical
memory and sensitizes MSCs to subsequent exposure to soft
substrates (Li et al., 2017). Apart from cardiac fibrosis, miR-21
has also been confirmed to have a profibrotic role in human

IPF, murine bleomycin-induced lung fibrosis (Liu G et al.,
2010) and renal fibrosis (Zhong et al., 2011).

MiR-27b is significantly downregulated in AF patients,
accompanied by reduced connexin 43 expression. Using an
adenovirus to overexpress miR-27b-3p was observed to reduce
the duration of AF, ameliorate atrial fibrosis, increase connexin
43 expression and decrease the expression of type I/III collagen,
α-SMA, TGFβ1, Wnt3a and p-β-Catenin, indicating that miR-
27b-3p regulates the Wnt/β-catenin signaling pathway by

FIGURE 3 | Cellular mechanoeffecting mechanism in fibrosis. Each step of the activation of profibrotic pathway is under regulation of different kind of epigenetic
modification. Several mechanosensitive miRNAs are also involved in this process.
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targetingWnt3a (Lv et al., 2019). In cardiac fibrosis, miR-27b was
also found to inhibit Smad-2/3 phosphorylation by targeting
ALK5 (Wang Y et al., 2018). In contrast, miR-27a was found
to induce lipid accumulation and proliferation of HSCs in hepatic
fibrosis, showing a profibrotic effect (Ji et al., 2009).

MiR-155 is a multifunctional miRNA, and in fibrotic
diseases, it mainly plays a profibrotic role. In liver fibrosis
and alcohol-induced steatohepatitis, miR-155 promotes
inflammation to induce fibrosis (Nazari-Jahantigh et al.,
2012). In SSc, miR-155 overexpression is required for
NLRP3 inflammasome-mediated collagen synthesis (Artlett
et al., 2017). In silicosis mice, inhibition of miR-155-5p
ameliorates macrophage and fibroblast activation and thus
exerts antifibrotic effects (Chen et al., 2020), making it a
promising therapeutic strategy. In atherosclerosis, miR155
has been found to regulate atherogenesis by promoting
inflammatory responses (Du et al., 2014), and the
expression of which can be increased by laminar shear
stress, making it a mechanosnesitive miRNA (Kumar et al.,
2014).

5 CURRENT CLINICAL TRIALS IN FIBROTIC
DISEASES

Fibrosis is associated with diverse diseases in different organ
systems. In recent years, our understanding of the complex
pathogenesis continues to grow, and the advances in
researches pave the way for novel clinical strategies in diseases
management. However, despite the insights we had made in the
cellular and molecular level, or the pathogenetic models we
brought up to mimic fibrogenesis, in clinical practice there are
few effective therapies and even fewer methods focusing on
mechano-regulation. Thus highlighting the need for a deeper
comprehension of fibrogenesis and the translation from
laboratories to bedsides. Here we summarized the current or
recently ended studies targeting mechano-regulation
(Supplementary Table S1), as well as mechanosensitive
biomarkers (Supplementary Table S2) in fibrotic diseases, and
we discussed the possible strategies targeting mechano-sensing,
mechano-transduction and mechano-effecting process.
Hopefully the novel measures promise to stabilize the fibrotic
conditions, ameliorate symptoms, improve life qualities and
ultimately reverse and cure fibrosis.

5.1 Strategies Targeting Cellular
Mechanosensing
The αvβ6 integrin has been shown to be upregulated in patients
with liver diseases and correlated with the stage of fibrosis
(Hintermann and Christen, 2019). In mouse models of carbon
tetrachloride-induced hepatic fibrosis and bleomycin-induced
pulmonary fibrosis, inhibitors of αv integrins showed potent
antifibrotic effects (Conroy et al., 2016), and similar outcomes
were found in renal fibrosis (Conroy et al., 2016). In IPF patients,
BG00011 and simtuzumab (Supplementary Table S1) were
tested for their safety and efficacy. BG00011, a humanized

monoclonal antibody against αvβ6 integrin, could interfere
with the cell–ECM mechanotransduction and suppress TGFβ
activation. Simtuzumab was thought to disturb the collagen
cross-linking to reduce tissue stiffness and tension by binding
LOXL2. However, the clinical evaluation of simtuzumab was
terminated due to lack of efficacy. Strategies to manipulate αv
integrins, such as antibody blockade and small molecule
inhibitors, could potentially be effective antifibrotic therapies.

5.2 Strategies Targeting Cellular
Mechanotransduction
In CF patients, epigallocatechin gallate, tocotrienol and quercetin
were found to increase the CFTR related ion channel activity to
regulate disease progression. Two clinical trials were designed to
evaluate their effectiveness and safety (Supplementary Table S1).
Nifedipine, a calcium channel blocker, was found to prevent
fibrotic changes in a bleomycin model of pulmonary fibrosis
(Mukherjee et al., 2015). While nifedipine had little or no effect
on lung inflammation, its protective effect might be prompted by
disrupting calcium oscillation in fibroblasts.

Melatonin has inhibitory effects on the expression and
activation of YAP by binding to MT1/MT2 melatonin
receptors in bleomycin-induced mouse lung fibrosis models
(Zhao et al., 2018). Morin increases the expression of MST1
and decreases that of YAP/TAZ in the a diethylnitrosamine-
induced liver fibrosis rat model and hepatic stellate cells derived
from humans (Perumal et al., 2017). And Verteporfin inhibites
YAP transcriptional activity by interfering with YAP-TEAD
interactions (Brodowska et al., 2014). Considering that the
MRTF and YAP signaling pathways are controlled by an
interlocking loop, the inhibition of one pathway could result
in inhibition of the other. MRTF could be a novel therapeutic
target. The MRTF inhibitors CCG-1423 and CCG-203971 were
found to have antifibrotic potential in mouse skin (Haak et al.,
2014), lung (Sisson et al., 2015) and vascular (Minami et al., 2012)
fibrosis models. In a rabbit model of scar tissue formation after
glaucoma filtration surgery, which is a validated and preclinical
model of fibrosis, local administration of the MRTF-A inhibitors
CCG-203971 and CCG-222740 significantly decrease fibrosis
(Yu-Wai-Man et al., 2017). However, considering the central
role of the Hippo pathway in organ development and
regeneration, these strategies may also cause undesired
harmful effects.

5.3 Strategies Targeting Cellular
Mechanoeffecting
In a pressure overloading-induced cardiac hypertrophy mouse
model, administration of the DNMT inhibitor RG108 was found to
diminish the fibrotic response and downregulated a set of genes,
including Atp2a2 (encodes one of the SERCA calcium-ATPases)
and Adrb1 (encodes the β1-adrenoceptor) (Stenzig et al., 2018).
This research suggested a link between DNMT inhibitor treatment
and the attenuation of cardiac hypertrophy. The DNAmethylation
level can also be used as a biomarker for fibrosis management. In
patients with nonalcoholic fatty liver disease, plasma DNA
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methylation of peroxisome proliferator-activated receptor γ
(PPARγ) has been found to be correlated with changes in
hepatocellular tissue, making it possible to evaluate liver fibrosis
severity in a noninvasive way (Hardy et al., 2017).

HDAC inhibitors have also been evaluated as agents for
correcting pathological fibrotic remodeling. Currently, four
HDACIs have been approved by the U.S. Food and Drug
Administration (FDA) for clinical use in hematologic tumors
(Qin et al., 2017), while HADCIs in fibrotic diseases are still
being examined in preclinical studies. For example, trichostatin
A, a pan HDACI, has shown benefits in multiple fibrosis models
(Lan et al., 2015; Wu et al., 2017; Yoon et al., 2019), and SK-7041, a
class I HDAC-selective inhibitor, ameliorates fibrotic conditions in
cardiac and renal mouse models (Arise et al., 2020; Martinez-
Moreno et al., 2020). Unlike other diseases in which one
therapeutic target will be sufficient, fibrotic diseases sometimes
require combined epigenetic therapy. The FDA-approved pan-
HDACI Vorinostat shows greater benefit in combination with
PI3K inhibitors in the treatment of cutaneous T-cell lymphoma
(Rangwala et al., 2012). However, histones are not the only proteins
that undergo acetylation, which means HDACI may affect enzyme
activity via nonhistone protein acetylation (Yoon et al., 2019), thus
contributing to fatal side effects (Kwon et al., 2016).

The use of miRNAs as therapeutics is now being widely
applied. Using antago-miRNAs, an oligonucleotide
antagonistic targeting specific miRNA and therefore blocking
the binding and stopping the repression of the mRNA to increase
mRNA levels in vivo, has been used for 15 years (Lu and
Rothenberg, 2018). The efficacy of the miRNA let-7a mimic in
a mouse model of bleomycin-induced dermal sclerosis has been
successfully tested (Makino et al., 2013). Lentiviral, adenoviral, or
adeno-associated viral vectors with built-in miRNA precursor
constructs could also be potential therapeutics, but they may also
induce unwanted immune responses toward the vectors.

6 SUMMARY AND OUTLOOK

Taken together, mechanical homeostasis, which includes the
whole process from mechanosensing to mechanotransduction
and finally mechanoeffecting, is of great importance in balancing
the physiological system. An injury in a tissue sensed by cells,
whether in an ECM–cell or cell–cell manner, initiates the cellular
response. The signals then pass to the intracellular space where
they are processed. Finally, the downstream gene is activated and
carries out its function. Fibrosis represents the failure to
reestablish mechanical homeostasis, thereby inappropriately

activating the mechanism mentioned above and eventually
leading to progressive ECM deposition and tissue destruction.
Recent advances in technology and the study of tissue in
physiological pathology conditions, especially in tissue repair,
fibrosis, and mechanoregulation mechanisms, help us to
understand how mechanical environment homeostasis is
maintained under different stimulations. While this review
only focuses on mechanical mechanisms, biochemical
mechanisms, which are also under in-depth investigation, are
equally important in fibrogenesis. The universal role of fibrosis
has been identified not only in fibrotic diseases but also in
disorders such as fibrillation (Kottkamp, 2013), carcinogenesis,
progression, andmetastasis (Chandler et al., 2019), among others.
Thus, the translation of these insights into fibrosis-based clinical
and therapeutic interventions may lead to the exploration of
novel approaches for different types of diseases.
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GLOSSARY

AF atrial fibrillation

CaSR calcium-sensing receptor

CAF cancer-associated fibroblast

Cav voltage-gated calcium channel

CCN cellular communication network factor

CD Crohn’s disease

CFTR cystic fibrosis transmembrane conductance regulator

CGRP calcitonin gene related peptide

COX cyclooxygenase

CTGF connective tissue growth factor

DAG diacylglycerol

DNMT DNA methyltransferases

DSP desmoplaki

DSS dextran sodium sulphate

ECM extracellular matrix

EGCG epigallocatechin gallate

EGF epidermal growth factor

EMT epithelial-mesenchymal transition

ERK extracellular regulated protein kinases

FAK focal adhesion kinase

FAT focal-adhesion targeting

FDA Food and Drug Administration

FSGS focal segmental glomerulosclerosis

GPCR G protein-coupled receptor

HAT histone acetyltransferase

HBV hepatitis B virus

HCV hepatitis C virus

HDAC histone deacetylase

HSC hepatic stellate cells

IBD inflammatory bowel disease

IPF idiopathic pulmonary fibrosis

KDM lysine demethylase

LAP latency-associated peptide

JNK Jun N-terminal kinase

MAPK mitogen-activated protein kinase

MEF myocyte enhancer factor

miRNA microRNA

MMP metalloproteinase

MRTF myocardin-related transcription factor

MSC mesenchymal cell

NO nitric oxide

Nox2 NADPH-dependent oxidase type 2

NFAT nuclear factor of activated T cells

NF-κB nuclear factor κ-B

PDAC pancreatic ductal adenocarcinoma

PGE Prostaglandin E

PI3K phosphoinositol-3-kinase

PPARγ peroxisome proliferator-activated receptor γ

PTEN phosphatase and tensin homolog deleted on chromosome ten

PTK protein tyrosine kinase

ROS reactive oxygen species

RGD arginine-glycine-aspartic acid

α-SMA α-smooth muscle actin

SSc systemic scleroderma

STAT3 signal transducer and activator of transcription 3

TAZ WW domain-containing transcription regulator protein

TSP thrombospondin

TGFβ transforming growth factor β

TRP transient receptor potential

UC ulcerative colitis

UUO unilateral ureteral obstruction

YAP yes-associated protein
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