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REVIEW
Moving oncolytic viruses into the clinic: clinical-grade

production, purification, and characterization of diverse
oncolytic viruses

Guy Ungerechts'??, Sascha Bossow', Barbara Leuchs?, Per S Holm?®, Jean Rommelaere®, Matt Coffey®, Rob Coffin’,
John Bell' and Dirk M Nettelbeck®

Oncolytic viruses (OVs) are unique anticancer agents based on their pleotropic modes of action, which include, besides viral tumor
cell lysis, activation of antitumor immunity. A panel of diverse viruses, often genetically engineered, has advanced to clinical investi-
gation, including phase 3 studies. This diversity of virotherapeutics not only offers interesting opportunities for the implementation
of different therapeutic regimens but also poses challenges for clinical translation. Thus, manufacturing processes and regulatory
approval paths need to be established for each OV individually. This review provides an overview of clinical-grade manufacturing
procedures for OVs using six virus families as examples, and key challenges are discussed individually. For example, different virus
features with respect to particle size, presence/absence of an envelope, and host species imply specific requirements for measures
to ensure sterility, for handling, and for determination of appropriate animal models for toxicity testing, respectively. On the other
hand, optimization of serum-free culture conditions, increasing virus yields, development of scalable purification strategies, and
formulations guaranteeing long-term stability are challenges common to several if not all OVs. In light of the recent marketing
approval of the first OV in the Western world, strategies for further upscaling OV manufacturing and optimizing product character-

ization will receive increasing attention.
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INTRODUCTION

With recent marketing approval in the United States and recom-
mendation for marketing approval in Europe of the first oncolytic
virus (OV) in the Western world, T-Vec (brand name Imlygic),'? this
new class of cancer drugs is now complementing surgery, chemo-
therapy, irradiation, targeted small molecules, and antibodies in
routine clinical oncology. OVs implement a unique mode of action,
tumor-restricted viral infection, replication, cell lysis, and spread.>*
Notably, recent preclinical and clinical research has revealed pleiotro-
pic therapeutic activity of OVs (Figure 1): (i) viral tumor cell lysis has
been shown to trigger systemic antitumor immunity in animal mod-
els and patients,>® (i) the insertion of therapeutic genes can trigger
bystander killing by different means, depending on the chosen gene?,
and (iii) endothelial cells specifically in tumor vessels were shown to
be susceptible to OVs, resulting in vascular shut down and indirect
destruction of tumor cells.” As multitasking agents, OVs offer prom-
ising opportunities for treatment of heterogeneous tumors, avoid-
ance of resistance development, and implementation of combina-
tion therapies. Research and clinical translation has recently focused

especially on the vaccination effect and on the combination with
(other) immunotherapies, foremost immune checkpoint inhibition.5®

The fact that besides herpesvirus T-Vec OVs derived from several
classes of viruses are being developed highlights the future potential
of viral oncolysis®>'" (Figure 1). They represent a panel of pharmaco-
phores that differ considerably with respect to their structure, size,
genome, replication mechanisms, and host interactions including
triggered host immune responses (Table 1). This diversity is further
extended by the opportunity to genetically engineer OVs by a panel
of different strategies (Table 1) aiming at better biodistribution and
tumor specificity or at extending therapeutic applications, for exam-
ple, by transgene expression as mentioned above. Moreover, by itera-
tive translation cycles in a bench-to-bed-and-back approach, virus
engineering facilitates overcoming emerging roadblocks to thera-
peutic efficacy. Notably, viruses from nine virus families are already in
clinical investigation, and for some of these viruses, derivatives with
different genetic modifications are being studied.>"

The diversity of OVs clearly establishes promising therapeutic
opportunities. The following are three examples: oncolytic measles
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Diversity of oncolytic viruses and their modes of action. (@) Oncolytic viruses covered in this review. (Adapted by permission from Macmillan

Publishers: Nature Reviews Microbiology, (Cattaneo et al.**), copyright (2008)). (b) Modes of action implemented by oncolytic viruses. Each of the
described activity has been reported in animal models and in cancer patients (tumor cells in purple, endothelial cells in orange).

viruses located to tumor lesions and triggered durable complete
remission after single systemic application in a patient with dissemi-
nated myeloma'?; T-Vec demonstrated immune-mediated systemic
antitumor activity for metastatic melanoma patients after repeated
intratumoral injections®; and oncolytic vaccinia viruses showed the
above-mentioned antivascular effect in patients with solid tumors.”
However, virus diversity also poses challenges for translation of viral
oncolysis into clinical application: safety and manufacturing issues
need to be addressed for each virusindividually, because their relevant
properties, such as genetic stability, biodistribution, and immunoge-
nicity, might differ considerably.

This review provides a concise overview of clinical-grade manufac-
turing of six classes of OVs that are currently in clinical development:
adeno-, herpes-, measles, parvo-, reo-, and vaccinia viruses. Key facts
and numbers for these viruses and their manufacturing are provided
in Tables 1 and 2. As a condensed overview, five additional, essen-
tial aspects during the translation process of OVs into the clinics are
presented in Figure 2. Major issues, challenges, and opportunities for
virus manufacturing are discussed for each virus individually followed
by a synopsis.
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ADENOVIRUSES
Adenoviruses (Ads) are attractive oncolytic agents, based on their
potent lytic activity, detailed knowledge of their structure and rep-
lication cycle, ample opportunities for virus engineering, and the
high stability of virus particles and their genome. Different oncolytic
Ads have been investigated in clinical studies, and the Ad Oncorine
(H101) obtained marketing approval in China in 2005 (ref. 13). As
with any new therapies, the translation of oncolytic (adeno-) viruses
from the laboratory bench to their use in the clinic is subject to
specific regulations and must meet several well-defined criteria for
selectivity, potency, stability, identity, and product characterization
(Table 2). Particular attention should be directed toward a detailed
characterization of a stable good manufacturing practice (GMP) pro-
cess, including the establishment of a master cell bank and a master
seed virus and the development of sophisticated release assays.'*'®
Thus, it is advisable that developers of oncolytic Ads contact local
regulatory authorities at an early time point to discuss these issues.
For the production of oncolytic Ads, many producer cells,’”'® such
as HEK293, are available and produce high Ad titer. However, since
these cells possess genomic insertions of adenoviral E1 genes and
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oncolytic Ads contain E1 deletions or modifications, recombina-
tions can occur reverting the modified E1 gene of oncolytic Ads
to wild-type sequence. This problem can be encountered by the
selection of a thoroughly characterized cell line that does not have
integrated adenoviral sequences.” An additional challenge is a con-
sistent surveillance of master cell bank and master seed virus used
in the production of oncolytic Ads that included tests for the cellular
identity and the absence of any adventitious contaminants, such as
mycoplasma and bovine/porcine viruses.'

Different production methods for viral particle (vp) have been
described in the literature,'®2 including the growth of producer
cells in suspension using serum-free medium. However, the produc-
tion of oncolytic Ads under serum-free conditions causes a signifi-
cant reduction in virus yield. In addition, the production of oncolytic
Ads is also affected by the so-called cell density effect that limits the
production of Ads at cell densities of ~1x 10° cells/ml.

The most popular method for the purification of oncolytic Ads is
the use of two rounds of cesium chloride density gradient ultracen-
trifugation. This method can provide sufficient material for phase
1 trials but has the disadvantage of not being scalable. Therefore,
for large-scale manufacturing of clinical-grade oncolytic vectors
exceeding =10" vp, column chromatographic methods, including
anion exchange chromatography, have been developed.?*% During
virus production and purification steps, the upstream and down-
stream processing is time consuming and causes considerable
production costs. Thus, it is important to establish a method, which
enables the monitoring of virus titer in every single production step
during upstream and downstream processing.

Purified viruses should be tested for potency, identity (endpoint
PCR, restriction analysis, or sequencing), sterility, purity, endotoxin,
contaminating host cell DNA (<5 pg/10'" vp), and proteins (Table 2).
Total vp and infectious particles (ip) are two critical parameters
for comparison of different production processes and should be
determined carefully. The Food and Drug Administration recom-
mends a vp/ip ratio of 30. A high deviation from this value should be
avoided (although a certain ratio is not specified by the European
regulatory agency).

It is of decisive importance to choose an appropriate immuno-
competent animal model for testing toxicity and biodistribution
studies of oncolytic Ad. In this regard, it has been shown that Syrian
hamster support viral replication in several organs.?” Such studies
might be performed with “lab-derived material” if the compara-
bility of the “lab material” and the GMP material has been shown
unequivocally.

HERPESVIRUSES

Herpes simplex virus (HSV) is a large, enveloped, double-stranded
DNA virus, which between the envelope and capsid contains a
region known as the tegument, containing over 20 HSV proteins,
which is essential for infectivity. The envelope carries 12 glycopro-
teins, and the capsid is composed of 7 different proteins. As such,
manufacturing of HSV presents a number of challenges. These
include the large size of the virus (155-240nm), including that it
is enveloped, which needs to be kept intact throughout the purifi-
cation process. As HSV is complex, full characterization of the final
product can also be challenging. The 152 Kb genome has both long
and short unique regions each flanked by terminal repeat regions
which are present in the four possible orientations in relation to
each other. The repeated regions mean that some HSV genes (e.g.,
ICP34.5—see later) are present twice in the genome, and the dif-
ferent orientations means that an HSV stock contains capsids
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containing each of these isomers.?® Both of these properties of the
HSV genome can also complicate characterization.

Oncolytic versions of HSV have one or more nonessential genes
deleted, in some cases combined with the insertion of a therapeu-
tic transgene® A nonessential gene is unnecessary for replication
in vitro but is required for pathogenicity in vivo. Those deleted or
mutated genes in candidate oncolytic viruses include ICP34.5 (the
neurovirulence factor that provides the greatest attenuation of
pathogenicity in vivo while still allowing replication in vivo), thymi-
dine kinase (not only necessary for sensitivity to acyclovir and simi-
lar drugs but also required for efficient replication in vivo), ICP6 (the
large subunit of ribonucleotide reductase), and ICP47 (which blocks
antigen presentation by transporter associated with antigen pro-
cessing). Insertions include a number of cytokines, including IL-12
and granulocyte-macrophage colony-stimulating factor (GM-CSF).
Talimogene laherparepvec (T-Vec, brand name Imlygic, Amgen,
Thousand Oaks, CA) is the most advanced in clinical development
and is deleted for ICP34.5 and ICP47 containing an insertion of the
gene encoding GM-CSF under CMV promoter control in place of
ICP34.5 (ref. 29).

From a purification perspective, standard procedures used for
the production of live attenuated viral vaccines are generally
employed, including harvest of the supernatant from infected
producer cells, size exclusion chromatography, ion-exchange
chromatography, Benzonase treatment to remove contaminat-
ing DNA, sterile filtration, and filling of final product. To avoid
centrifugation, use of tangential flow filtration can be employed
for concentration and/or buffer exchange between steps, but if
so care needs to be taken regarding the sheer forces exerted so
as not to disrupt the complex virion, as is also the case for ter-
minal sterile filtration if employed. Careful optimization of each
of these steps is required. For characterization, western blotting
to confirm the presence and relative abundance of key viral pro-
teins can be used and product-specific PCR or Southern blot to
confirm genome structure (Table 2). Potency assays will not only
depend on the nature of any transgene but also seek to confirm
oncolytic activity in appropriate cells. While these processes and
procedures are generally robust, future improvements may seek
to increase yields at each step and long-term stability at ambient
or refrigerated temperatures.

MEASLES VIRUSES

Oncolytic measles viruses (MV) based on attenuated vaccine strains
are currently under investigation in clinical trials (Table 1) as a prom-
ising modality of cancer treatment with the potential to induce
immune-mediated tumor rejection. MV vaccine strains are oncolytic
by preferentially entering tumor cells through CD46 (ref. 30), a mem-
brane protein that is typically overexpressed in malignant cells.’'

In contrast to using MV as a vaccine, oncolytic activity as an
advanced therapy medicinal product depends on high concentra-
tion of infectious particles. While the size range of pleomorphic
MV particles is often quoted as 100-300nm?, in practice, MV must
be treated as >1 um particles that are extremely shear sensitive,
to maximize recoveries and retain infectivity. Therefore, the entire
production and purification process has to be done under gentle
and aseptic GMP conditions.® Clinical batches of MV are produced
in Vero cells adapted to serum-free growth in cell factory multi-
layer vessels, resulting in 50% of the virus in the supernatant and
50% staying associated with the cells. The supernatant is clarified
by filtration and treated with Benzonase to digest contaminating
nucleic acids. MV particles are then concentrated and purified using
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Figure2 Essential steps involved in the translation of OVs into the clinics. Starting from preclinical studies showing proof of concept in terms of
therapeutic efficacy of a novel oncolytic agent, securing intellectual property (i.e., filing a patent) is necessary in order to successfully apply for funding,
particularly with regard to finding an industrial partner who can perform the challenging and cost-intensive manufacturing under GMP conditions.
Pharmacological and toxicological studies using appropriate animal models demonstrating a safe application of the OV is one of the prerequisites to
submit an investigational new drug application to the regulatory authorities that contains all of the information regarding production and testing of
the clinical grade OV. Additionally, a clinical protocol thoroughly considering the application of replication-competent viruses to patients has to be
designed in order to get the approval for the clinical study. GMP, good manufacturing practice; OV, oncolytic virus.

tangential flow filtration and diafiltration, followed by a final pass-
ing through a clarifying filter prior to vialing and storage at < —65 °C.

Previously, various compounds and excipient formulations have
been tested as stabilizers to protect the integrity of the viral enve-
lope (i.e., viral infectivity) and also to inhibit aggregation of vp. MV
formulated with a buffered sucrose solution containing additionally
magnesium chloride showed enhanced physical stability providing
virus longevity of more than 6 years, with stable infectivity of the
sensitive agent.

Current batch preparations meet the requirements for clinical
trials, but purity may be further improved. MV products are tested
for identity, purity, potency, adventitious agents, contaminating
host cell DNA, and proteins (Table 2). The ratio between total vp
and ip is a critical parameter for the quality of virus preparations.
Although a certain vp/ip ratio is not specified by the regulatory
agencies, a value of =50 in MV preparations can be assumed on
average. Residual DNA from host cells in the final product is one of
the concerns in the manufacturing process of MV as an advanced
therapy medicinal product. For the commercially produced MV vac-
cine, the WHO recommends values <100 pg per dose (i.e., 1,000 ip).
But for the use of high doses of MV in cancer therapies (e.g., 10° ip
for intratumoral injections), the limit for expectedly higher amounts
of residual host DNA in the final product has to be coordinated with
the regulating authorities.

Currently, several strategies are pursued to improve overall yield
and purity of MV preparations. Cultivation using microcarriers or
switching to suspension cells in bioreactors may lead to higher
titers. Also, development of virus compatible, chromatographic
procedures (ion exchangers) may be an option to contribute to
the removal of non-particle-associated nucleic acids and proteins,
thereby improving the quality of clinical MV batches.

PARVOVIRUSES H-1PV

Several aspects of the biology of rodent protoparvoviruses (PVs), in
particular H-1PV, make these agents attractive for the development of
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anticancer strategies (see Table 1, specific features). Some of these prop-
erties also impact on the procedures used for clinical-grade virus pro-
duction, purification, and quality/quantity control. First of all, the low
natural infectivity of PVs and their lack of association with human dis-
eases minimize the precautions to be taken to protect the staff involved
in virus manipulation. Furthermore, the high stability (and concomitant
longevity) of infectious virions (tolerance to heating, extreme pH, and
desiccation) makes their handling significantly easier.3*

Besides these general factors, specific steps in virus batch prepara-
tion rely on physicochemical or biological features of PVs. (i) The com-
pact physical (and genetic) structure of the virions (parvus = small)
allows filtration to be used in purification and sterilization processes.
(ii) Mature PVs are stable in the presence of lipid solvents which can
thus be applied to virus release and purification. (iii) Full and empty
PVs have distinct densities and can be isolated and concentrated
through gradient centrifugation. (iv) PVs are among the most resis-
tant pathogens to inactivation by gamma irradiation. Advantages
could be taken of this resistance to inactivate microbial contaminants
in PV samples. (v) Human cells can be used for efficient PV produc-
tion, thereby avoiding the risk of batch contamination with animal
microbes and immunogenic animal proteins. (vi) Producer cells can
be adapted to suspension culture, raising the possibility of PV pro-
duction upscaling in bioreactors. (vii) Through the establishment
of master virus banks, clinical batches are obtained after infection,
avoiding the need for transfection reagent testing of final products.
(viii) PV formulation with Visipaque/Ringer solution allows computer
tomography visualization of the inoculum, precise local delivery, and
absence of backflow due to higher viscosity. Virus longevity for more
than 4 years was demonstrated in this formulation, with little aggre-
gation and stable infectivity (Leuchs B, et al., unpublished data).

Current PV batch preparation meets the requirements for clini-
cal trials but still calls for further improvements. Special efforts
are currently done to select producer cells adapted for large-scale
cultivation in serum-free and optimized medium, using microcar-
rier or suspension bioreactors (e.g., wave or stirring). Since density
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centrifugation of large virus harvests is cumbersome, the develop-
ment of chromatographic procedures with ion exchangers or mem-
brane absorber is needed to optimize and shorten PV purification
steps. This should contribute to improve the removal of cellular and
non-particle-associated viral DNA and proteins and to enhance the
specific infectivity of PV clinical batches.

REOVIRUSES: REOLYSIN (PELAREOREP), A UNIQUE ISOLATE
OF REOVIRUS T3D (TYPE 3 DEARING)

REOLYSIN, also known as pelareorep, is a proprietary isolate of the
replication-competent reovirus type 3 Dearing, a non-enveloped
double-stranded RNA virus that possess an intrinsic preference to
replicate and subsequently lyse tumor cells with Ras pathway acti-
vation.*® The selective lysis of cells with an activated Ras pathway
by reovirus arises from the inhibition of the autophosphorylation
of dsRNA-activated protein kinase (PKR), thereby disabling the cells’
protective antiviral mechanism. Several groups have demonstrated
that reovirus-induced lysis of tumor cells stimulates a potent antitu-
mor immune response which is composed of both innate immune
activation and adaptive immune responses.>¢-3#

For the production of oncolytic reovirus in clinical applications,
the cell culture process consists of thawing vials of human embryo
kidney (HEK293S) cells and seeding in T-flasks with a proprietary
medium supplemented with glutamine. Cell expansion continues
using T flasks and/or increasing sizes of Erlenmeyer flasks, with pas-
sages every 3 to 3 days until a sufficient number of cells is achieved
to seed a WAVE bioreactor in which further expansion occurs.
Subsequently, the stirred-tank bioreactor is seeded, and the cells
are further expanded until an optimal number of cells are present
for infection. After achieving the desired HEK293S cell count, the
infection step, in which virus is added to the bioreactor contain-
ing the HEK293S cells, takes place. Virus is harvested using a Triton
lysis step, then a Benzonase treatment for degradation of residual
nucleic acids, followed by purification of the lysate. The down-
stream purification process begins with chilling of the lysate and
clarification through an 8.0-um filter, followed by 3.0/0.8-um filtra-
tion. After overnight storage, the clarified lysate is ultrafiltered and
diafiltered through a hollow fiber filter, followed again by overnight
storage. Two chromatography steps—ion exchange and gel perme-
ation—are completed prior to final 0.22-um filtration. Recovery of
infectious particles by this methodology averages 40%.

Identity testing of pelareorep as a reovirus T3D strain has been
confirmed by western blotting and confirmed in detail through
genomic sequencing and comparison to GenBank sequences. As
part of routine analytical testing on each lot of pelareorep pro-
duced, the identity of pelareorep is confirmed to be reovirus T3D by
QPCR. A more specific identity test to confirm pelareorep identity
is Sanger sequencing, which has recently been validated for use in
the routine identity testing of pelareorep. The new Sanger sequenc-
ing method identifies five unique modifications in the L1 genome
segment of reovirus T3D and thereby is specific to REOLYSIN.>*

Drug substance testing is assayed for appearance, mycoplasma,
adventitious viral contamination, identification, potency (virus
titer), content (virus particle concentration), bioburden, residual HC
DNA, residual HCP, and residual Benzonase (Table 2).

The greatest historical challenge in the production of the
virus was related to deficiencies in the commercially available
animal-component free cell culture medium that was used in early
process development. This medium was optimized for the pro-
duction of HEK293 suspension cells rather than the production of
virus. This medium was further limiting in that it did not support
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cell growth beyond 2E6 cells/ml, contained phenol red which inter-
fered with the anion exchange step, and allowed for the accumu-
lation of ammonia which prevented reovirus uncoating, which in
turn limited virus production in the bioreactor. To address these
shortcomings, Oncolytics (Oncolytics Biotech., Calgary, Alberta,
Canada) worked with third-party manufacturing experts to create
an optimized medium that was able to optimize cell growth as well
as virus production, principally by limiting ammonia production in
the bioreactor. This leaner media improved the quality of the feed-
stock and improved recovery more than fourfold as compared to
the commercially available medium.

VACCINIA VIRUSES

The extensive human safety data that is available for vaccinia viruses
as a consequence of their more than 200 hundred year use as a vac-
cine for small pox infections makes this a very attractive platform
as an oncolytic therapeutic. In addition, the virus can harbor and
express in excess of 50 Kb of therapeutic transgenes and has mul-
tiple known mechanisms of action against tumors in both rodents
and humans.* Vaccinia viruses were the first to demonstrate consis-
tent and convincing infection of tumor beds following i.v. adminis-
tration*' and in a small randomized trial demonstrated some signs
of survival benefitin a subset of hepatocellular carcinoma patients.*

Despite these encouraging results, there still exist several chal-
lenges to the widespread commercialization of the vaccinia OV
platform even when it achieves clinical success in phase 3 studies.
Like other OV platforms, large doses of viral product, well in excess
of vaccine doses, need to be administered to patients in order to
see effective delivery to tumors following i.v. administration.”* To
achieve these doses, virus is best produced in adherent tumor cell
cultures in serum-containing medium. To satisfy regulatory con-
cerns, extensive testing of viral product to ensure that no oncogenic
DNA is found in the final product needs to be done.

In addition, vaccinia remains largely cell associated and requires
cell disruption followed by enzyme digestion steps to liberate
the virus from cell debris and reduce host cell contaminants. An
additional challenge to the manufacture of pharmaceutical-grade
vaccinia virus is that its relatively large size prevents passing through
“sterilizing filters” commonly of 0.2 um or smaller pore size. This
means that the entire manufacturing process must be done asepti-
cally. Like many virus products, vaccinia is extremely stable when
stored at —80 °C, but additional formulation studies need to be per-
formed to create a pharmaceutical-grade product that can be rou-
tinely stored at —20 °C, 4 °C, or perhaps even at room temperature.

Further process development studies still need to be undertaken
to optimize the production of oncolytic vaccinia viruses. Ideally, a
serum-free suspension cell platform for producing high-titer virus
preparations would be preferred. If adherent cell cultures remain
required for satisfactory yields, high-intensity bioreactors like the
macrofibre iCellis system or manufacturing cells grown on micro-
carriers should be explored.

Currently, downstream purification of vaccinia virus products has
been limited to tangential flow filtration strategies, but the similar
size of vaccinia to apoptotic bodies released from dying cells limits
the ability to purify the virus from contaminating host protein and
nucleic acids. An orthogonal purification strategy independent of
particle size is preferred. Vaccinia virus has multiple isoforms, and
one version called extra enveloped virus is thought to have the
advantage of evading neutralizing antibodies.** Current manufac-
turing processes focus on harvesting cell-associated viruses that
would not include extra enveloped virus isoforms. Strategies that
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enrich and stabilize the somewhat delicate extra enveloped virus
form of the virus could create products that could be more effec-
tively delivered to immunized patients.

SYNOPSIS AND FUTURE PERSPECTIVES

Robust and readily scalable manufacturing processes have been
developed to produce various oncolytic viruses suitable as a drug
for clinical studies. Starting from an established, GMP-certified
master cell bank and a characterized master seed virus, the crude
virus supernatant is generated mostly by infecting adherent pro-
ducer cells at a low multiplicity of infection, then harvesting the OV
when extensive cytopathic effect is formed. The purification process
involves five steps common for almost all of the OV platforms pre-
sented here: (i) clarification to remove cellular debris; (ii) nuclease
treatment to degrade host cell nucleic acids; (iii) ion-exchange/size
exclusion chromatography for purification of the virus; (iv) ultracen-
trifugation or tangential flow ultrafiltration/diafiltration for concen-
tration and buffer exchange; and (v) a terminal sterile filtration step,
which may not be tolerated by every type of virus and therefore
requires a totally aseptic production process instead.

Although the ultrafiltration/diafiltration and column chromatogra-
phy steps are scalable using existing technologies, in order to scale up
the infection process for licensed product manufacturing, it could be
necessary to investigate bioreactor technology using adherent cells
on microbeads or suspension cell cultures to support the produc-
tion of OVs at desired higher titers. Ideally, cell growth would occur in
serum-free medium to completely eliminate animal-derived compo-
nents during GMP. Disposable single-use stirred tank bioreactors with
high volumes would be suitable for virus manufacturing purposes.
Downstream purification processes, especially separation from sub-
cellular structures, may need optimization in some cases, depend-
ing on the size and density of the virus particle. Quality control is the
part of GMP that is concerned with sampling, specifications, testing,
documentation and release procedures. It ensures that the necessary
and relevant tests are carried out and that all required materials are
released for use only if their quality is satisfactory.

Before using a virus lot in clinical trials, it is necessary to submit an
investigational new drug application to the regulatory authorities
that contains all the information regarding production and testing
of the clinical-grade OV, regarding its preclinical efficacy, biodis-
tribution, and pharmacological/toxicological testing in laboratory
animals, and the draft clinical protocol. It is highly recommended
to keep the regulatory authorities informed regarding any difficul-
ties encountered during lot release testing and to seek their input
and guidance at all key steps in the clinical reagent development
process. It may seem on the surface that replication-competent
viruses as oncolytic agents could be uniformly evaluated in terms
of manufacturing and approval for clinical studies. But release crite-
ria basing on validated test methods to characterize identity, purity,
potency, and safety of the OV products (Table 2) can vary taking the
nature of the respective virus type into account due to its inherent,
biologically specific properties like size, host species, tropism, etc.
Thus, to find common ground, most release criteria of clinical OV
platforms were derived from those defined in GMP specifications
of viral vaccine drugs, most of them consisting of formulations with
low amounts of vp sufficient for establishing the desired vaccina-
tion effect. However, current OV platforms require large doses of
viral product, well in excess of vaccine doses, in order to see effec-
tive delivery to tumor sites and therapeutic effects. Higher virus
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concentrations often come along with accumulation of impurities
like residual cellular host DNA. Eliminating this by more extensive
purification procedures, virus particles may suffer resulting in a
higher ratio of vp:ip, often depending on the nature of the virus

type.

Deviations in the release criteria of the final product have to be
coordinated with the local regulating authorities responsible for
the site where the clinical study is planned to be conducted. As
the authorities often define country-specific acceptance criteria,
this might pose a problem for clinical trials intended as multicenter
studies, especially when recruiting a large pool of patients in several
continents for phase 3 trials. Therefore, a global harmonization of
approval criteriaand processes between the local regulatory author-
ities (e.g., Food and Drug Administration, Health Canada, European
Medicines Agency, and International Council of Harmonization)
could be a helpful development for future attempts to bring onco-
lytic virus platforms into the clinic at a faster and higher extent.
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