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INTRODUCTION
With recent marketing approval in the United States and recom-
mendation for marketing approval in Europe of the first oncolytic 
virus (OV) in the Western world, T-Vec (brand name Imlygic),1,2 this 
new class of cancer drugs is now complementing surgery, chemo-
therapy, irradiation, targeted small molecules, and antibodies in 
routine clinical oncology. OVs implement a unique mode of action, 
tumor-restricted viral infection, replication, cell lysis, and spread.3,4 
Notably, recent preclinical and clinical research has revealed pleiotro-
pic therapeutic activity of OVs (Figure 1): (i) viral tumor cell lysis has 
been shown to trigger systemic antitumor immunity in animal mod-
els and patients,5–8 (ii) the insertion of therapeutic genes can trigger 
bystander killing by different means, depending on the chosen gene9, 
and (iii) endothelial cells specifically in tumor vessels were shown to 
be susceptible to OVs, resulting in vascular shut down and indirect 
destruction of tumor cells.10 As multitasking agents, OVs offer prom-
ising opportunities for treatment of heterogeneous tumors, avoid-
ance of resistance development, and implementation of combina-
tion therapies. Research and clinical translation has recently focused 

especially on the vaccination effect and on the combination with 
(other) immunotherapies, foremost immune checkpoint inhibition.6–8

The fact that besides herpesvirus T-Vec OVs derived from several 
classes of viruses are being developed highlights the future potential 
of viral oncolysis3,11 (Figure 1). They represent a panel of pharmaco-
phores that differ considerably with respect to their structure, size, 
genome, replication mechanisms, and host interactions including 
triggered host immune responses (Table 1). This diversity is further 
extended by the opportunity to genetically engineer OVs by a panel 
of different strategies (Table 1) aiming at better biodistribution and 
tumor specificity or at extending therapeutic applications, for exam-
ple, by transgene expression as mentioned above. Moreover, by itera-
tive translation cycles in a bench-to-bed-and-back approach, virus 
engineering facilitates overcoming emerging roadblocks to thera-
peutic efficacy. Notably, viruses from nine virus families are already in 
clinical investigation, and for some of these viruses, derivatives with 
different genetic modifications are being studied.3,11

The diversity of OVs clearly establishes promising therapeutic 
opportunities. The following are three examples: oncolytic measles 
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Oncolytic viruses (OVs) are unique anticancer agents based on their pleotropic modes of action, which include, besides viral tumor 
cell lysis, activation of antitumor immunity. A panel of diverse viruses, often genetically engineered, has advanced to clinical investi-
gation, including phase 3 studies. This diversity of virotherapeutics not only offers interesting opportunities for the implementation 
of different therapeutic regimens but also poses challenges for clinical translation. Thus, manufacturing processes and regulatory 
approval paths need to be established for each OV individually. This review provides an overview of clinical-grade manufacturing 
procedures for OVs using six virus families as examples, and key challenges are discussed individually. For example, different virus 
features with respect to particle size, presence/absence of an envelope, and host species imply specific requirements for measures 
to ensure sterility, for handling, and for determination of appropriate animal models for toxicity testing, respectively. On the other 
hand, optimization of serum-free culture conditions, increasing virus yields, development of scalable purification strategies, and 
formulations guaranteeing long-term stability are challenges common to several if not all OVs. In light of the recent marketing 
approval of the first OV in the Western world, strategies for further upscaling OV manufacturing and optimizing product character-
ization will receive increasing attention.
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viruses located to tumor lesions and triggered durable complete 
remission after single systemic application in a patient with dissemi-
nated myeloma12; T-Vec demonstrated immune-mediated systemic 
antitumor activity for metastatic melanoma patients after repeated 
intratumoral injections5; and oncolytic vaccinia viruses showed the 
above-mentioned antivascular effect in patients with solid tumors.10 
However, virus diversity also poses challenges for translation of viral 
oncolysis into clinical application: safety and manufacturing issues 
need to be addressed for each virus individually, because their relevant 
properties, such as genetic stability, biodistribution, and immunoge-
nicity, might differ considerably.

This review provides a concise overview of clinical-grade manufac-
turing of six classes of OVs that are currently in clinical development: 
adeno-, herpes-, measles, parvo-, reo-, and vaccinia viruses. Key facts 
and numbers for these viruses and their manufacturing are provided 
in Tables  1 and 2. As a condensed overview, five additional, essen-
tial aspects during the translation process of OVs into the clinics are 
presented in Figure 2. Major issues, challenges, and opportunities for 
virus manufacturing are discussed for each virus individually followed 
by a synopsis.

ADENOVIRUSES
Adenoviruses (Ads) are attractive oncolytic agents, based on their 
potent lytic activity, detailed knowledge of their structure and rep-
lication cycle, ample opportunities for virus engineering, and the 
high stability of virus particles and their genome. Different oncolytic 
Ads have been investigated in clinical studies, and the Ad Oncorine 
(H101) obtained marketing approval in China in 2005 (ref. 13). As 
with any new therapies, the translation of oncolytic (adeno-) viruses 
from the laboratory bench to their use in the clinic is subject to 
specific regulations and must meet several well-defined criteria for 
selectivity, potency, stability, identity, and product characterization 
(Table 2). Particular attention should be directed toward a detailed 
characterization of a stable good manufacturing practice (GMP) pro-
cess, including the establishment of a master cell bank and a master 
seed virus and the development of sophisticated release assays.14–16 
Thus, it is advisable that developers of oncolytic Ads contact local 
regulatory authorities at an early time point to discuss these issues.

For the production of oncolytic Ads, many producer cells,17,18 such 
as HEK293, are available and produce high Ad titer. However, since 
these cells possess genomic insertions of adenoviral E1 genes and 

Figure 1  Diversity of oncolytic viruses and their modes of action. (a) Oncolytic viruses covered in this review. (Adapted by permission from Macmillan 
Publishers: Nature Reviews Microbiology, (Cattaneo et al.45), copyright (2008)). (b) Modes of action implemented by oncolytic viruses. Each of the 
described activity has been reported in animal models and in cancer patients (tumor cells in purple, endothelial cells in orange).
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oncolytic Ads contain E1 deletions or modifications, recombina-
tions can occur reverting the modified E1 gene of oncolytic Ads 
to wild-type sequence. This problem can be encountered by the 
selection of a thoroughly characterized cell line that does not have 
integrated adenoviral sequences.18 An additional challenge is a con-
sistent surveillance of master cell bank and master seed virus used 
in the production of oncolytic Ads that included tests for the cellular 
identity and the absence of any adventitious contaminants, such as 
mycoplasma and bovine/porcine viruses.14

Different production methods for viral particle (vp) have been 
described in the literature,19–23 including the growth of producer 
cells in suspension using serum-free medium. However, the produc-
tion of oncolytic Ads under serum-free conditions causes a signifi-
cant reduction in virus yield. In addition, the production of oncolytic 
Ads is also affected by the so-called cell density effect that limits the 
production of Ads at cell densities of ~1 × 106 cells/ml.

The most popular method for the purification of oncolytic Ads is 
the use of two rounds of cesium chloride density gradient ultracen-
trifugation. This method can provide sufficient material for phase 
1 trials but has the disadvantage of not being scalable. Therefore, 
for large-scale manufacturing of clinical-grade oncolytic vectors 
exceeding ≥1015 vp, column chromatographic methods, including 
anion exchange chromatography, have been developed.24–26 During 
virus production and purification steps, the upstream and down-
stream processing is time consuming and causes considerable 
production costs. Thus, it is important to establish a method, which 
enables the monitoring of virus titer in every single production step 
during upstream and downstream processing.

Purified viruses should be tested for potency, identity (endpoint 
PCR, restriction analysis, or sequencing), sterility, purity, endotoxin, 
contaminating host cell DNA (≤5 pg/1011 vp), and proteins (Table 2). 
Total vp and infectious particles (ip) are two critical parameters 
for comparison of different production processes and should be 
determined carefully.14 The Food and Drug Administration recom-
mends a vp/ip ratio of 30. A high deviation from this value should be 
avoided (although a certain ratio is not specified by the European 
regulatory agency).

It is of decisive importance to choose an appropriate immuno-
competent animal model for testing toxicity and biodistribution 
studies of oncolytic Ad. In this regard, it has been shown that Syrian 
hamster support viral replication in several organs.27 Such studies 
might be performed with “lab-derived material” if the compara-
bility of the “lab material” and the GMP material has been shown 
unequivocally.

HERPESVIRUSES
Herpes simplex virus (HSV) is a large, enveloped, double-stranded 
DNA virus, which between the envelope and capsid contains a 
region known as the tegument, containing over 20 HSV proteins, 
which is essential for infectivity. The envelope carries 12 glycopro-
teins, and the capsid is composed of 7 different proteins. As such, 
manufacturing of HSV presents a number of challenges. These 
include the large size of the virus (155–240 nm), including that it 
is enveloped, which needs to be kept intact throughout the purifi-
cation process. As HSV is complex, full characterization of the final 
product can also be challenging. The 152 Kb genome has both long 
and short unique regions each flanked by terminal repeat regions 
which are present in the four possible orientations in relation to 
each other. The repeated regions mean that some HSV genes (e.g., 
ICP34.5—see later) are present twice in the genome, and the dif-
ferent orientations means that an HSV stock contains capsids 

containing each of these isomers.28 Both of these properties of the 
HSV genome can also complicate characterization.

Oncolytic versions of HSV have one or more nonessential genes 
deleted, in some cases combined with the insertion of a therapeu-
tic transgene.8 A nonessential gene is unnecessary for replication 
in vitro but is required for pathogenicity in vivo. Those deleted or 
mutated genes in candidate oncolytic viruses include ICP34.5 (the 
neurovirulence factor that provides the greatest attenuation of 
pathogenicity in vivo while still allowing replication in vivo), thymi-
dine kinase (not only necessary for sensitivity to acyclovir and simi-
lar drugs but also required for efficient replication in vivo), ICP6 (the 
large subunit of ribonucleotide reductase), and ICP47 (which blocks 
antigen presentation by transporter associated with antigen pro-
cessing). Insertions include a number of cytokines, including IL-12 
and granulocyte-macrophage colony-stimulating factor (GM-CSF). 
Talimogene laherparepvec (T-Vec, brand name Imlygic, Amgen, 
Thousand Oaks, CA) is the most advanced in clinical development 
and is deleted for ICP34.5 and ICP47 containing an insertion of the 
gene encoding GM-CSF under CMV promoter control in place of 
ICP34.5 (ref. 29).

From a purification perspective, standard procedures used for 
the production of live attenuated viral vaccines are generally 
employed, including harvest of the supernatant from infected 
producer cells, size exclusion chromatography, ion-exchange 
chromatography, Benzonase treatment to remove contaminat-
ing DNA, sterile filtration, and filling of final product. To avoid 
centrifugation, use of tangential flow filtration can be employed 
for concentration and/or buffer exchange between steps, but if 
so care needs to be taken regarding the sheer forces exerted so 
as not to disrupt the complex virion, as is also the case for ter-
minal sterile filtration if employed. Careful optimization of each 
of these steps is required. For characterization, western blotting 
to confirm the presence and relative abundance of key viral pro-
teins can be used and product-specific PCR or Southern blot to 
confirm genome structure (Table 2). Potency assays will not only 
depend on the nature of any transgene but also seek to confirm 
oncolytic activity in appropriate cells. While these processes and 
procedures are generally robust, future improvements may seek 
to increase yields at each step and long-term stability at ambient 
or refrigerated temperatures.

MEASLES VIRUSES
Oncolytic measles viruses (MV) based on attenuated vaccine strains 
are currently under investigation in clinical trials (Table 1) as a prom-
ising modality of cancer treatment with the potential to induce 
immune-mediated tumor rejection. MV vaccine strains are oncolytic 
by preferentially entering tumor cells through CD46 (ref. 30), a mem-
brane protein that is typically overexpressed in malignant cells.31

In contrast to using MV as a vaccine, oncolytic activity as an 
advanced therapy medicinal product depends on high concentra-
tion of infectious particles. While the size range of pleomorphic 
MV particles is often quoted as 100–300 nm32, in practice, MV must 
be treated as >1 µm particles that are extremely shear sensitive, 
to maximize recoveries and retain infectivity. Therefore, the entire 
production and purification process has to be done under gentle 
and aseptic GMP conditions.33 Clinical batches of MV are produced 
in Vero cells adapted to serum-free growth in cell factory multi-
layer vessels, resulting in 50% of the virus in the supernatant and 
50% staying associated with the cells. The supernatant is clarified 
by filtration and treated with Benzonase to digest contaminating 
nucleic acids. MV particles are then concentrated and purified using 
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tangential flow filtration and diafiltration, followed by a final pass-
ing through a clarifying filter prior to vialing and storage at < −65 °C.

Previously, various compounds and excipient formulations have 
been tested as stabilizers to protect the integrity of the viral enve-
lope (i.e., viral infectivity) and also to inhibit aggregation of vp. MV 
formulated with a buffered sucrose solution containing additionally 
magnesium chloride showed enhanced physical stability providing 
virus longevity of more than 6 years, with stable infectivity of the 
sensitive agent.

Current batch preparations meet the requirements for clinical 
trials, but purity may be further improved. MV products are tested 
for identity, purity, potency, adventitious agents, contaminating 
host cell DNA, and proteins (Table  2). The ratio between total vp 
and ip is a critical parameter for the quality of virus preparations. 
Although a certain vp/ip ratio is not specified by the regulatory 
agencies, a value of ≈50 in MV preparations can be assumed on 
average. Residual DNA from host cells in the final product is one of 
the concerns in the manufacturing process of MV as an advanced 
therapy medicinal product. For the commercially produced MV vac-
cine, the WHO recommends values ≤100 pg per dose (i.e., 1,000 ip). 
But for the use of high doses of MV in cancer therapies (e.g., 109 ip 
for intratumoral injections), the limit for expectedly higher amounts 
of residual host DNA in the final product has to be coordinated with 
the regulating authorities.

Currently, several strategies are pursued to improve overall yield 
and purity of MV preparations. Cultivation using microcarriers or 
switching to suspension cells in bioreactors may lead to higher 
titers. Also, development of virus compatible, chromatographic 
procedures (ion exchangers) may be an option to contribute to 
the removal of non–particle-associated nucleic acids and proteins, 
thereby improving the quality of clinical MV batches.

PARVOVIRUSES H-1PV
Several aspects of the biology of rodent protoparvoviruses (PVs), in 
particular H-1PV, make these agents attractive for the development of 

anticancer strategies (see Table 1, specific features). Some of these prop-
erties also impact on the procedures used for clinical-grade virus pro-
duction, purification, and quality/quantity control. First of all, the low 
natural infectivity of PVs and their lack of association with human dis-
eases minimize the precautions to be taken to protect the staff involved 
in virus manipulation. Furthermore, the high stability (and concomitant 
longevity) of infectious virions (tolerance to heating, extreme pH, and 
desiccation) makes their handling significantly easier.34

Besides these general factors, specific steps in virus batch prepara-
tion rely on physicochemical or biological features of PVs. (i) The com-
pact physical (and genetic) structure of the virions (parvus = small) 
allows filtration to be used in purification and sterilization processes. 
(ii) Mature PVs are stable in the presence of lipid solvents which can 
thus be applied to virus release and purification. (iii) Full and empty 
PVs have distinct densities and can be isolated and concentrated 
through gradient centrifugation. (iv) PVs are among the most resis-
tant pathogens to inactivation by gamma irradiation. Advantages 
could be taken of this resistance to inactivate microbial contaminants 
in PV samples. (v) Human cells can be used for efficient PV produc-
tion, thereby avoiding the risk of batch contamination with animal 
microbes and immunogenic animal proteins. (vi) Producer cells can 
be adapted to suspension culture, raising the possibility of PV pro-
duction upscaling in bioreactors. (vii) Through the establishment 
of master virus banks, clinical batches are obtained after infection, 
avoiding the need for transfection reagent testing of final products. 
(viii) PV formulation with Visipaque/Ringer solution allows computer 
tomography visualization of the inoculum, precise local delivery, and 
absence of backflow due to higher viscosity. Virus longevity for more 
than 4 years was demonstrated in this formulation, with little aggre-
gation and stable infectivity (Leuchs B, et al., unpublished data).

Current PV batch preparation meets the requirements for clini-
cal trials but still calls for further improvements. Special efforts 
are currently done to select producer cells adapted for large-scale 
cultivation in serum-free and optimized medium, using microcar-
rier or suspension bioreactors (e.g., wave or stirring). Since density 

Figure 2  Essential steps involved in the translation of OVs into the clinics. Starting from preclinical studies showing proof of concept in terms of 
therapeutic efficacy of a novel oncolytic agent, securing intellectual property (i.e., filing a patent) is necessary in order to successfully apply for funding, 
particularly with regard to finding an industrial partner who can perform the challenging and cost-intensive manufacturing under GMP conditions. 
Pharmacological and toxicological studies using appropriate animal models demonstrating a safe application of the OV is one of the prerequisites to 
submit an investigational new drug application to the regulatory authorities that contains all of the information regarding production and testing of 
the clinical grade OV. Additionally, a clinical protocol thoroughly considering the application of replication-competent viruses to patients has to be 
designed in order to get the approval for the clinical study. GMP, good manufacturing practice; OV, oncolytic virus.
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centrifugation of large virus harvests is cumbersome, the develop-
ment of chromatographic procedures with ion exchangers or mem-
brane absorber is needed to optimize and shorten PV purification 
steps. This should contribute to improve the removal of cellular and 
non–particle-associated viral DNA and proteins and to enhance the 
specific infectivity of PV clinical batches.

REOVIRUSES: REOLYSIN (PELAREOREP), A UNIQUE ISOLATE 
OF REOVIRUS T3D (TYPE 3 DEARING)
REOLYSIN, also known as pelareorep, is a proprietary isolate of the 
replication-competent reovirus type 3 Dearing, a non-enveloped 
double-stranded RNA virus that possess an intrinsic preference to 
replicate and subsequently lyse tumor cells with Ras pathway acti-
vation.35 The selective lysis of cells with an activated Ras pathway 
by reovirus arises from the inhibition of the autophosphorylation 
of dsRNA-activated protein kinase (PKR), thereby disabling the cells’ 
protective antiviral mechanism. Several groups have demonstrated 
that reovirus-induced lysis of tumor cells stimulates a potent antitu-
mor immune response which is composed of both innate immune 
activation and adaptive immune responses.36–38

For the production of oncolytic reovirus in clinical applications, 
the cell culture process consists of thawing vials of human embryo 
kidney (HEK293S) cells and seeding in T-flasks with a proprietary 
medium supplemented with glutamine. Cell expansion continues 
using T flasks and/or increasing sizes of Erlenmeyer flasks, with pas-
sages every 3 to 3 days until a sufficient number of cells is achieved 
to seed a WAVE bioreactor in which further expansion occurs. 
Subsequently, the stirred-tank bioreactor is seeded, and the cells 
are further expanded until an optimal number of cells are present 
for infection. After achieving the desired HEK293S cell count, the 
infection step, in which virus is added to the bioreactor contain-
ing the HEK293S cells, takes place. Virus is harvested using a Triton 
lysis step, then a Benzonase treatment for degradation of residual 
nucleic acids, followed by purification of the lysate. The down-
stream purification process begins with chilling of the lysate and 
clarification through an 8.0-μm filter, followed by 3.0/0.8-μm filtra-
tion. After overnight storage, the clarified lysate is ultrafiltered and 
diafiltered through a hollow fiber filter, followed again by overnight 
storage. Two chromatography steps—ion exchange and gel perme-
ation—are completed prior to final 0.22-μm filtration. Recovery of 
infectious particles by this methodology averages 40%.

Identity testing of pelareorep as a reovirus T3D strain has been 
confirmed by western blotting and confirmed in detail through 
genomic sequencing and comparison to GenBank sequences. As 
part of routine analytical testing on each lot of pelareorep pro-
duced, the identity of pelareorep is confirmed to be reovirus T3D by 
QPCR. A more specific identity test to confirm pelareorep identity 
is Sanger sequencing, which has recently been validated for use in 
the routine identity testing of pelareorep. The new Sanger sequenc-
ing method identifies five unique modifications in the L1 genome 
segment of reovirus T3D and thereby is specific to REOLYSIN.39

Drug substance testing is assayed for appearance, mycoplasma, 
adventitious viral contamination, identification, potency (virus 
titer), content (virus particle concentration), bioburden, residual HC 
DNA, residual HCP, and residual Benzonase (Table 2).

The greatest historical challenge in the production of the 
virus was related to deficiencies in the commercially available 
animal-component free cell culture medium that was used in early 
process development. This medium was optimized for the pro-
duction of HEK293 suspension cells rather than the production of 
virus. This medium was further limiting in that it did not support 

cell growth beyond 2E6 cells/ml, contained phenol red which inter-
fered with the anion exchange step, and allowed for the accumu-
lation of ammonia which prevented reovirus uncoating, which in 
turn limited virus production in the bioreactor. To address these 
shortcomings, Oncolytics (Oncolytics Biotech., Calgary, Alberta, 
Canada) worked with third-party manufacturing experts to create 
an optimized medium that was able to optimize cell growth as well 
as virus production, principally by limiting ammonia production in 
the bioreactor. This leaner media improved the quality of the feed-
stock and improved recovery more than fourfold as compared to 
the commercially available medium.

VACCINIA VIRUSES
The extensive human safety data that is available for vaccinia viruses 
as a consequence of their more than 200 hundred year use as a vac-
cine for small pox infections makes this a very attractive platform 
as an oncolytic therapeutic. In addition, the virus can harbor and 
express in excess of 50 Kb of therapeutic transgenes and has mul-
tiple known mechanisms of action against tumors in both rodents 
and humans.40 Vaccinia viruses were the first to demonstrate consis-
tent and convincing infection of tumor beds following i.v. adminis-
tration41 and in a small randomized trial demonstrated some signs 
of survival benefit in a subset of hepatocellular carcinoma patients.42

Despite these encouraging results, there still exist several chal-
lenges to the widespread commercialization of the vaccinia OV 
platform even when it achieves clinical success in phase 3 studies. 
Like other OV platforms, large doses of viral product, well in excess 
of vaccine doses, need to be administered to patients in order to 
see effective delivery to tumors following i.v. administration.43 To 
achieve these doses, virus is best produced in adherent tumor cell 
cultures in serum-containing medium. To satisfy regulatory con-
cerns, extensive testing of viral product to ensure that no oncogenic 
DNA is found in the final product needs to be done.

In addition, vaccinia remains largely cell associated and requires 
cell disruption followed by enzyme digestion steps to liberate 
the virus from cell debris and reduce host cell contaminants. An 
additional challenge to the manufacture of pharmaceutical-grade 
vaccinia virus is that its relatively large size prevents passing through 
“sterilizing filters” commonly of 0.2 µm or smaller pore size. This 
means that the entire manufacturing process must be done asepti-
cally. Like many virus products, vaccinia is extremely stable when 
stored at −80 °C, but additional formulation studies need to be per-
formed to create a pharmaceutical-grade product that can be rou-
tinely stored at −20 °C, 4 °C, or perhaps even at room temperature.

Further process development studies still need to be undertaken 
to optimize the production of oncolytic vaccinia viruses. Ideally, a 
serum-free suspension cell platform for producing high-titer virus 
preparations would be preferred. If adherent cell cultures remain 
required for satisfactory yields, high-intensity bioreactors like the 
macrofibre iCellis system or manufacturing cells grown on micro-
carriers should be explored.

Currently, downstream purification of vaccinia virus products has 
been limited to tangential flow filtration strategies, but the similar 
size of vaccinia to apoptotic bodies released from dying cells limits 
the ability to purify the virus from contaminating host protein and 
nucleic acids. An orthogonal purification strategy independent of 
particle size is preferred. Vaccinia virus has multiple isoforms, and 
one version called extra enveloped virus is thought to have the 
advantage of evading neutralizing antibodies.44 Current manufac-
turing processes focus on harvesting cell-associated viruses that 
would not include extra enveloped virus isoforms. Strategies that 
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enrich and stabilize the somewhat delicate extra enveloped virus 
form of the virus could create products that could be more effec-
tively delivered to immunized patients.

SYNOPSIS AND FUTURE PERSPECTIVES
Robust and readily scalable manufacturing processes have been 
developed to produce various oncolytic viruses suitable as a drug 
for clinical studies. Starting from an established, GMP-certified 
master cell bank and a characterized master seed virus, the crude 
virus supernatant is generated mostly by infecting adherent pro-
ducer cells at a low multiplicity of infection, then harvesting the OV 
when extensive cytopathic effect is formed. The purification process 
involves five steps common for almost all of the OV platforms pre-
sented here: (i) clarification to remove cellular debris; (ii) nuclease 
treatment to degrade host cell nucleic acids; (iii) ion-exchange/size 
exclusion chromatography for purification of the virus; (iv) ultracen-
trifugation or tangential flow ultrafiltration/diafiltration for concen-
tration and buffer exchange; and (v) a terminal sterile filtration step, 
which may not be tolerated by every type of virus and therefore 
requires a totally aseptic production process instead.

Although the ultrafiltration/diafiltration and column chromatogra-
phy steps are scalable using existing technologies, in order to scale up 
the infection process for licensed product manufacturing, it could be 
necessary to investigate bioreactor technology using adherent cells 
on microbeads or suspension cell cultures to support the produc-
tion of OVs at desired higher titers. Ideally, cell growth would occur in 
serum-free medium to completely eliminate animal-derived compo-
nents during GMP. Disposable single-use stirred tank bioreactors with 
high volumes would be suitable for virus manufacturing purposes. 
Downstream purification processes, especially separation from sub-
cellular structures, may need optimization in some cases, depend-
ing on the size and density of the virus particle. Quality control is the 
part of GMP that is concerned with sampling, specifications, testing, 
documentation and release procedures. It ensures that the necessary 
and relevant tests are carried out and that all required materials are 
released for use only if their quality is satisfactory.

Before using a virus lot in clinical trials, it is necessary to submit an 
investigational new drug application to the regulatory authorities 
that contains all the information regarding production and testing 
of the clinical-grade OV, regarding its preclinical efficacy, biodis-
tribution, and pharmacological/toxicological testing in laboratory 
animals, and the draft clinical protocol. It is highly recommended 
to keep the regulatory authorities informed regarding any difficul-
ties encountered during lot release testing and to seek their input 
and guidance at all key steps in the clinical reagent development 
process. It may seem on the surface that replication-competent 
viruses as oncolytic agents could be uniformly evaluated in terms 
of manufacturing and approval for clinical studies. But release crite-
ria basing on validated test methods to characterize identity, purity, 
potency, and safety of the OV products (Table 2) can vary taking the 
nature of the respective virus type into account due to its inherent, 
biologically specific properties like size, host species, tropism, etc. 
Thus, to find common ground, most release criteria of clinical OV 
platforms were derived from those defined in GMP specifications 
of viral vaccine drugs, most of them consisting of formulations with 
low amounts of vp sufficient for establishing the desired vaccina-
tion effect. However, current OV platforms require large doses of 
viral product, well in excess of vaccine doses, in order to see effec-
tive delivery to tumor sites and therapeutic effects. Higher virus 

concentrations often come along with accumulation of impurities 
like residual cellular host DNA. Eliminating this by more extensive 
purification procedures, virus particles may suffer resulting in a 
higher ratio of vp:ip, often depending on the nature of the virus 
type.

Deviations in the release criteria of the final product have to be 
coordinated with the local regulating authorities responsible for 
the site where the clinical study is planned to be conducted. As 
the authorities often define country-specific acceptance criteria, 
this might pose a problem for clinical trials intended as multicenter 
studies, especially when recruiting a large pool of patients in several 
continents for phase 3 trials. Therefore, a global harmonization of 
approval criteria and processes between the local regulatory author-
ities (e.g., Food and Drug Administration, Health Canada, European 
Medicines Agency, and International Council of Harmonization) 
could be a helpful development for future attempts to bring onco-
lytic virus platforms into the clinic at a faster and higher extent.
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