
ORIGINAL RESEARCH ARTICLE
published: 22 January 2015

doi: 10.3389/fnhum.2014.01077

Vowel generation for children with cerebral palsy using
myocontrol of a speech synthesizer
Chuanxin M. Niu1, Kangwoo Lee2, John F. Houde3 and Terence D. Sanger2,4,5*

1 Department of Rehabilitation, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
2 Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
3 Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
4 Biokinesiology, University of Southern California, Los Angeles, CA, USA
5 Neurology, University of Southern California, Los Angeles, CA, USA

Edited by:

Antoni Rodriguez-Fornells,
University of Barcelona, Spain

Reviewed by:

Antoni Rodriguez-Fornells,
University of Barcelona, Spain
Pavel Lindberg, FR3636
Neurosciences Centre National de la
Recherche Scientifique, Université
Paris Descartes; U894 Inserm,
France

*Correspondence:

Terence D. Sanger, Department of
Biomedical Engineering, Viterbi
School of Engineering, University of
Southern California, 1042 Downey
Way, Los Angeles, CA 90089, USA
e-mail: tsanger@usc.edu

For children with severe cerebral palsy (CP), social and emotional interactions can be
significantly limited due to impaired speech motor function. However, if it is possible
to extract continuous voluntary control signals from the electromyograph (EMG) of
limb muscles, then EMG may be used to drive the synthesis of intelligible speech
with controllable speed, intonation and articulation. We report an important first step:
the feasibility of controlling a vowel synthesizer using non-speech muscles. A classic
formant-based speech synthesizer is adapted to allow the lowest two formants to be
controlled by surface EMG from skeletal muscles. EMG signals are filtered using a
non-linear Bayesian filtering algorithm that provides the high bandwidth and accuracy
required for speech tasks. The frequencies of the first two formants determine points in a
2D plane, and vowels are targets on this plane. We focus on testing the overall feasibility
of producing intelligible English vowels with myocontrol using two straightforward
EMG-formant mappings. More mappings can be tested in the future to optimize the
intelligibility. Vowel generation was tested on 10 healthy adults and 4 patients with
dyskinetic CP. Five English vowels were generated by subjects in pseudo-random order,
after only 10 min of device familiarization. The fraction of vowels correctly identified by
4 naive listeners exceeded 80% for the vowels generated by healthy adults and 57%
for vowels generated by patients with CP. Our goal is a continuous “virtual voice” with
personalized intonation and articulation that will restore not only the intellectual content
but also the social and emotional content of speech for children and adults with severe
movement disorders.
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INTRODUCTION
Children with brain injury in the perinatal period, usually
referred as Cerebral Palsy (CP), are often left with a combina-
tion of weakness, spasticity, dystonia, dyspraxia, and other motor
disorders (Cans, 2000). These disorders in CP result from dysgen-
esis or injury to developing motor pathways in many components
of central nervous system, including the cortex, basal ganglia,
thalamus, cerebellum, brainstem, central white matter, or spinal
cord. Most patients with CP struggle to maintain limb postures
or perform voluntary movements due to increased muscle tone
or weakness. Concomitant issues in emotional and behavior are
also common in CP (Bax et al., 2005). In the most severe cases,
the motor disorders in CP can prevent all meaningful voluntary
movements of the patient (Sanger et al., 2003), and more than
80% of children with dyskinetic or tetraplegic CP suffer from
speech impairments (Odding et al., 2006). While new therapies
such as stem cells hold great promise for the treatment of early
brain injuries, full restoration of speech for children with CP
remains unlikely.

We use the term “language” as the content of human com-
munication, either spoken or written, consisting of the use of
words in a structured and conventional way (Oxford English
Dictionary); while the term “speech” as the motor function
required for vocalizing human language. It is common that
patients with CP may have normal language ability (via writing
or assistive devices) but are completely incapable of producing
speech. Our ultimate goal is to allow children with CP to create
intelligible English speech using a portable synthesizer controlled
in real-time by body signals such as muscle activity. For chil-
dren with CP who have preserved language skills but impairment
of control of vocal tract musculature, our aim is to create a
“virtual voice” to enable them to express language using other
muscles for which they may have better voluntary control. The
primary engineering challenges for restoring speech are threefold:
(1) extracting controllable signals from a diseased neurologi-
cal system, (2) using these signals to rapidly synthesize sounds
resembling human speech, and (3) providing personalized ways
of speaking. The third challenge is particularly important for
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children, since language is used by children for social interaction
and emotional communication, much more than for declarative
statements (Wing and Gould, 1979; Van Lancker et al., 1989; Patel
and Schroeder, 2007). It has been shown that muscle patterns in
children with CP are distorted by co-contraction (Young et al.,
2011a,b), signal-dependent noise (Sanger et al., 2005; Sanger,
2006), and weakness, which reduce the speed and accuracy of
control and lead to a limited effective bandwidth of the voluntary
signal (Sanger and Henderson, 2007). Therefore, the challenge is
to allow sufficient flexibility in the voice output despite limited
bandwidth of the voluntary control signals. We thus seek to maxi-
mize the controllability of the produced speech, while minimizing
the need for precise control of muscles.

Myocontrol, the control of prosthetic devices using surface
electromyographic (EMG) signals, holds great promise for speech
production. Previous studies provide the essential support that
EMG from limb muscles provides an excellent signal that chil-
dren with CP can often control (van der Heide et al., 2004).
The flexibility and accuracy of muscle activity could poten-
tially approach the quality and flexibility required in speech
control. Furthermore, signal processing could potentially trans-
form abnormal muscle patterns of children with CP into much
more precisely controllable signals with significantly better per-
formance. In speech science, EMG has been adopted in various
studies including the real-time recognition of impaired speech
(Jorgensen et al., 2003; Jou et al., 2007); EMGs from neck strap
muscles have also been successfully used for driving an artificial
larynx in patients who receive laryngectomy (Stepp et al., 2009).
In these applications, however, patients have normal neural con-
trol and need only bypass abnormal muscles or biomechanics. But
for children with CP and absent speech, the neural control itself
is impaired so that EMG from the neck muscles is not expected
to function for control of speech. Compared to muscles around
the neck and vocal tract, limb muscles are defined more clearly
and therefore easier to attach surface EMG recording electrodes.
Here we will leverage the fact that significant amount of voluntary
control can still be reconstructed from limb muscles of children
with CP.

Successful application of myocontrol has been limited by the
variability in raw EMG signals and the consequent poor quality of
estimates. Most existing methods for EMG processing stem from
the idea that EMG can be treated as an amplitude-modulated sig-
nal with band-limited noise (Hogan and Mann, 1980a,b). Based
on this perspective, a procedure of high-pass, rectify and low-pass
filtering has been developed and widely adopted for EMG pro-
cessing (Evans et al., 1984; Merletti, 1999). Using this procedure,
however, it is difficult to obtain online control signals that are
both responsive and smooth, which is extremely critical for real-
time applications such as restoring movement functions. With
our recently developed techniques of non-linear Bayesian filtering
(Sanger, 2007), we are able to extract high-bandwidth, low-
latency control signals from raw surface EMG. The technique has
been applied to studies of biofeedback (Bloom et al., 2010) and
motor control (Young et al., 2011b) for children with dyskinetic
CP. It provides another essential support for using myocontrol
in speech production for CP. See Materials and Methods for
details.

In addition to the problem of control, speech restoration for
children with CP also requires a technology that can synthesize
speech-like voices with a small number of control parameters,
and yet still allow for flexible voice output. The technology of
speech synthesis has been of interest for more than 200 years (von
Kempelen, 1791), and it has evolved into three categories of syn-
thesis approaches: concatenative, articulatory and formant-based.
The simplest way to produce synthetic speech is to play back
pre-recorded pieces of natural speech following pre-determined
concatenations. This concatenative approach produces very high
quality of voice in text-to-speech applications (Taylor et al., 1998),
but pre-recorded voices are usually unavailable from children
with CP. Even though in some cases the patients’ voice can
be pre-recorded, such systems usually require accurate selection
of speech elements; thus the control task may be harder than
necessary.

As a continuous alternative to concatenative synthesis,
formant-based synthesis uses relatively few control parameters
and allows for full control of intonation and inflection (Klatt,
1980). In the case of vowels, for instance, it has been suggested
that frequencies of the lowest two formants (F1 and F2) are suf-
ficient for vowel intelligibility, while formant bandwidths and
other parameters are less important (Stevens, 2000; Ladefoged
and Johnstone, 2010). Therefore, in the case of vowel synthe-
sis, it becomes possible to reduce the number of parameters for
control in CP using a low dimensionality of control inputs. In a
recent study (Larson et al., 2013), the investigators succeeded in
using two channels of surface EMG from orbicularis oris mus-
cles to control F1 and F2 for vowel synthesis. The EMGs were
categorized into pre-defined syllables and therefore would not
provide continuous auditory feedback. In this study, because we
convert EMGs moment-by-moment to continuously varying for-
mant frequencies, our system will produce continuous voice even
though the target phoneme has not yet fully developed. As a
result, even though real-time myocontrol allows significant flex-
ibility that could potentially lead to personalized intonation and
articulation, the very first step should be testing the intelligibility
of vowels using myocontrol.

Ultimately, the goal of myocontrolled speech synthesis is to
generate both vowels and consonants in continuous speech. In
reaching this goal, generation of consonants presents several
important challenges. First, many consonants (e.g., plosives and
fricatives) are rapid, dynamically changing acoustic events. Such
consonants thus require high bandwidth in the control signal to
produce the fast temporal transitions. Second, many consonants
involve controlling more acoustic features than just F1 and F2,
e.g., frication noise for fricatives and F3 for /r/ (Espy Wilson,
1992; Heinz and Stevens, 2005). Our technique of myocontrolled
vowel synthesis can be directly used for producing liquid con-
sonants (or semi-vowels) due to the acoustic similarity between
vowels and liquid consonants (Ladefoged and Johnstone, 2010).
For other consonants that have dynamics and richer acoustic
features (plosives, fricatives, etc.), we expect that certain dimen-
sionality reduction methods will be required to simplify control
of the formant trajectory and sound production process such
that the consonant production can be mapped to activation of
a limited number of muscles. The focus of the current study,
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however, is to answer the initial feasibility question of whether
vowel synthesis can be controlled in real-time using non-speech
muscles.

This paper first introduces the design and methodology of
real-time vowel generation using EMG from non-speech muscles.
Next, we describe testing the quality of myocontrolled speech syn-
thesis in 10 healthy adults and 4 patients with dyskinetic CP. The
two populations are not age matched since our purpose is valida-
tion of myocontrolled vowel-synthesis in a wide range of subjects.
We hypothesize that for healthy adults the vowels synthesized via
myocontrol will be recognized by naïve listeners with statistical
significance; in patients with CP, the intelligibility is expected to
be lower than healthy adults, but the listeners should still be able
to identify the vowels with statistical significance. The fraction of
vowels correctly identified by 4 naive listeners is calculated to test
the feasibility of intelligible speech restoration using myocontrol.
Preliminary results have been reported as an abstract (Niu et al.,
2013). Our main innovations are (1) using non-linear Bayesian
filtering to extract high-bandwidth, low variability control signals
and (2) mapping the vowel generation to moving a cursor on a
2D plane, which is intuitive even for children with CP.

MATERIALS AND METHODS
All research participants signed written informed consent to
participate as well as U.S. Health Information Portability and
Accountability Act (HIPAA) authorization for use of medical and
research records, according to approval of University of Southern
California Human Subjects Review Board. Both healthy subjects
and patients with CP were recruited. Healthy subjects without
known neurological disease were recruited as control. Patients
with CP were required to have normal cognition such that they
could understand the experimental instructions, and at least one
side of their upper extremities should show motor deficits. Ten
healthy adult subjects (7 male, 3 female, age 21–29 years), four
subjects with dyskinetic CP (2 male, 2 female, age 12–20 years)
and four naïve listeners (2 male, 2 female, age 25–30 years) were
recruited. The clinical diagnosis and motor deficit analyses of 4
patients with CP are summarized in Table 1.

SYNTHESIZING VOWEL IN REAL-TIME BY CONTROLLING FORMANTS
The overall design of our myocontrolled formant-based synthesis
platform is shown in Figure 1. Raw muscle EMGs are monitored

using surface EMG electrodes (Biometrics SX230) attached over
the belly of the chosen muscle. EMG signals are sampled at
1 kHz and processed online using a non-linear Bayesian filter.
The screen provides visual feedback of the muscle activity, and
also shows the level of activity required for a given vowel. Both
auditory and visual feedback are continuously provided during
experimental tests.

In human speech, vowel production can be described as a
broadband sound source generated at the glottis (i.e., the glot-
tal source) that is filtered by the vocal tract (e.g., the pharynx,
tongue, palate, teeth, lips) (Titze, 2000). The glottal source is
periodic with a fundamental frequency F0 that is lower for
male voices and higher for female voices. The vocal tract has
several resonances that speakers change by moving the articu-
lators, especially the tongue. These resonances filter the glottal
source, so that the output speech spectrum has harmonics of
the pitch modulated by broad peaks of the vocal tract reso-
nances called formants. The frequencies of the lowest two for-
mants (F1 and F2) determine which vowel is being spoken, while

FIGURE 1 | Design of the system (top) and a snapshot of the working

set-up (bottom). The EMG electrodes are placed on the flexor pollicis
brevis muscles of both hands. Pinching the thumb and index finger will
activate the EMG to move both the screen cursor and formant frequency.

Table 1 | Diagnosis of four patients with dyskinetic CP.

Patient Gender Age Clinical diagnosis Motor deficits

1 Male 12 Ataxia, severe dysarthria, mild bradykinesia, normal
cognition

Slow movements, hand dystonia, intention tremor,
bilateral hand athetosis; Mild gait instability

2 Male 18 Left arm dystonia, dyspraxia, normal cognition Stiff arms and hands, impaired fine movements due to
dyspraxia; Tight hamstring during walking, excessive
dorsiflexion in ankles, hips adducted in stance

3 Female 20 Generalized secondary dystonia, normal cognition Occasional shoulder jerk, mild torticollis, writing with
stiff posture and easily fatigued; Normal walking

4 Female 12 Right hemiplegia, chorea, right eye impaired vision,
mild to moderate cognition

Tremor of right upper extremity, very stiff right arm and
hand; Impaired gait with foot drop

Frontiers in Human Neuroscience www.frontiersin.org January 2015 | Volume 8 | Article 1077 | 3

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Niu et al. Muscle-driven vowel synthesis for CP

higher formants usually reflect non-phonetic speaker character-
istics (e.g., vocal tract length) (Stevens, 2000; Ladefoged and
Johnstone, 2010). Thus, in formant-based speech synthesis, we
can artificially synthesize different vowels by tuning the low-
est two resonances of a filter driven by a broadband periodic
(e.g., impulse trains) acoustic source (Parsons, 1987; Stevens,
2000).

In this project, we adapted an open-source formant-based
synthesizer (Wavesurfer, KTH Royal Institute of Technology,
Sweden) such that F1 and F2 can be directly controlled over
an ethernet link in real-time. The reason of selecting a well-
developed synthesizer is to keep our goal modest, such that if the
feasibility test fails it is likely due to our myocontrol design but
not the synthesizer. The source code of the Wavesurfer synthe-
sizer is located at http://www.speech.kth.se/wavesurfer/formant/.
The adapted version is available upon request from the authors of
this paper.

NON-LINEAR BAYESIAN FILTERING OF EMG
Under the assumption that the rectified EMG signal results from
random depolarization events of multiple muscle fibers, the aver-
age amplitude of rectified EMG in a small time window will be
proportional to the number of depolarization events during that
time. One representative non-linear model of such depolarization
events is a non-homogeneous Poisson process with n events per
second, controlled by the muscle drive x:

P (EMG | x) ∝ xne−x

n! (1)

where the driving signal x is unknown and thus must be estimated
by the filtering algorithm.

Since the drive signal x is determined by voluntary behavior,
we model this behavior as a jump-diffusion process that includes
the possibility of gradual changes in muscle drive with occasional
sudden jumps at the time of force onset or offset:

dx = α (dW) + (U − x) dNβ (2)

where the stochastic differential equation is to be interpreted
in the Ito sense, dW is the differential of a standard Brownian
motion, dNβ is the differential of a counting process with rate
β events per second, and x is a random variable uniformly dis-
tributed on [0,1]. Equation 2 models the gradual drift of x
determined by the drift rate α, and rare jumps that occur at tran-
sitions in the counting process dNβ , at which times the value of x
will change to a new random value drawn from the distribution
of x.

Using Equation 1, we can derive a posterior estimate for x
based on measurement of EMG and a prior estimate of the den-
sity of x using Bayes’ rule. Between measurements of EMG, x will
change according to the stochastic differential equation Equation
2, and the distribution of x will propagate forward in time accord-
ing to a corresponding partial differential equation similar to the
Fokker-Planck equation. After each measurement, the maximum
a posteriori estimate of x is calculated using Bayes’ rule, and this
provides the output estimate from the algorithm at that time.

An example of non-linear Bayesian filtering applied to rec-
tified EMG is shown in Figure 2. As can be seen, the output

FIGURE 2 | Example of non-linear Bayesian filtering, re-analyzed and

produced from previous dataset (Sanger, 2007). A rectified surface EMG
signal (top) was recorded during 10 s of isotonic contraction in the biceps. The

corresponding force (middle) was both fast-changing and smooth. The signal
produced by non-linear Bayesian filter (bottom) showed comparable rising
time and falling time, and maintained small variability during the contraction.
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from non-linear Bayesian filter has captured the rapid changes
in force, but still with sufficient smoothness and dynamic range.
For details about this EMG model and filtering algorithm refer to
Sanger (2007). There exist a variety of EMG filtering algorithms
that may all allow myocontrolled speech synthesis. We adopt non-
linear Bayesian filtering due to its benefits of fast time-domain
response and low variability. Detailed comparison between EMG
filtering algorithms for speech synthesis may be tested if the basic
feasibility is proven.

FORMANT PLACEMENT IS A 2D REACHING MOVEMENT
The five common English vowels and the frequencies of their low-
est two formants (F1 and F2) are shown in Table 2 according to
Hillenbrand et al. (1995) On a plane defined by F1 and F2, each of
the five vowels represents a point, as can be seen in Figure 3A. The
mapping between vowel and locations on a 2D plane is visualized
and shown to the subject for learning the use of myocontrolled
vowel production. It is important to realize that perfect accuracy
is not required; vowels will be recognizable in a region near the
targets, and the tolerance for error will be greater when vowels
are incorporated as part of a word or phrase in which meaning
can be inferred.

To familiarize with the task without the need to learn myocon-
trol simultaneously, we first asked all subjects to repetitively move
between /i/ and /A/ using the finger to swipe across the surface of a
touch-screen. To demonstrate the feasibility of placing F1 and F2
using myocontrol, we asked the same subject to move the cursor
on the formant plane using flexor pollicis brevis EMGs from both
hands. The EMG signals were transformed to F1 and F2 using the
Cartesian transform (explained below). See Results for details.

CONTROL STRATEGIES FOR PLACING FORMANTS
Since F1 and F2 frequencies represent points on a 2D surface,
filtered EMGs must be mapped to positions within the same sur-
face. Due to the non-negativity of filtered EMG, we chose two
straightforward position mappings either in Cartesian coordi-
nates within the first quadrant, or polar coordinates within the
entire 2D surface. Cartesian transform is given by:

F1 =
(

Fhi
1 − Flo

1

)
EMG1 + Flo

1 (3)

F2 =
(

Fhi
2 − Flo

2

)
EMG2 + Flo

2 (4)

Table 2 | Average formant frequencies (Hz) for U.S. English vowels

produced by 45 males (from Hillenbrand et al., 1995), with the

corresponding EMG magnitude under Cartesian and polar transform.

Vowel Example F1 F2 EMG1 EMG2 EMG1 EMG2

IPA Cart. Cart. polar polar

/A/ “hot” 768 1333 0.71* 0.30 0.28 0.62*

/e/ “get” 580 1799 0.44 0.52 0.23 0.27

/i/ “bee” 342 2322 0.10 0.77* 0.72* 0.21

/ c/ “bought” 652 997 0.54 0.14 0.51 0.72*

/u/ “boot” 378 997 0.15 0.14 0.53 0.80*

*High muscle contraction level required.

where Fhi
1 , Flo

1 , Fhi
2 and Flo

2 are the boundary frequencies chosen
such that all vowels listed in Table 2 are reachable with normal-
ized EMG1, EMG2 ∈ [0, 1]. When using the Cartesian transform,
a dot cursor representing the current coordinate of (F1, F2) was
shown on the screen (Figure 3B).

Another way of transforming non-negative normalized EMG
into formant space is to use polar coordinates. The transform is
given by:

F1 = Fhi
1 + Flo

1

2
+ KF1EMG1sinθE (5)

F2 = Fhi
2 + Flo

2

2
+ KF2EMG1cosθE (6)

θE = 2πEMG2 + π

2
(7)

where KF1 and KF2 are scaling factors for adjusting the size of
the ellipse defined by the transform. When using the polar trans-
form, the visual feedback was provided by a vector line, of which
the magnitude was primarily driven by EMG1 while the angle
driven by EMG2 (Figure 3C). In the current setup we choose that
when EMG1 = 1.0 and EMG2 = 0.0 the vector is pointing to the
negative direction of F1.

The normalized EMGs required for each vowel are listed in
Table 2, calculated according to Equations (3–7). When using
Cartesian transform, the cursor starts from the top-right corner
of the screen; when using polar transform, the cursor starts from
the center of the screen. It is worth noting that the origin of the
coordinate system directly affects the magnitude of EMG1 and
EMG2 required for each vowel. Therefore, reaching certain targets
may require an EMG level higher than 60% of maximum volun-
tary contraction (MVC, see asterisk terms in Table 2), which has
been known to cause fatigue (Bigland-Ritchie et al., 1981). Simple
increasing the gain of non-linear filter will reduce the maximum
EMG level, but this will reduce the accuracy when producing low

FIGURE 3 | (A) In formant-based speech synthesis, each vowel represents
a point on the 2D plane defined by F1 and F2. Therefore, five common U.S.
English vowels are one-on-one mapped to five targets on a 2D plane. Both
the Cartesian (B) and polar (C) transform from EMG to formant are tested
due to the non-negativity of EMG signals.
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level EMGs. Therefore, one goal in the future is to minimize the
EMG amplitude requirement while maintaining the accuracy at
low EMG levels.

EXPERIMENTAL PROCEDURE OF RANDOMIZED VOWEL GENERATION
Subjects were seated in front of a laptop computer, with both
hands resting on the knees. Activities from bilateral upper-limb
muscles were monitored using two surface EMG electrodes, one
for each hand. For healthy subjects with normal hand and arm
function, signals from brachioradialis (BR, an elbow flexor) and
flexor pollicis brevis (FPB, a thumb flexor) muscles were sep-
arately tested for myocontrol; for subjects with dyskinetic CP
who had trouble using hand muscles, only BR was tested. In
FPB conditions, subjects were instructed to pinch their thumb
and index finger to activate the muscle; in BR conditions, the
muscles were activated by the subjects lifting their forearms
against the desk. Before the experiment, raw EMG amplitude was
normalized to MVC (maximum voluntary contraction) deter-
mined for each electrode using the highest activation in any
250 ms period during five 5-s attempts, with visual feedback and
encouragement.

All subjects received two test sessions (Cartesian transform
and polar transform) in random sequence, illustrated in Figure 4.
During each session, the subject was first given a 10-min practice
to familiarize with vowel generation. During practice, the loca-
tions in formant space of all 5 vowels were displayed on the screen,
and continuous audio feedback was provided. Subsequently, sub-
jects were required to produce a series of 25 movements to targets
in formant space corresponding to random vowels containing 5
occurrences of each common English vowel (/A/, /e/, /i/, / c/, /u/).
In each trial, the target in formant space was shown, and the sub-
ject was allowed 5 s to produce the target vowel. A 2-s break was
given between each trial.

The 5-s sound clips recorded from each trial were played to
four naive listeners (native U.S. English speakers) to identify the
attempted vowel. At the beginning of each clip, the initial sound
represent the two formants when EMG1 = 0, EMG2 = 0; the ini-
tial sound then transitioned to the steady-state sound produced
by each subject. The listener was informed that during the 5 s
the subject was trying to speak one vowel out of five possibilities.
The listener was forced to make a choice by inferring from the
steady-state sound and ignoring the transition. The fraction of
vowels correctly identified by the listener, given by Ncorrect/Ntotal,

was calculated to show the overall quality of myocontrolled vowel
generation.

STATISTICAL ANALYSIS
The responses from each of the 4 naive listeners are analyzed using
Cohen’s κ-test (Viera and Garrett, 2005) to determine whether the
synthesized vowels are intelligible. The purpose of Cohen’s κ-test
is to identify whether there is a difference in responses between
the naive listener and an imaginary perfect listener who has exact
knowledge of which vowel was spoken. In our case the listener
was required to pick an answer from 5 candidate vowels, therefore
an imaginary perfect listener would achieve 100% fraction of cor-
rectness, while a random guesser would be expected to achieve, on
average, 20% correctness. In order to test the agreement among
4 listeners, we also analyzed their responses using Fleiss’s κ-test
(Fleiss, 1971).

RESULTS
We first asked the subjects to repetitively move between /i/ and
/A/ using the finger to swipe across the surface of a touch-screen.
The trajectories resulting from the finger movements of a healthy
subject are displayed in Figure 5A. In agreement with previous
studies (Atkeson and Hollerbach, 1985; Uno et al., 1989), the
trajectories of finger swiping movements were clustered around
a straight line, even though the subject was free to choose any
possible trajectory. Once the trajectory shown in Figure 5A was
connected to our speech synthesizer it immediately produced the
vowel sequence of “ee-ah-ee-ah.” It is hence suggested that when
using formant-based synthesis, producing a target vowel can be

FIGURE 5 | When making repetitive reaching between /i/ and /A/ on a

touchscreen, the trajectory (A) automatically produces the sound of

“ee-ah-ee-ah.” The same task can be done using myocontrol (B), where
the trajectory has significantly higher variability but still produces
“ee-ah-ee-ah.” Data from a healthy subject are shown.

FIGURE 4 | The experimental procedure for testing the quality of vowel synthesis. Two sessions (Cartesian or polar) were given to each subject. Both the
healthy subjects and patients received the 10-min practice for familiarizing with the device.
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equivalently interpreted as reaching to a target position within a
2D plane.

We then asked the same subject to move the cursor on the for-
mant plane using flexor pollicis brevis EMGs from both hands
using the Cartesian transform. The myocontrolled trajectory is
shown in Figure 5B. As can be seen, although the variability of the
trajectory is significantly higher, the two targets (/i/ and /A/) were
still reached. This demonstrates the feasibility of using EMGs to
move a cursor on the 2D formant plane. Notice the abrupt jump
in the bottom-left part of the trajectory shown in Figure 5B, this
is because non-linear Bayesian filtering allows for rapid jumps
even though the main purpose is still acquisition of smooth con-
trol signals. We argue that the task remains intuitive to the subject,
which will facilitate learning.

We first compared the spectrogram of a vowel sequence “ee-
ah-ee-ah” produced by both myocontrolled synthesizer and nat-
ural human speech of a healthy subject (Figure 6). It can be seen
that the spacing between the lowest two formants are qualitatively
similar. This is not surprising since the synthesizer is designed to
closely match human voice, but the test is still useful for the vali-
dation of whether subjects can indeed drive the synthesizer using
limb muscles.

The responses from the naive listener for all 10 healthy sub-
jects are summarized in Table 3. For each condition, the fraction
of correctness is averaged across all vowels produced by all 10
subjects. As can be seen, in all cases the fractions of success are
higher than 60%, suggesting that it is feasible to produce intelli-
gible English vowels using myocontrol. Cohen’ κ-tests show that
in all cases the κ-values are higher than 0.50, suggesting at least
“Moderate” (“Almost Perfect” when using Cartesian transform)
agreement between the naïve listeners and an imaginary perfect
listener.

Two-Way repeated measures ANOVA shows that in healthy
subjects (Figure 7A, healthy), Cohen’s κ is significantly higher
when using Cartesian transform compared with polar trans-
form [main effect of transform, F(1, 9) = 169.7, p < 0.00001];

FIGURE 6 | Spectrograms of synthesized speech generated from

myocontrol (top) and natural human speech (bottom) for the vowel

sequence “ee-ah-ee-ah.”

also our design favors the finger flexor (FPB) over the elbow
flexor (BR) [main effect of muscle, F(1, 9) = 9.831, p < 0.05].
The interaction between transform and muscle is also significant
[F(1, 9) = 20.51, p < 0.01]. These results suggest that both the
EMG-formant mapping and muscle selection are important for
future improvements of myocontrolled speech synthesis.

For the patients with dyskinetic CP, the responses of the lis-
teners are also shown in Table 3. Since the subjects with dystonia
had difficulty controlling their FPBs, only brachioradialis mus-
cles (BR) were tested. Although the fraction correct for subjects
with dyskinetic CP was lower than for healthy subjects, the naive
listeners were still able to identify almost half of the vowels

Table 3 | The responses of 4 listeners to vowels from 10 healthy

subjects and 4 patients with dyskinetic CP.

Group Muscle Transform Correct (%) κ (SD) Quality*

Healthy BR Cart. 88.02 0.853(0.042) Almost perfect

polar 61.40 0.520(0.014) Moderate

FPB Cart. 89.20 0.865(0.021) Almost perfect

polar 71.20 0.641(0.038) Substantial

CP BR Cart. 57.00 0.473(0.053) Moderate

polar 46.75 0.281(0.050) Fair

*The quality of raters agreement is assessed according to Landis and Koch

(1977).

FIGURE 7 | (A) Cohen’s κ calculated from the responses of 4 listeners for
the 10 healthy subjects. Each data point represents the responses from 1
listener across 25 vowels. For healthy subjects, each box covers 4
(listener) × 10 (subject) = 40 data points. (B) Cohen’s κ calculated from the
responses of 4 listeners for 4 patients with CP, each box covers 4
(listener) × 4 (patient) = 16 data points.
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generated by subjects with dyskinetic CP. Cohen’ κ-test also shows
either “moderate” or “fair” agreement between the naive listen-
ers and an imaginary perfect listener, suggesting that the vowels
were unlikely to have been identified from pure speculation.
Similar to healthy subjects, One-Way repeated measures ANOVA
shows that for these 4 patients (Figure 7A, CP), our design favors
Cartesian transform compared to polar transform [main effect of
transform, F(1, 3) = 10.9, p < 0.05].

The performances of individual patients measured in κ are
shown in Figure 7B. Although patient #4 performed better than
other patients, the κ-values of all patients across all listeners
using Cartesian transform were higher than 0.3 [one-tailed t-test,
t(15) = 3.5, p < 0.01], suggesting a Fair quality of fit according
to Landis and Koch (1977). Similarly, the κ-values for patients
using polar transform were higher than 0.2 with Fair qual-
ity of fit [one-tailed t-test, t(15) = 2.2, p < 0.05]. It is unlikely
that the statistical outcomes were due to the outperforming
outliers.

Since both visual and auditory feedback were provided during
the task, we compared the performance measured by both visual
error and auditory intelligibility. We measured the visual error
(VE) as the distance between the instantaneous cursor position
and the final target in the 2D formant space:

VE(t) =
√

(F1 (t) − F10)
2 + (F2(t) − F20)

2 (8)

The average VE during the last second of the 5-s task is shown in
Figure 8A. Two-Way repeated measures ANOVA shows that the
visual error was significantly higher in patients than in healthy
subjects [main effect of population, F(1, 3) = 10.9, p < 0.05].
Suppose a linear measurement of the performance (p) that is
inversely proportional to the visual error (VE):

p = 1

VE
(9)

The relative increase in VE is related to the relative decrease in p:

�VE = VE2 − VE1

VE1
(10)

�p = p2 − p1

p1
= �VE

1 + �VE
(11)

Take Cartesian transform as an example, the mean visual error
increased by 114.9% from healthy subjects (179.42 ± 94.26,
mean ± sd) to patients with CP (385.65 ± 293.93, mean ±
sd), therefore the measurement of performance should decrease
by 53.3%. Nevertheless, the performance (measured in κ, see
Figure 8B) in myocontrolled vowel generation only decreased by
44.7% from healthy subjects (0.85 ± 0.1, mean ± sd) to patients
with CP (0.47 ± 0.2, mean ± sd). Similar patterns were found in
polar transform. This suggests that our paradigm could tolerate
a certain amount of variability in the subject’s input. It is also
suggested that the subject did not try to minimize the visual error
during the task, but instead they tried to rely on the auditory
feedback and use the auditory intelligibility of the vowel as the
control criteria.

FIGURE 8 | (A) Visual error across population and transform. Only data from
the brachioradialis muscle are shown, since the patients with CP were only
tested with this muscle. (B) Cohen’s κ across population and transform.
Only data from brachioradialis muscle are shown. ∗p < 0.05, ∗∗p < 0.001.

Table 4 | Inter-rater agreement across 4 listeners.

Group Muscle Transform κ Quality*

Healthy BR Cart. 0.810 Almost perfect

polar 0.580 Moderate

FPB Cart. 0.817 Almost perfect

polar 0.616 Substantial

CP BR Cart. 0.539 Moderate

polar 0.459 Moderate

*The quality of raters agreement is assessed according to Landis and Koch

(1977).

Inter-rater agreements measured in Fleiss’ κ are shown in
Table 4. For healthy subjects the agreement level represented by
κ-value is higher than 0.80 when using Cartesian transform, sug-
gesting “Almost Perfect” agreement among listeners according to
Landis and Koch (1977); when using polar transform, the κ-value
decreases but still shows “Moderate” to “Substantial” agreement
among listeners. For patients with CP, the κ-values are lower com-
pared to healthy subjects, but the results still suggest “Moderate”
agreements among listeners.

DISCUSSION
We have shown that it is feasible to produce English vowels
using myoelectric signals from non-speech muscles. When using
Cartesian transformation between EMG and formant frequency,
the fraction of correctly identified vowels is greater than 80% in
healthy adults and 50% in two subjects with dystonia. The κ-
test suggests that a naive listener is able to identify the vowel
and the intelligibility is unlikely due to pure guessing. We have
succeeded in extracting high-bandwidth, low variability con-
trol signals from non-speech muscles by using the non-linear
Bayesian filtering algorithm. Our other main innovation is map-
ping the vowel generation to a virtual reaching movement on
a 2D plane, which is intuitive even for children with move-
ment disorders (see explanations below). With only 10 min of
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practice the subjects were able to produce intelligible English
vowels.

We point out that the goal of this study is not to prove that
myocontrolled speech synthesis can improve the intelligibility of
speech in CP, but to test in this population whether it is feasible
to produce the simplest human speech using flexible myocontrol
provided by non-speech muscles. Our results first suggest that
it is feasible to use upper-limb muscles to produce intelligible
English vowels in real-time. Secondly, the success rate in CP (57%
in Cartesian transform) after less than 20 min of familiarization
is comparable with the reported speech intelligibility (∼60%) in
adult patients with CP (Platt et al., 1980), allowing us to fur-
ther optimize the intelligibility by testing various EMG-formant
mappings and muscle selections.

LINKAGE TO VOCAL MUSIC AS INNOVATIVE THERAPIES
We plan on expanding our EMG-auditory paradigm to “virtual
singing” for children with CP. Our EMG-formant mapping is one
of its first kind to enable such goal. We suggest the use of assisted
vocal music as a therapeutic approach to restore the social, emo-
tional and cultural aspect of patients with CP, so to enhance their
qualities of life (Flanagan, 1978). In this study we investigated the
efficacy of EMG-formant mapping for controlling the intonation
and tempo of speech. This major feature also naturally enables the
“virtual singing.” To the audience of music training, we hope this
seminal study can be of help and inspiration.

ADVANTAGES AND CONSTRAINTS DUE TO SPEECH-REACHING
MAPPING
One exciting discovery is that when using formant-based syn-
thesis, the continuous production of vowels can be mapped to
a continuous 2D reaching task. Similar ideas were presented in
computer-aided education for pronunciation (Hiller et al., 1993),
and commercialized software such as Vowel Viz (SmartPalate
International, LLC, available for iOS devices). In these applica-
tions, the position of the cursor / finger was compared to pre-
defined targets, and the best-fit vowel was chosen as the current
sound. This category-selection approach did not allow modifi-
cations of sub-category features such as formant undershoot—
features that healthy speakers actively control according to their
desired speaking style (Hardcastle and Hewlett, 1999). Also the
synthesized speech would be insensitive to fine details of limb
reaching movement, such as the smoothness of trajectory, or the
variability around the intended vowel, if using category selection.
In particular, our results show that the synthesized speech tran-
sitioned from /i/ and /A/ naturally and smoothly compared to
human speech (Figure 6); such transition would not be control-
lable by the user if using category selection. Overall, our design
highlights the value of continuous speech synthesis with control-
lable sub-vowel features, which may only be reproduced from a
continuous limb movement such as reaching.

Due to the prevalence of reaching movements during day-
to-day life, we argue that by associating vowel production with
reaching it will make the task significantly easier to learn.
Furthermore, myocontrolled speech synthesis creates a new
paradigm that allows us to test human proprioception in the con-
text of speech. For example, the role of proprioception in jaw

muscles have been studied in previous studies (Ostry et al., 1997;
Larson et al., 2000; Shiller et al., 2002), we can now ask more
questions such as whether the proprioceptive feedback from the
limb engages more, similar or less modulation compared to jaw.
In future work we will use muscles directly involved in reaching
movements, presumably from the same arm but from different
joints. Such a multi-muscle control paradigm will require decod-
ing the latent control signals from multi-channel EMGs, which
has been an intriguing but challenging goal in myocontrol studies.

Our immediate next step is to test whether the quality of
vowel generation can be improved through practice. In the cur-
rent study, most patients with CP (3 out of 4) requested more
practice after 10 min. They were given 5–10 extra min to famil-
iarize with the task. The amount of practice required for fluent
vowel generation is not the focus of the current study but remains
an important topic for future studies. Furthermore, vowel gen-
eration may only improve within a narrow range of muscle
contraction, because high muscle contraction may induce fatigue
whereas low muscle contraction generally has significant variabil-
ity. This, however, provides an important criterion for optimizing
the mapping between EMG and formant frequency.

COMPARISON WITH OTHER TECHNOLOGIES
Unlike in spinal cord injury or brainstem stroke, in CP there
remains a connection between the brain and the spinal cord,
which makes EMG a useful read-out of movement-related activ-
ities in motor cortex. When filtered with a non-linear Bayesian
algorithm, we argue that electromyographic control (myocon-
trol) is more advantageous for motor restoration in this patient
population compared with alternative paradigms such as brain
computer interface (BCI), eye gaze control, buttons, or touch-
screens. In particular, BCI is either invasive or low in bandwidth
when using scalp electrodes. Eye gaze control is non-invasive but
many children with CP have poor oculomotor control; also gaze
interfaces restrict where the child can look. Buttons are low band-
width and have limited ability for flexible tasks like speaking.
Touchscreens require accurate reaching and multi-muscle con-
trol of the arm, which are often not possible for children with
severe CP. Using formant-based synthesis we are able to achieve
our standards for vowel production using only 2 independent
EMG channels. We expect to be able to find 4–6 independent
EMG channels in children with CP and explore the sufficiency
to produce consonant-vowel syllables using up to 6 independent
channels.

FACTORS THAT MAY AFFECT THE PERFORMANCE
Our results showed that in both healthy subjects and patients
with CP, Cartesian transform suits the vowel generation task bet-
ter than polar transform. The subjects generally reported that
Cartesian transform was more “intuitive” to control. This might
be because that only one muscle from each limb was used in the
current set-up. We predict that if we can access all the muscles
involved in hand supination/pronation, the polar transform will
be significantly easier to control. In addition, the thumb flexor
(FPB) is better than brachioradialis for the task in healthy sub-
jects, this might be due to that the precision of hand muscles is
usually high among skeletal muscles.
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In patients, the worst performer was a 12-year-old boy
(patient #1 in Table 1) who had severe dysarthria, but it was
noticed that he was easily distracted by the surroundings.
Therefore, it is unclear whether the poor performance of patient
#1 was due to inherent motor deficit or attention. The best
performer was the 12-year-old girl who showed no less impair-
ment in her diagnosis (patient #4 in Table 1). It has been well
documented that significant muscle co-contractions are present
in CP (Sanger et al., 2003), therefore the decreased perfor-
mance of CP in this study could be due to the various co-
contraction levels across patients, especially when the required
muscle activation is high (sometimes > 60% MVC, Table 2).
More experiments are needed to test what factors affect the
performance in CP. It can be seen from Table 1 that the 4
patients showed a variety of motor deficits. It suggests that
the feasibility of EMG-driven vowel synthesis is unlikely to be
an anecdotal success specialized to only certain types of motor
deficits.

CONSONANT AND SYLLABLE SYNTHESIS
Toward the goal of synthesizing intelligible English language, the
most challenging step is perhaps creating consonants and even-
tually consonant-vowel syllables. Unlike vowels, the consonants
are not only dominated by the steady-state frequency of F1 and
F2, but the formants also must be produced with precise timing.
Even more challenging is that, for some consonants, the entire
consonant production occurs in only tens of milliseconds, mean-
ing that millisecond-level control of formants may be required. In
addition to the timing, several consonants will have to be synthe-
sized with more formants than just F1 and F2 (Klatt, 1980) (e.g.,
F3 in /r/) and other types of acoustic output (e.g., frication in
fricatives). Our design does not restrict the number of formants
or types of acoustic outputs, but since adding more acoustic out-
puts to control will require additional EMG channels, this will
increase the difficulty and the need for training for users. For
comparison, even in normal children, the acquisition of intel-
ligible speech production takes several years (Sander, 1972). In
the current setup, the sound production is non-stop as there is
no direct control of the volume. This makes it difficult to simu-
late stop consonants that require momentary break in the voice.
Therefore, in consonant synthesis it will be necessary to map the
volume (at least the on/off of voice) into movement space. Finally,
we will need to test the overall speed of vowel and consonant pro-
duction in order to determine the number of muscles needed, and
whether synthesized speech can approach the speed of normal
human communication. If we are successful, these techniques will
produce a new technology for assistive communication that will
allow children to communicate not only the declarative content
of language, but also the individual social and emotional con-
tent that is so important for interacting with peers, teachers, and
parents.
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