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Mitochondrial medicine is one of the few areas of genetic disease where germ-line transfer is being actively pursued as a treatment option. All of
the germ-line transfer methods currently under development involve some carry-over of the maternal mitochondrial DNA (mtDNA) hetero-
plasmy, potentially delivering the pathogenic mutation to the offspring. Rapid changes in mtDNA heteroplasmy have been observed within a
single generation, and so any ‘leakage’ of mutant mtDNA could lead to mtDNA disease in future generations, compromising the reproductive
health of the first generation, and leading to repeated interventions in subsequent generations. To determine whether this is a real concern, we
developed a model of mtDNA heteroplasmy inheritance by studying 87 mother–child pairs, and predicted the likely outcome of different levels
of ‘mutant mtDNA leakage’ on subsequent maternal generations. This showed that, for a clinical threshold of 60%, reducing the proportion of
mutant mtDNA to ,5% dramatically reduces the chance of disease recurrence in subsequent generations, but transmitting .5% mutant
mtDNA was associated with a significant chance of disease recurrence. Mutations with a lower clinical threshold were associated with a
higher risk of recurrence. Our findings provide reassurance that, at least from an mtDNA perspective, methods currently under development
have the potential to effectively eradicate pathogenic mtDNA mutations from subsequent generations.
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The importance of preventing
mitochondrial DNA disease
Pathogenic mitochondrial DNA (mtDNA) mutations are found in
0.5% of the population (Elliott et al., 2008), and are a frequent
cause of maternally inherited human disease affecting at least 1 in
6500 of the population (Schaefer et al., 2008). Many of these muta-
tions are heteroplasmic, with a mixture of mutated and wild-type
mtDNA present in varying proportions within cells of the same indi-
vidual. High percentage levels of mutated mtDNA are associated
with severe multi-system diseases that often affect the nervous
system. In addition, some homoplasmic mutations can also cause
disease (DiMauro and Schon, 2003). There are currently no treat-
ments for these diseases (Pfeffer et al., 2012), so preventing maternal
transmission is a high priority (Brown et al., 2006; Poulton et al., 2009).
The medical ethics of modifying the germ-line mitochondrial genome
have been discussed in detail (Bredenoord et al., 2011) and the UK

Human Fertilisation and Embryology Authority is moving forwards
with developing a legal framework for these methods (Callaway,
2012). Concerns include unexpected genetic and epigenetic conse-
quences of the procedure itself. Although animal studies may
provide some reassurance, including work in non-human primates
(Tachibana et al., 2009), any complications of the procedure may be
subtle and take time to emerge. Thus, despite extensive pre-clinical
evaluation, there will inevitably be concerns about safety when the
procedure is first used in humans, coupled to the ethical issue of gen-
erating a child harbouring genetic material from ‘three parents’.

Preventing mtDNA diseases: the
challenges
Several unique features of mitochondrial genetics, including the phys-
ical separation of the mitochondrial and nuclear genome in the cell,
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heteroplasmy of some pathogenic mtDNA mutations and the gener-
ally high level of mutant mtDNA required to cause serious pathogenic
effects, all contribute to the practicality of developing effective germ-
line transfer in diseases due to pathogenic mtDNA mutations.
Several techniques are currently under development to prevent the
transmission of pathogenic mtDNA mutations. Prenatal diagnosis
(PND) with amniocentesis or chorionic villus biopsy, and preimplanta-
tion genetic diagnosis (PGD) are currently offered in a few centres,
based on the accurate measurement of mtDNA heteroplasmy in
tissue samples from pre- or post-implantation embryos (Thorburn
and Dahl, 2001; Jacobs et al., 2005; Steffann et al., 2007). However,
these approaches cannot be used to prevent the transmission of
homoplasmic mutations. For heteroplasmic mutations, interpreting
the measured level of heteroplasmy is challenging, particularly if
there is an intermediate level (20–80%), if the mutation is rare or
unique to that particular family, or if the mutation level is known to
change over time (as is the case for the most common pathogenic het-
eroplasmic mtDNA mutation, m.3243A.G) (Craven et al., 2011).
Often both the clinician and the prospective heteroplasmic mother
will use PND, or more so PGD, to identify embryos harbouring abso-
lutely none of the pathogenic mtDNA mutation. It is also possible to
select for fetuses and embryos, and thus prevent disease in the next
generation and subsequent transmission. However, these approaches
can result in termination in the context of PND, and will also reduce
the number of embryos available for implantation in the context of
PGD. As a result, several new techniques are in pre-clinical develop-
ment, which can reduce the risk of transmission still further, and be
broadly applicable to all mtDNA diseases. Early approaches involved
cytoplasmic transfer (Meirelles and Smith, 1998), but more effective
recent developments include spindle transfer (Tachibana et al.,
2009; Tachibana et al., 2012) and pronuclear transfer (Brown et al.,
2006; Craven et al., 2010). However, none of the current and pro-
posed approaches assure the complete removal of mutant mtDNA.
This raises concerns about the long-term consequences of ‘mutant
mtDNA carry-over’ on future generations down the female line
(Brown et al., 2006; Poulton et al., 2009). Although low levels
(,20%) are unlikely to cause disease in the immediate offspring, the
amount of the pathogenic mtDNA mutation could change on
future transmission down the female line, limiting the effectiveness
of the treatment in the longer term. Likewise, for mothers with a
homoplasmic mutation, any approach that reduces the mutation
load, but does not completely eliminate the mutation, will also intro-
duce the possibility of recurrence in future generations, even if the
level of mutation in the next generation is ,20%. Why should
this be the case?

Large changes in the percentage level of mutated mtDNA are
observed in small human pedigrees transmitting heteroplasmic
mtDNA mutations (Chinnery et al., 2000), and so even low levels
of mutant mtDNA carry-over could lead to maternal descendants
with high mutation levels, causing severe multi-system disease
(DiMauro and Schon, 2003). The shifts in mutation level that have
been observed are sufficiently large to cause disease recurrence
even within a single generation after producing effectively treated off-
spring. Should this be a cause for concern, and how low must the ma-
ternal mtDNA carry-over be in order to consider these therapies
successful? These questions will be difficult to address experimentally
because current animal models of mtDNA disease do not closely

resemble human disorders (Nakada and Hayashi, 2011) and there
may be significant differences in the mechanism of mtDNA transmis-
sion (i.e. the mtDNA bottleneck) between humans and mice (Won-
napinij et al., 2010). This means that the results of animal studies
could be either falsely reassuring, or overly pessimistic. Primate
work may provide further reassurance that there are no catastrophic
unwanted side effects of the treatment (Tachibana et al., 2009), but
short-term experiments will not detect late-onset complications
related to epigenetic reprogramming. Given the theoretical risks and
uncertainties, experimental treatment in humans transmitting non-
pathogenic, polymorphic variants are likely to be considered unethical.
It is therefore likely that the first-in-human studies will actually be to
offer mitochondrial gene replacement as a potential treatment. A
means of estimating the risks is essential to enable patients to make
informed decisions at that stage.

Modelling the inheritance
of mtDNA heteroplasmy
mtDNA heteroplasmy levels are well described by the Kimura distri-
bution, which is based on neutral genetic drift theory, although at this
time rigorous testing of this theory in humans is limited to the
common pathogenic variation m.3243A.G (Wonnapinij et al.,
2008). This model has two parameters, p0 and b. The parameter p0

was set as the amount of mutation carry-over from the mother.
The parameter b is the bottleneck parameter determining the width
of the heteroplasmy distribution in the offspring. The bottleneck par-
ameter can be set from the heteroplasmy variance of a number of off-
spring from a single mother, or by pooling the heteroplasmy values
from offspring from mothers with similar heteroplasmy levels. For
human data, only the latter choice is practical. Mothers with hetero-
plasmy in the range of 40–60% were used, since in this range the vari-
ation in offspring heteroplasmy from the mother’s heteroplasmy level
is minimal. Siblings were not included.

The key parameters of the Kimura distribution during transmission
were determined by studying 87 human mother–offspring pairs trans-
mitting a known pathogenic mtDNA mutation (Wonnapinij et al.,
2010). This parameter value was set at b ¼ 0.66 based on 87 human
mother–offspring pairs (Lott et al., 1990; Ciafaloni et al., 1992;
Larsson et al., 1992; Martinuzzi et al., 1992; Tatuch et al., 1992; Zhu
et al., 1992; Hammans et al., 1993, 1995; Piccolo et al., 1993; Howell
et al., 1994; Santorelli et al., 1994; Harding et al., 1995; Houstek et al.,
1995; Makelabengs et al., 1995; Black et al., 1996; Mak et al., 1996;
Carelli et al., 1997; Uziel et al., 1997; Olsson et al., 1998; Onishi et al.,
1998; Tanaka et al., 1998; Chinnery et al., 1999; White et al., 1999;
Lien et al., 2001; Porto et al., 2001; Hurvitz et al., 2002; Wong et al.,
2002; Kaplanova et al., 2004; Enns et al., 2006; Phasukkijwatana et al.,
2006), including the following mutations: m.3243A.G (15 pairs),
m.83446A.G (10 pairs), m.11778G.A (23 pairs), m.3460G.A (15
pairs), m.9883T.C (10 pairs) and m.8993T.G (14 pairs). Data
from the A3243G mutation taken from blood samples were adjusted
to correct for the known decrease in the A3243G mutation level in
blood with age (Rajasimha et al., 2008). Of course, these pathogenic var-
iants cause a range of different phenotypes, which could in principle
affect the inheritance of that variant. With the limited data currently
available, the best that can be done is to average the data from all of
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the different pathogenic variants, to provide a general inheritance
model. As more data become available in the future, specific inheritance
models for each pathogenic mutation could be developed.

From this data-based model of heteroplasmy transmission in
humans, we calculated the effect of low levels of mutant mtDNA
carry-over on subsequent maternal generations for a range of different
clinical heteroplasmy threshold values. Our analysis began with the
initial percentage level of mutated mtDNA ‘carried over’ in the
treated embryo that formed the F1 generation. We then calculated
heteroplasmy levels based on a Kimura distribution (Wonnapinij
et al., 2008) in 20 000 offspring in the next generation (F2, or ‘grand-
children’ of the original mother) and used these values to calculate
heteroplasmy levels in the subsequent generation (F3, or
‘great-grandchildren’). Although there is still the theoretical possibility
that low levels of heteroplasmy might segregate to higher levels in dif-
ferent tissues as the embryo develops, the heteroplasmy level appears
to be uniformly distributed in both pre- and early post-implantation
human embryos (Harding et al., 1992; Matthews et al., 1995; Steffann
et al., 2007), and extreme differences have not been observed within
neonates following the transmission of mtDNA heteroplasmy. Thus,

we estimated the recurrence risks using a range of clinical thresholds
of mutant mtDNA, showing a disease threshold of .60% mutant as
an example (Fig. 1), and other clinical threshold values (Fig. 2).

The fate of low-level
heteroplasmy on future
generations
As expected, a higher mutant mtDNA carry-over from the mother
increased the chance that later maternal descendants would inherit
high levels of the mutation, and thus be at risk for recurrence of the
mitochondrial disease (Fig. 1A) (Poulton and Turnbull, 2000). Like-
wise, a higher mutant mtDNA carry-over reduced the chance of
grandchildren and great-grandchildren fixing on the wild-type
mtDNA (Fig. 1B). The same trends were observed for other clinical
threshold heteroplasmy levels (Fig. 2). Fixation on wild-type mtDNA
would protect all subsequent maternal generations from developing
the disease, which is the ultimate goal of germ-line therapies. For
the .60% clinical threshold, decreasing the mutation carry-over

Figure 1 The effects of a carry-over of mutated mtDNA from the mother into the embryo on later generations. Triangles ¼ grandchildren of the
original mother seeking treatment (F2), and circles ¼ the great-grandchildren (F3). This graph shows the recurrence risk in subsequent generations
down the maternal line. (A) The probability that a descendant along the female line would develop an mtDNA mutation heteroplasmy level
above 60% as a function of the amount of mutant mtDNA remaining in the treated embryo. This was chosen as a conservative threshold since
levels below 60% are unlikely to cause disease. (B) The probability of fixing on the wild type for descendants along the female line. Having had
more time to segregate, the chance of inheriting only wild-type mtDNA was greater in the great-grandchildren. (C) The upper 90% confidence interval
on the mutant mtDNA level in the immediate descendants along the female line. (D) A measure of the impact of the transfer on later generations
calculated by dividing the probability of a descendant having .60% mutation after the transfer by the probability without the transfer, for a mother
with 60% mtDNA mutation threshhold. Similar trends were seen for mutations with a lower clinical threshold, although the recurrence risk was
greater and the impact of the gene transfer techniques was less. Conversely, for mutations with a higher percentage clinical threshold, the recurrence
risk for subsequent generations was lower, and the impact of the gene transfer procedure was greater (Fig. 3). Horizontal arrows denoting the
reported range of mtDNA carry-over for the spindle transfer and pronuclear transfer techniques, as well as for PGD and PND are given at the
bottom of the figure. It should be noted that the higher range of levels of carry-over with PND and PGD are based on a decision made by the clinician
and the prospective mother, and could be zero if so required. The range indicated in the figure shows the heteroplasmy values determined by PND
and PGD in pregnancies that were allowed to continue because the perceived risk of a child being affected with this level of mutation is low.
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below 3% dramatically reduced the probability of subsequent genera-
tions inheriting high levels of mutant mtDNA (Fig. 1C), and thus the
impact of the treatment was greatly increased (Fig. 1D). In contrast,
even relatively modest levels of maternal mtDNA carry-over of
.5% were associated with a strong possibility of inheriting high
levels of mutant mtDNA in later generations (Fig. 1C), leading to
the re-emergence of the disease within the family, and thus a poor
outcome (Fig. 1D). These calculations illustrate the importance of lim-
iting the carry-over of the mutant mtDNA to very low levels of ,3%
for the success of the germ-line transfer in future generations.

Similar trends were observed for other clinical threshold hetero-
plasmy levels (Fig. 3), with lower clinical thresholds associated with a
greater risk of recurrence in subsequent generations, and less impact
of the gene transfer procedure. Conversely, a higher clinical threshold
was associated with a reduced risk of recurrence in subsequent genera-
tions, and a greater impact of the gene transfer procedure.

Conclusions and future prospects
The development of germ-line therapies for mtDNA diseases is now
focused on limiting the carry-over of the mutant mtDNA as much as is

practically possible. It has been shown that it is technically possible to
transmit ,3% maternal mtDNA with spindle–chromosomal complex
transfer in non-human primates (Tachibana et al., 2009, 2012), and
with pronuclear transfer in preimplantation human embryos (Craven
et al., 2010). Our observations indicate that this level of mutant
mtDNA carry-over is highly unlikely to cause mitochondrial disease
in any maternal descendants, effectively (and quite likely completely)
eradicating the disease for good. These predictions not only apply
to mtDNA gene transfer techniques, but also for embryos screened
by PGD and PND. At present, both PND and PGD remain the first
port-of-call for the prevention of mtDNA disease. These techniques
can also be used in subsequent generations if there is an ongoing per-
ceived risk of recurrence. However, our findings support the clinical
development of gene transfer techniques as a definitive approach to
prevent mtDNA disease in these families for all subsequent
generations.

Further pre-clinical work in animal models is required to provide
further reassurance that these new approaches do not have

Figure 2 Simulation results for the probabilities that grandchildren
(A) or great-grandchildren (B) would have mtDNA mutation levels
greater than given thresholds as a function of the mutation level
carried over from the mother. Results were calculated for 20% muta-
tion, 40% mutation, 60% mutation (the same as in Fig. 1A and B) and
80% mutation threshholds.

Figure 3 Simulation results for a measure of the impact of the pro-
cedure on grandchildren (A) or great-grandchildren (B). Impact is
defined as in Fig. 1D, as the ratio of the probability maternal line des-
cendants have greater than the given threshold without the procedure
divided by the probability with the procedure, for a mother with 50%
mtDNA mutation. A value of 1 indicates no impact of the procedure
while higher values represent a larger positive impact. Results were
calculated for 20% mutation, 40% mutation, 60% mutation (the
same as in Fig. 1D) and 80% mutation thresholds.
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catastrophic consequences in higher mammalian species, and the
ethical and legal debate will need to progress in parallel. However, ul-
timately, the first successful mtDNA gene transfer in humans will
probably be offered to a patient with severe, highly penetrant
mtDNA disease, for whom the benefits would outweigh the perceived
risks. The work we present here will hopefully assist the prospective
mother in making this bold decision.
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