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C-value paradox refers to the lack of correlation between biological complexity and the intuitively expected 
protein-coding genomic information or DNA content. Here I discuss five questions about this paradox: i) Do 
biologically complex organisms carry more protein-coding genes? ii) Does variable accumulation of selfish/ 
junk/ parasitic DNA underlie the c-value paradox? iii) Can nucleoskeletal or nucleotypic function of DNA explain 
the enigma of orders of magnitude high levels of DNA in some ’lower’ taxa or in taxonomically related species? 
iv) Can the newly understood noncoding but functional DNA explain the c-value paradox? and, v) Does natural 
selection uniformly apply the anthropocentric parameters for ‘optimum’ and ‘economy’? Answers to Q.1–5 are 
largely negative. Biology presents numerous ‘anomalous’ examples where the same end function/ phenotype is 
attained in different organisms through astoundingly diverse ways that appear ‘illogical’ in our perceptions. Such 
evolutionary oddities exist because natural selection, unlike a designer, exploits random and stochastic events to 
modulate the existing system. Consequently, persistence of the new-found ‘solution/s’ often appear bizarre, 
uneconomic, and therefore, paradoxical to human logic. The unexpectedly high c-values in diverse organisms are 
irreversible evolutionary accidents that persisted, and the additional DNA often got repurposed over the 
evolutionary time scale. Therefore, the c-value paradox is a redundant issue. Future integrative biological studies 
should address evolutionary mechanisms and processes underlying sporadic DNA expansions/ contractions, and 
how the newly acquired DNA content has been repurposed in diverse groups.   

Discovery of species-specific constant (c-) values of cellular DNA 
content in eukaryotes and genesis of the c-value paradox 

Following the rediscovery of Mendel’s laws in 1900 and the estab
lishment of the chromosomal basis of inheritance, genetic studies 
initially focused on the genotype-phenotype relationships and mapping 
of the mutant alleles on the hypothetical linear genetic or linkage maps 
to represent locations of different genes on chromosomes [82]. 
Demonstration of the existence of filterable and transmissible agents 
with the ability to lyse bacteria [30] led H. J. Muller [83] to comment 
more than 100 years ago, "If these d’Hérelle bodies were really genes, 
fundamentally like our chromosome genes, they would give us an utterly 
new angle from which to attack the gene problem. They are filterable, to 
some extent isolable, can be handled in test-tubes, and their properties, 
as shown by their effects on the bacteria, can then be studied after 
treatment. It would be very rash to call these bodies genes, and yet at 
present, we must confess that there is no distinction known between the 
genes and them". This was the first indication that the material consti
tuting genes could be subjected to qualitative and quantitative analysis. 

An active search for the chromosomal material that could function as 
genes became possible during the next few decades following the 
development of i) Feulgen staining method in 1920s [40] for selective 
visualization of cellular DNA, ii) a method for isolation of cell nuclei [6], 
and iii) cyto-spectrophotometric quantification of cellular macromole
cules [17]. Studies in the late 1940s using biochemical and cytophoto
metric approaches on Feulgen-stained cells [11,79,108] indicated that 
despite the variable amounts of DNA per nucleus in different species, the 
DNA content remains relatively constant in different cell types of a given 
species with a 1:2 ratio between gametes and diploid cells, while RNA 
and protein contents in chromosomes were highly variable, leading 
Mirsky to infer “that DNA is part of the gene substance” [78]. The 
observed constancy of DNA in different cell types of a given eukaryote, 
and studies on bacterial transformation and bacteriophage propagation 
[2,52] collectively established DNA as the genetic material in pro- and 
eukaryotes. The DNA content of the haploid gametes was referred to as 
1C, while that of fertilized zygote as 2C; the c-values did not correlate 
with the haloid and diploid chromosome numbers (designated as 1 N 
and 2 N, respectively) seen in the metaphase stage cells of the species. 
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The term “c-value paradox”, introduced by C. A. Thomas in 1971 
[110] while reviewing genetic organization of chromosomes, refers to 
the unexpectedly high variations in c-values of different species. In his 
[110] words, "different species contain different amounts of DNA in 
their nuclei. This harmless information caused some discomfort when it 
was learned that primitive amphibians and fish contained more than 20 
times as much DNA per nucleus as did man. It was argued that mammals 
display a greater developmental complexity than primitive fish, there
fore, they must have more genes, yet why should the lower forms have 
more DNA if DNA is the chemical basis of the gene?”. He [110] noted 
that the c-value paradox reflected three unexplainable issues: i) why do 
many ‘lower’ organisms have significantly higher c-values than the more 
evolved “higher” organisms; ii) why the c-values between some related 
species with comparable morphology and body organization differ by 
one or more orders of magnitude, and iii) why is the proportion of DNA 
that does not code for proteins (noncoding or ncDNA) so high (up to 
~98 %) even in genomes of species that carry the ‘basal’ c-value char
acteristic of the given group? 

Some early explanations to resolve the c-value paradox included 
possible inaccuracies in the estimates of the genome sizes or unusual 
events of genomic multiplication, like polynemy or multi-stranded 
mitotic chromosomes in species with very high haploid DNA content. 
These explanations, however, were soon ruled out [16,81,110]. Another 
suggestion to explain the unusually high c-value content in some lower 
forms was that the additional DNA served as reserve for future evolu
tionary experiments. However, since “selection is applied to the organ
ism as it is, not as it might be” [110], this explanation also was 
untenable. 

In the following, I question the various possibilities that have been 
suggested during the past five decades to resolve the c-value paradox. 
The final question that I address is if the premises on which the c-value 
paradox was initially formulated and has been discussed during the past 
five decades are indeed valid? A summary of the various explanations 
and their current status is given in Table 1. 

Question 1: do genomes of biologically complex organisms carry 
more protein-coding genes? 

With the passage of time, evolution generally leads to the appearance 
of more complex biological organizations so that the later evolved 
‘higher’ organisms are more complex than the earlier ‘lower’ or ‘prim
itive’ organisms. The commonly used empirical measures of ‘biological 
complexity’ are morphological intricacy and the number of cell or tissue 
types present in the organism [81]. Since the classical genetic and early 
molecular studies led to a widely accepted belief that proteins only 
determine structures and functions, and thus the organism’s phenotype, 
the protein-coding genes were expected to be higher in biologically 
more complex groups. However, classical cytogenetic studies showed 
that the numbers of protein coding genes (g-value) in organisms varied 
within a narrow range so that the protein coding gene numbers were not 
correlated either with biological complexity or with the genome size. 
This led Thomas [110] to state "if 98 % of the DNA is irrelevant in flies, 
we can estimate that 99. 98 % is irrelevant in Triturus”, where ‘irrele
vant’ refers to the genome’s ncDNA component. Such lack of correlation 
between protein coding gene number and genome size generated a 
related “g-value paradox” [14,23,49,81]. 

Discovery of variable amounts of repetitive (satellite, high or mid- 
repetitive) DNA sequences in diverse eukaryotic genomes in the 1960s 
and their association with the condensed heterochromatin, which was 
conventionally considered to be genetically inert (see below), led to the 
belief that such sequences are of no use for the organism. The next 
question, therefore, examines the possibility that the varying abundance 
of diverse repetitive and noncoding sequences, which were labelled as 
‘selfish’ or ‘junk’ or ‘parasitic’ DNA, could resolve the c-value paradox. 

Table 1 
Summary of various explanations put forward to resolve the c-value paradox (for 
details, see text).  

Explanation Evidence Counter evidence Current status 

Variable 
accumulation 
of ‘selfish’ or 
‘junk’ or 
‘parasitic’ DNA 
underlies the c- 
value paradox. 

High variability in 
content of ‘non- 
coding’ intergenic 
DNA and 
constitutive 
heterochromatin, 
which was initially 
believed to i) lack 
typical protein- 
coding genes, ii) to 
be 
transcriptionally 
silent, and iii) to be 
enriched in highly 
repetitive, 
satellite, mid- 
repetitive and 
transposable 
element 
sequences. 
Together, these 
were considered 
‘selfish’ or ‘junk’ or 
‘parasitic’ DNA 
and were 
suggested to 
variably 
accumulate and 
persist in genomes 
resulting in the loss 
of correlation 
between biological 
complexity and c- 
value. 

Studies during the 
later part of 20th 
century, and the 
subsequent 
progresses in 
genomics, have 
established 
essential functions 
of 
heterochromatin 
and other 
noncoding DNA 
sequences. 

‘Selfish’ or ‘junk’ 
or ‘parasitic’ 
DNA sequences 
do not exist in 
genomes in 
quantities that 
can explain the 
enormous 
variations in c- 
values. 

Besides the DNA 
associated with 
genetic 
functions, 
genome also 
includes 
nucleoskeletal 
or nucleotypic 
sequences to 
sustain larger 
nuclear and cell 
volumes. 
Necessity for 
such DNA may 
explain the 
orders of 
magnitude high 
levels of DNA in 
some ’lower’ 
taxa or in 
taxonomically 
related species. 

Larger cells with 
associated greater 
nuclear DNA 
permit greater 
synthetic and 
storage capability. 
There is a wide 
correlation 
between higher c- 
values and larger 
cell and nuclear 
volumes, longer 
cell cycle duration 
and generation 
time. The 
additional 
‘nucleoskeletal’ or 
‘secondary’ or 
‘nucleotypic’ DNA 
provides a skeletal 
framework for 
sustaining larger 
nuclei and cell 
bodies but its 
variable quantum 
leads to the 
variable c-values. 

Many instances 
exist where 
organisms with 
very large body 
size have small 
cells and lower 
genomic DNA 
content. In several 
instances where 
endoreplication 
generates larger 
nuclear and cell 
sizes, the 
hereochromatin 
regions, presumed 
to also function as 
’nucleoskeletal’ 
DNA, actually 
remain under- 
replicated. 

Existence of 
‘nucleoskeletal’ 
DNA may explain 
some instances of 
high c-values but 
does not 
satisfactorily 
answer the 
question why 
some species 
within a group or 
in some ‘less’ 
evolved taxa 
need higher cell 
size and, 
therefore, 
greater 
‘nucleoskeletal’ 
DNA. 

The newly 
understood 
non-coding but 
regulatory 
functions of 
genomic DNA 
explain the high 
proportion of 
non-coding 
component in 
genomes. 

A very large 
proportion of non- 
coding DNA in any 
genome has 
diverse regulatory 
roles and is thus 
essential for 
biological 
complexity. 
Variable quantities 
of such regulatory 

Species with lower 
biological 
complexity but 
with very high c- 
value or species 
with much higher 
c-value than their 
relatives having 
comparable 
biological 
complexity are not 
expected to need 

Regulatory roles 
of the ncDNA 
account for its 
higher 
abundance than 
the coding DNA 
in organisms 
with taxa’s basal 
genome size but 
cannot fully 
explain other 

(continued on next page) 
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Question 2: can accumulation of ‘selfish’ or ‘junk’ or ‘parasitic’ 
DNA explain the c-value paradox? 

The early view that proteins only determine the organism’s pheno
type found support in some early genetic and cell biological studies on 
heterochromatin, which suggested that the condensed constitutive het
erochromatin [15] i) lacked typical protein-coding genes, ii) was tran
scriptionally inactive, iii) was enriched in highly repetitive, satellite, 
mid-repetitive and transposable element sequences, and iv) was even 
dispensable [27,51,62,63,88,98]. Like the c-values, the relative content 
of the condensed constitutive heterochromatin also varies widely even 
in related species. Believing that heterochromatic and repetitive DNA 
sequences were genetically inert, eukaryotic genomes were suggested to 
carry variable but high amounts of non-functional ’selfish’ or ’junk’ or 
‘parasitic’ DNA (collectively referred to here as ‘selfish’ DNA), which, 
despite being irrelevant to the host, persist in genomes [33,91,93,94]. 
Although the proposals of ‘selfish’ DNA were quickly refuted by many 
[10,19,34,46,54,102], ‘selfish’ DNA became a common epithet for 
ncDNA, and a variable invasion of genomes by ‘selfish’ DNA remained a 
common explanation for c-value paradox for several decades. 

Contrary to the earlier common belief, some studies during later part 
of the 20th century and later genomic studies identified increasing 
numbers of noncoding genes to be functional, leading to a wider and 
better appreciation of essential roles of the noncoding genomic com
ponents in organism’s biology [22,39,51,60,62,63,68,99]. Proponents 
of the belief that constitutive heterochromatin is an unavoidable ‘selfish’ 
burden were apparently unaware of phenomenon of chromatin dimi
nution described in 1890s by Theodore Boveri and later by others in 
several unrelated animal species, which showed that the genomes in 
these species had the necessary machinery to specifically eliminate 
heterochromatin from somatic cells, but nevertheless retained it in the 
germline for essential functions [105]. The application of ‘selfish DNA’ 
tag to heterochromatin also reflected ignorance about many pre-1980 
studies that had shown heterochromatin i) to function as ‘chromoso
me-engineering DNA’ during evolutionary chromosome repatterning, ii) 
to be transcribed, and iii) to indeed have defined roles in development, 
fertility, reproductive isolation, and thus, in speciation [28,32,36,41,53, 
60,65,67,70,71,84,95,99,100,117]. 

Following an increasing awareness about diverse roles played by 
heterochromatin and the continuing unraveling of myriads of functional 
noncoding RNAs (see later), the concept of ’selfish’ DNA is now largely 
‘junked’ [24,29,62,63,75,77]. Consequently, varying accumulation of 
‘selfish’ DNA in different genomes cannot be a satisfactory explanation 
for the c-value paradox. 

Question 3: can nucleoskeletal or nucleotypic function of DNA 
explain the enigma of orders of magnitude high levels of DNA in 
some ’lower’ taxa or in taxonomically related species? 

The relative constancy of nucleo-cytoplasmic ratio across the bio
logical systems implies that the cell size is constrained by its nuclear 
size, which in turn depends largely upon the genomic DNA content [4,9, 
18,107]. Larger cells provide better efficiency in producing and storing 
proteins and/or other cellular components and their larger nuclear 
volume facilitates increased rates of transcription and RNA processing. 
In view of the wide correlation existing between higher c-values and 
larger cell and nuclear volumes on one hand and longer cell cycle 
duration and generation time on the other, two distinct functional 
classes of eukaryotic genomic DNA have been suggested: i) the primary 

genic or ‘g-DNA’ that codes for proteins and/or is involved in regulation 
of replication, transcription, translation and recombination, and ii) the 
‘nucleoskeletal’ or ‘secondary’ or ‘nucleotypic’ DNA, which provides a 
skeletal framework to sustain larger nuclei and therefore, larger cell 
bodies [9,18,20,84]. Genomes with unusually high c-values and cell 
sizes have higher contents of repetitive DNA, ribosomal genes, and 
transposable elements, which may also function as nucleoskeletal DNA 
[9,18,20,23,69,84,85,99]. 

Diverse mechanisms have generated enlarged DNA content during 
the evolutionary history of living forms. Ancestors of a few major taxa 
and many unrelated species in different taxa independently acquired 
larger genomes through one or more rounds of whole genome duplica
tions (polyploidization), or chromosome or gene duplications, which 
besides increasing the nuclear and cell sizes also facilitated evolution of 
novel proteins and regulatory circuits [20,72,90]. Many animal and 
plant species with smaller genomes use developmental polyploidy or 
endoreplication or polyteny or endomitosis to produce larger cells in 
specific somatic tissue types [84]. Unicellular ciliates with smaller ge
nomes but larger cell size use an entirely different mechanism involving 
dimorphic nuclei (micro- and macro-nuclei): the ciliate macronucleus 
becomes large through a unique system of endoreplication of individual 
gene size DNA molecules left after an orderly elimination of nearly 95 % 
of the intervening DNA sequences, whose function is restricted to the 
‘germline’ micronucleus [89]. 

The varying genome and consequent cell sizes in different taxa have 
been suggested to serve diverse adaptative functions. For example, 
among the amphibians, a group with a wide range of genomes and body 
sizes, the small-bodied and more agile salamanders and frogs have 
smaller genomes, but the larger salamanders with very high c-values are 
more sluggish, and slow developing. The larger cell size in sluggish lung 
fishes with enormously high c-values may help them store high levels of 
glycogen required during their long estivation in cocoons. On the other 
hand, the smaller genomes and small cell size in the later evolved birds 
and bats has been suggested to help them in achieving high metabolic 
rates necessary for flight [20,47]. However, the estimated cell and 
genome sizes in extinct dinosaurs do not correlate with their huge body 
sizes [92]. The presence of small genomes in dinosaurs long before the 
first birds came into existence also questions if the reduced genome size 
in birds and bats is indeed related to their high metabolic rates necessary 
for flight [37]. 

Thus, while the expanded genomic DNA in many species with un
usually high c-values may perform a nucleoskeletal rather than an 
‘informative’ role, and support the large cell and body size, instances 
also exist where large body size is not dependent upon unusually high c- 
values and larger cell sizes. Further, in several instances where endor
eplication generates larger nuclear and cell sizes, the hereochromatin 
regions, presumed to also function as ’nucleoskeletal’ DNA, actually 
remain under-replicated [61]. Besides these anomalous situations, the 
idea of nucleotypic DNA also does not satisfactorily answer the question 
why some species within a group or some ‘less’ evolved taxa need higher 
cell size and, therefore, greater DNA. 

Question 4: can the newly understood noncoding but functional 
DNA explain the c-value paradox? 

A significant fraction of the rapidly labeled heterogeneous nuclear 
RNAs (hnRNAs), derived from unique as well as repetitive sequences, 
was found during the 1960s to remain confined to the nucleus [31,35, 
44,50,55,56,101,106,113] but reasons for their nuclear retention 
remained largely unexplored in the last century because of the wide 
belief that such DNA sequences were ’selfish’ [64]. Establishment of 
specific functions of a few well-defined RNA pol II synthesized 
non-coding RNAs during the past century [60] and the recent genomic 
revolution have, however, led to a much better understanding and 
appreciation of the genome’s noncoding components. It is now well 
established that, rather than being ‘selfish’, a large part, if not all, of the 

Table 1 (continued ) 

Explanation Evidence Counter evidence Current status 

DNA determine the 
c-value. 

enormously 
greater regulatory 
DNA. 

features of the c- 
value paradox.  
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genome is actually transcribed to execute diverse essential regulatory 
functions in all living organisms [1,5,12,21,43,45,59,66,74,97,111,114, 
119]. Earlier suggestions [14,60,76] that changes in regulation played 
more significant and pivotal roles in evolution than mutations in 
protein-coding ‘structural’ genes, have been amply confirmed by the 
contemporary genomic studies. For example, 30-fold more noncoding 
than protein-coding regions were found to be related with the rate of bill 
shape evolution in 72 bird species [118]. Likewise, most of the single 
nucleotide polymorphisms (SNP) associated with diverse human dis
eases are enriched in non-coding regions near the protein-coding genes 
[25]. The abundance of introns, adding to the ncDNA proportion, cor
relates with organismic complexity as multiple introns permit a greater 
diversity of regulated alternative splicing and thus production of novel 
RNAs, proteins, and functions [42,87,103,115,116]. Genomic analyses 
show that the noncoding regulatory DNA sequences associated with the 
protein coding genes are usually much larger than the protein coding 
regions [26]. The high c-value genomes also display greater frequency of 
‘orphan’ genes [38], generated through duplication of protein-coding or 
non-coding genes [38,109]. In view of the increasingly better under
standing of the diverse and essential functions of the noncoding 
component of genomic DNA, the concept of ‘selfish’ DNA has largely lost 
its relevance [60,64,120]. 

The puzzle of very high proportion of ncDNA in genomes of the basal 
size, characteristic of the given taxonomic group, thus appears nearly 
resolved when the transcribed noncoding, regulatory, and protein- 
coding DNA sequences in the organism’s genome are considered 
together [73]. However, the ‘c-value enigma’ [47], associated with or
ders of magnitude higher c-values in some ‘lower’ organisms than the 
more evolved ‘higher’ organisms, or some species having significantly 
higher c-values than their close relatives of comparable biological 
complexity, remains unanswered. 

The next question, therefore, is if nature really assesses ‘optimum’ 
with the same sense of ‘economy’ and ’purpose’ as the human mind 
does, and does nature apply a common yardstick in every case? 

Question 5: does natural selection uniformly apply the 
anthropocentric parameters for ‘optimum’ and ‘economy’? 

The genesis and perpetuation of the c-value paradox lies in the 
general human perception of cost and benefit, so that genetic informa
tion and biological complexity are expected to be correlated. The c-value 
paradox, primarily an outcome of the many instances where this 
expectation is not fulfilled, was further compounded by the historical 
emphasis only on protein coding function of genes. As discussed above, 
appreciation of non-coding DNA as functional component of genome 
and the nucleoskeletal role of DNA in generating larger nuclei/ cells can 
partially explain some aspects of the c-value paradox, but the diversity 
of the mechanisms underlying the quantitative change in the genomic 
DNA content, and the phylogenetically independent recurrences of 
disproportionate genome sizes defy the reductionist and cost-benefit 
considerations that are generally inherent in explanations based on 
human perspectives of cost, benefit, and purpose. 

Biological systems present numerous paradoxical instances where 
the given end result/ phenotype has been successfully achieved in 
different species through diverse mechanisms that often appear ‘illog
ical’ to human analysis. A glaring example is the diversity of sex- 
determination mechanisms. Although bisexuality is a basic attribute of 
most eukaryotes, the mechanisms that determine sex and trigger the 
male or female modes of zygotic development are uncannily diverse, 
often even between related species [3,112]. Another example relates to 
the very different mechanisms and processes employed for somatic 
‘silencing’ of the constitutive heterochromatin and the associated re
petitive sequences, which have major roles in gametogenesis and 
reproductive isolation. These processes span from chromatin/ chromo
some diminution in ciliates, and some unelated animal species from 
nematodes to vertebrates [18,20,86,89,104,105], under-replication 

during endoreplication cycles in many insects and plants [8,61] and 
the more widely used epigenetic silencing (heterochromatinization) of 
chromosome sets, individual chromosomes or chromosome regions [7, 
13,48]. If the chromosome/ chromatin diminution of non-functional 
heterochromatic regions or elimination of large number of specific 
genes in somatic cells of ciliate macronucleus, or the under-replication 
of heterochromatin during endoreplication cycles, were ‘smart eco
nomic’ solutions that save on the non-productive energy expenditure in 
carrying and replicating, and then silencing them in soma, why such a 
diversity of regulatory processes evolved, and more importantly, why 
have they evolved independently but recurringly rather than being 
maintained uniformly across phylogenetic lineages? Another paradoxi
cal feature, perhaps unique to ciliate genomes, is the presence of 
‘scrambled’ genes, requiring ‘unscrambling’ during macronucleus 
development [58,96]. Obviously, these and numerous other such in
stances are results of unplanned evolutionary accidents that have sur
vived because the end-result remained functional, no matter how bizarre 
the underlying processes appear post facto to the human mind, which is 
trained to design cost-effective optimal systems. Apparently, natural 
selection does not have pre-set parameters to identify ‘optimal’ and 
‘economical’. 

Concluding remarks and future perspectives 

Mutations, point or chromosomal rearrangements, or whole genome 
or individual chromosome or gene duplications are random and sto
chastic irreversible accidental events. As stated by J. Monod in the book 
’Chance and Necessity’ [80] “once incorporated in the DNA structure, 
the accident – essentially unpredictable because always singular - will be 
mechanically and faithfully replicated and translated: that is to say, both 
multiplied and transposed into millions or billions of copies. Drawn out 
of the realm of pure chance, the accident enters into that of necessity, of 
the most implacable certainties. For natural selection operates at the 
macroscopic level, the level of organisms" (italic fonts added for emphasis). 
The myriads of regulatory networks operating in the biological systems 
at levels of replication, transcription, translation, compartmentalization, 
and turnover can buffer the initial ‘disadvantage’ of the mutation, 
including gain (or loss in some cases) of DNA, and let the organism 
carrying the newly acquired additional DNA persist in the prevailing 
environment, especially when the population size is small. Over the 
evolutionary time scale, the added DNA gets repurposed in diverse ways. 

Although the human mind is an outcome of the action of natural 
selection, the anthropocentric logic of purpose, economy and optimum 
is not practiced by natural selection. Biological organisms are not 
created by design but are outcomes of natural selection exploiting 
random events to operate upon the existing system. Natural selection 
‘discovers’ the adaptive value or otherwise of any change only after it 
has happened. Therefore, natural selection, being a tinkerer rather than 
a designer or engineer [57], lets any working system survive irrespective 
of whether it is the most optimal solution, as would be preferred by a 
human engineer. If the cumulative adaptive features permit a species to 
leave enough progeny, despite its acquiring huge genome or an unusual 
system of selective DNA elimination or endoreplication through evolu
tionary accident/s, natural selection can eliminate but not revert the 
system back to energetically more efficient state. Thus, persistence of the 
‘excess’ DNA in a genome becomes paradoxical only when the cost and 
benefit ratio is applied with a human engineer’s or economist’s 
perspective. When viewed from nature’s perspective, the c-value 
paradox becomes irrelevant. Nevertheless, the various discussions on 
these issues during the past five decades have been very stimulating and 
have indeed led to a much better understanding of genomes and 
genomic evolution. 

It is expected that future genomics studies, comprehensively 
covering wider range of species belonging to same as well as distantly 
related taxa, would generate more extensive but precise and detailed 
data not only for the c-value changes but also with respect to evolution 
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of individual genes, transposable elements, and repetitive sequences. 
These would unravel a much clearer picture of long- as well as short- 
range trends in genome and gene evolution. Integration of the 
genomic data of a species and higher taxa with the corresponding 
morphological, physiological, and developmental features on one hand, 
and the environmental factors on the other, would unfold the wider 
canvas on which natural selection works. Genome analyses of species 
that have become extinct in recent times and comparisons with different 
populations of their close extant relatives are of great interest, especially 
for learning about recent changes, including gain or loss, in genomic 
DNA. Nature and natural selection provide endless diversities in their 
operational systems. 
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