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Kidney transplantation (KT) is currently the elective approach for patients with end-stage

renal disease. Although it is a safe choice for these patients, the early complications can

lead to graft dysfunction. One of the most redoubtable complications is delayed graft

function (DGF), having no specific treatment. The effects of DGF on the graft survival

are large enough to justify the formulation of specific biological protocols. Therefore,

discovering biomarkers of acute impairment in renal transplanted patients is required.

Creatinine is a poor marker to establish the kidney injury. Estimated glomerular filtration

rate together with creatinine is ready to approximately measure the kidney function.

Different serum and urine proteins are being studied as possible predictive biomarkers

for delayed graft function. This review will concentrate on recent and existing research

which provide insight concerning the contribution of some molecules for the estimation

and evaluation of graft function after kidney transplantation. Further studies examining

various aspects of DGF after KT are urgently needed to address a hitherto less-known

clinical question.

Keywords: cystatin C, neutrophil gelatinase-related lipoprotein, kidney injury molecule 1, beta 2 microglobulin,

biomarkers, graft function

INTRODUCTION

Kidney transplantation (KT) is the elective approach in chronic kidney disease (CKD) stage V, and
it provides a better quality of life compared to extrarenal epuration methods (e.g., hemodialysis)
(1). The first year after transplantation is not absolved by complications. Although the surgical
techniques are safe and the immunosuppressive protocols are standardized, patients with KT are
unique and can develop complications from acute tubular necrosis to delayed graft function (DGF).
Therefore, the development of long-term complications after KT is still seen (2). DGF is defined
based on the creatinine levels and the need for dialysis after KT (3). Among all the definitions,
the most used and accepted one is based on the need of minimum one dialysis during the first
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week after KT (4). DGF was associated with higher rejection
rates and worse in the short-term and long-term results due to
miscellaneous factors including donor-related factors (donation
after brain death, cold ischemic time, shipping distance, donor
age, body mass index, and others), recipient-related factors
(preemptive or non-preemptive KT, previous KT, the presence
of antibodies, ABO incompatibility, history of diabetes, recipient
sex, and so on), and perioperative risk factors. DGF is usually
associated with innate immune response because of complement
activation and other molecular pathways activated during
ischemic injury. The proposed mechanism suggests the release
of inflammatory mediators via endothelial cells upregulating cell
adhesion molecules (5). Currently, the evaluation of the renal
graft is based on creatinine levels, the calculation of glomerular
filtration rate (GFR), and the appearance of proteinuria. Being
the gold standard assessment of the kidney function, creatinine
and GFR are nonspecific markers, and the reliability is affected
by several factors (6). Studies have focused on kidney injury
molecules such as neutrophil gelatinase-related lipoprotein
(NGAL), beta 2 microglobulin (β2MG), kidney injury molecule 1
(KIM1), and others, as the potential markers for the prognosis of
graft durability (7). This paper will present different biomarkers
for the evaluation of renal graft function and their potential role
in the prediction of DGF, seeking to underline their limits and
strengths (Table 1, Figure 1).

TRADITIONAL MARKERS OF RENAL
FUNCTION

Creatinine
Creatinine is the first marker used to assess the kidney function
and remains the most utilized test for the estimation of GFR. It
is still considered to be the gold standard in the clinical practice,
but it is not the most reliable due to many factors that contribute
to its variability, including sex, musculature, medications, diet,
etc. Several acute and chronic renal entities may exist without
the modification of the creatinine baseline. The creatinine is not
reflecting the tubular damage; thus, a preexisting lesion may be
accompanied by a normal creatinine serum level (8). Although
it is not the best predictor, creatinine serum level remains the
marker used for the definition of acute kidney injury. The main

TABLE 1 | Biomarkers in kidney transplantation.

Biomarker Abbreviations Type of sample

Creatinine - Serum/urine

Cystatin C CYS-C Serum/urine

Neutrophil gelatinase-related lipoprotein NGAL Serum/urine

Beta 2 microglobulin B2MG Serum/urine

Kidney injury molecule 1 KIM1 Urine

Uromodulin UMOD Serum

Clusterin - Serum/urine

Chitinase-3-like protein 1 YKL-40 Serum/urine

Liver-type fatty acid-binding protein L-FABP Urine

cause may be the absence of primary validated markers of renal
injury (9).

Cystatin C
Cystatin C, also known as cystatin 3 (10), is a low molecular
weight (13 kDa) protein containing 122 amino acid residues
forming a single polypeptide sequence (11). Cystatin C is being
a part of the cysteine protease inhibitors family (12), having
the main activity the prevention of uncontrolled proteolysis and
tissue damage (11). Cystatin C is thought to be generated by
all human nucleated cells (11), being filtered by the glomerulus,
and reabsorbed at the proximal tubular level, so it can be
detected in the urine only in the context of renal injury (13).
Plasma cystatin C is a marker of glomerular cell insult, having
a role in impaired glomerular filtration rate (14). Many studies
investigated urinary cystatin C in patients undergoing cardiac
surgery, in the context of contrast administration, and they
showed that it is an early diagnostic biomarker of acute kidney
injury (AKI) in different settings, having elevated values 2 days
before the AKI is installed. On the other hand, serum cystatin C
cannot predict the complications in AKI (14). A meta-analysis
published by Yong et al. (15) demonstrated that serum cystatin
C can be a good diagnostic tool for the prediction of all-cause
AKI (post-cardiac surgery and contrast-induced nephropathy),
with an overall diagnostic sensitivity and specificity of 82 and
82%, respectively. In addition, Dos Santos Gomes et al. (16)
evaluated kidney function markers in pregnancy, comparing 38
women with preeclampsia vs. 22 controlled pregnant women,
showing that both urine and plasma cystatin C levels were
significantly higher in the preeclampsia group compared to the
control group, suggesting that cystatin C could be a reliable
marker of kidney damage expressed by glomerular injury in
preeclampsia. In addition, Vijay et al. (17) showed that plasmatic
cystatin C level had the highest diagnostic reliability of AKI
among children with liver cirrhosis, especially in those with
decompensation or spontaneous bacterial peritonitis; it was also
a reliant predictor of AKI in the pediatric population with liver
cirrhosis, identifying AKI at an early stage. The same study
showed that estimated glomerular filtration rate (eGFR) using
serum cystatin C-based formulas was more predictable than
that estimated by creatinine-based equations (17). Cystatin C
has been proposed as a functional biomarker of glomerular
filtration rate, with increased sensitivity in detecting early kidney
dysfunction (within 24 h) compared to serum creatinine (1, 12).
Therefore, it is a very useful biomarker in chronic kidney disease
(CKD), and the GFR based on cystatin C is more specific
(14). The utilization of cystatin C as a biomarker in eGFR
calculations has several benefits (it may provide an augmented
ability to predict the risk of adverse outcomes, less interindividual
variability), but also the limitations (worse test–retest reliability,
higher costs). A potential advantage of cystatin C is that being a
large molecule, the blood levels may rise earlier than creatinine;
therefore, it can be a better predictor for the cardiovascular
disease risk (18). Furthermore, cystatin C is not affected by
preanalytical factors, such as age, gender, race, diet, and body
muscle mass (2, 19). Unfortunately, cystatin C levels may be
modified in thyroid disease, malignancy, inflammation, diabetes,
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FIGURE 1 | Traditional and new biomarkers that can indicate kidney damage.

smoking, increased body mass index, or following corticosteroid
therapy (20–22). Despite its known role in the assessment of
renal function, cystatin C was reported as a potential marker
of acute kidney injury (23, 24). It has an increase in the first
12 h with a peak value at 24 h, returning to baseline in the
next hours (25, 26). The 2012 Kidney Disease Outcomes Quality
Initiative Clinical Practice Guideline suggested using the serum
cystatin C in patients with GFR between 45 and 59 ml/min/1.73
m2 (26, 27). Regarding kidney transplant patients, a meta-
analysis by Pan et al. showed that although there is a difference
in sensitivity and specificity for the diagnosis of acute kidney
injury between cystatin C and creatinine (cystatin C having
an increased sensitivity but a reduced specificity compared
to creatinine), the two correlate very well with glomerular
filtration rate post-transplantation. In addition, it has been shown
that at glomerular filtration rate values ≤ 80 ml/min/1.73 m2,
cystatin C has a better ability to detect renal function after
kidney transplantation and better efficiency in terms of exclusion
diagnosis. However, the differences between detection methods
of the two parameters (cystatin c and creatinine) influenced
considerably the heterogeneity within the results of this meta-
analysis (28).

NOVEL BIOMARKERS OF KIDNEY INJURY

Neutrophil Gelatinase-Associated
Lipocalin (NGAL)
Neutrophile gelatinase-associated lipocalin (NGAL), also known
as siderocalin, lipocalin 2 oroncogene 24p (29), it is a 25 kDa
protein associated with human neutrophil gelatinase being a
part of the lipocalins family (30). NGAL exists in three forms:
a 25-kDa monomer, a 45-kDa homodimer, and conjugated
to gelatinase as a 135-kDa heterodimer (29). NGAL has a
bacteriostatic role: it binds to bacterial iron siderophores,
inhibiting the bacterial iron uptake. Besides its bacteriostatic
effect, NGAL exerts an antiapoptotic effect and stimulates renal
tubular cell proliferation, suggesting a potential protective effect
in AKI. NGAL was found in many organs, such as kidney,
lung, large intestine, uterus, prostate, salivary gland, trachea, and
stomach (29). Its biodisponibility augments with age and levels
are higher in women compared to men (30). NGAL is a urinary
marker produced especially by neutrophils, loop of Henle, and
collecting ducts, but can also be detected in the epithelium
of the proximal convoluted tubule (due to megalin-mediated
malabsorption of NGAL). The functional roles of NGAL in
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the kidney include iron-trafficking, tubular epithelial genesis,
anti-inflammatory, and antiapoptotic (31). It is liberated from
lysosomes, brush-border, and cytoplasm of proximal tubular
epithelial cells, secondary to injury, being a specific lane for
the progression of kidney disease (32, 33). NGAL has been the
most widely investigated of the available AKI biomarkers (32).
Scientific proofs showed that plasma and urine NGAL are present
approximately 2 days before the AKI develops, therefore being
an early diagnostic biomarker in kidney injury and a useful tool
for the risk stratification in chronic kidney disease (CKD) (33).
A study published by Zhang et al. (34) compared the serum
NGAL and creatinine levels between 38 critically ill patients
with AKI and 38 critically ill patients without AKI, showing
remarkably higher levels of NGAL in the first group than in the
control group, making NGAL an early AKI diagnosis marker
(sensitivity 90.2%; specificity 89.5%). Moreover, urinary NGAL
measured at the onset of AKI can precisely predict persistent
AKI, new-start CKD, and CKD progression in patients with AKI;
therefore, it is a valuable instrument for the better assessment of
AKI risk stratification (35, 36). A systematic review and meta-
analysis assessed the implication of NGAL in diabetic kidney
disease (DKD), and accumulated evidence from observational
and cohort studies demonstrated that urine NGAL could early
differentiate patients with DKD from controls, but the diagnostic
value of urine NGAL in DKD still needs to be further evaluated
(37). The predictive value of NGAL is influenced by standard
renal function, AKI severity, age, inflammatory conditions,
preeclampsia, and cancer (32). Other factors that can interfere
with NGAL values are age, sex (female), urinary infections,
and impaired renal function (CKD) (31). False-positive levels of
NGAL seem to be found in patients with septic shock (38). A
recent study conducted by Soveri et al. (39) analyzed day-to-day
intraindividual variation in some urine markers and showed that
NGAL must change by 83.3% before being considered clinically
significant in patients with CKD. The role of NGAL in renal
obstruction remains unclear, but significant reduction in plasma
and urinary NGAL levels in patients with acute ureteric colic
undergoing surgical management or spontaneous stone passage
suggests the potential role of NAGL as a marker of relief of
renal obstruction due to ureteric stones (40). Multiple studies
showed the use of NGAL in the diagnosis of DGF (Table 2). Hall
et al. (41) noted that serum NGAL was ineffective to distinguish
injury in DGF patients and those with normal graft function.
Bataille et al. (42) studied the accuracy of NGAL in the prediction
of DGF with a sensitivity of 93.3% and a specificity of 88.5%,
being more predictive than the plasma creatinine. In a study
including 59 patients with KT [Lee et al. (43)], the patients were
divided into DGF patients and immediate graft function (IGF)
group. The serum NGAL was higher at any time in DGF patients
compared with IGF. Compared to creatinine which had an AUC
of 0.65, NGAL had an AUC of 0.86, with a sensitivity of 78.6%
and a specificity of 77.8%. Buemi et al. examined the predictive
accuracy of urinary and plasma NGAL in transplant patients
(deceased and living). The plasma NGAL levels can be more
specific than the urinary NGAL for the prediction of DGF (44).
A study by Cantaluppi et al. demonstrated that plasma NGAL
levels are a useful early biomarker for the detection of DGF in the

first 24 h post-kidney transplant. Although plasma NGAL levels
are strongly influenced by inflammatory states or the existence of
chronic kidney disease (this study confirming this observation –
NGAL levels before transplantation were high, being comparable
to those detected in the DGF group: 662.7 ± 97.2 ng/ml vs. 632
± 84 ng/ml), this marker was useful in predicting functional
recovery. However, a more rapid decrease in serum NGAL
compared to creatinine was observed in the first days post-
transplant. NGAL has also been shown to be a useful and superior
marker to creatinine in monitoring nephrotoxicity of calcineurin
inhibitors (tacrolimus) in the post-transplant period (45).

Beta 2 Microglobulin (β2MG)
Beta 2 microglobulin is a low molecular weight protein
(11, 8 kDa) (46) consisting of 100 amino acid proteins.
β2MG is produced by all cells expressing MHC-1 antigens,
but lymphocytes and tumor cells are presumed to be major
biosynthetic sites (47). During normal cell turnover, β2MG is
released in blood, synovial, cerebrospinal, amniotic, and seminal
fluid, as well as in aqueous humor, colostrum, and saliva (46).
Synthesis is increased in pathologies with high cell turnover (e.g.,
infections, auto-immune diseases, or other hemato-oncological
entities) (47). For example, serum β2MG levels are high in
leukemia, lymphoma, and multiple myeloma, despite preserved
renal function, but also in solid cancers, and it is associated
with poor prognosis in most of them. Moreover, serum β2MG
is elevated in systemic lupus erythematosus or Still disease,
hemophagocytic lymphohistiocytosis, and Sjögren’s syndrome
(48). β2MG is a urinary biomarker filtered by the glomerulus
and reabsorbed completely in the proximal tubular setting, so it
can be detected in the urine only following epithelial cell injury
(49, 50). Even though low levels of β2MG are found in urine
and serum of normal subjects, these levels might increase in
the context of kidney injury due to decreased reabsorbance by
the damaged tubules (13). β2MG is a good marker to assess
renal function in adults, with similar results such as creatinine-
based estimating equations, but it might be vigorously associated
with cardiovascular morbidity andmortality than creatinine (50).
Urinary β2MG increases after the administration of cisplatin,
cyclosporine, or gentamicin, but the pathway between increased
urinary β2MG and the development of AKI remains uncertain
(49). A total of eighty-nine children aged between 2 months
and 14 years with acute pyelonephritis without history of
urinary infections were evaluated to determine the urinary β2MG
diagnostic accuracy in detection and prediction of renal injury
and scar. The cutoff point for urinary β2MG for the prediction
of positive DMSA (technetium Tc 99m dimercaptosuccinic acid)
scan was 0.8mg, but it was not enough sensitive (40.9%) and
specific (84.1%) to be used as a diagnostic marker for the
prognosis of renal injury (51). Recently, Puthiyottil et al. (52)
showed that in adult patients who remained alive after AKI, the
urinary β2MG/creatinine ratio at 2 weeks was higher compared
to control group, and it is predictive of low estimated glomerular
filtration rate at 1 year. Furthermore, urine level β2MG in
resuscitated patients after cardiac arrest at admission and day 3
were independently associated with high risk of AKI, mortality,
and poor neurological outcome in a study published by Beitland
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TABLE 2 | Comparison of studies on serum NGAL for the diagnosis of DGF after kidney transplantation.

Group/year Study characteristics Time of measurement after KT Remarks

Hall et al. (41) 78 KT 26 DGF 0-24-48h NGAL was not different between KT with DGF and others

Bataille et al. (42) 41 KT 15 DGF 24h NGAL level early and precisely predicted DGF after KT

Lee et al. (43) 59 KT 14 DGF 24h NGAL is higher in DGF patients at any time after KT

Buemi et al. (44) 97 KT 20 DGF 6-24-48h NGAL levels were notably lower in LDs than in DDs. No

DGF was found among LD kidney recipients, but DGF

was seen in 25% of patients in the DD group

*LD, living donors; DD, deceased donors.

et al. (53). Serum β2MG level may be used as a prognostic
biomarker of renal decline in patients with type 2 diabetes (54),
whereas β2MGmRNA expression in cells of the urinary sediment
is higher in patients with type 1 diabetes with diabetic kidney
disease in comparison with healthy subjects, demonstrating a
tubulointerstitial damage promoted by albumin (55).

Kidney Injury Molecule 1 (KIM1)
Kidney injury molecule 1 is a transmembrane protein, which
consists of two portions – an extracellular portion and a
cytoplasmic one. The KIM1 gene can be found on chromosome
5p33.3 and contains 14 exons (56). Another names for KIM1
are T-cell immunoglobulin mucin receptor 1 (TIM1) or hepatitis
A virus cellular receptor 1 (HAVCR1). This biomarker is not
expressed only in the kidney, but also in the liver and spleen.
Recent studies showed that KIM1 is expressed only in renal
injury, so this biomarker can be used for early diagnosis of
kidney damage (57). Under conditions that cause acute kidney
injury (conditions such as ischemia, hypoxia, toxicity, tubular
interstitial diseases, and polycystic kidney disease), urinary and
renal KIM1 levels increase depending on the extent of the damage
(56). Following the renal tubullar cell injury, the ectodomain
of KIM1 is released and is excreted in the urine and blood, a
process mediated by metalloproteinases. KIM1 levels are also
correlated with the decline of the GFR and kidney injury (58).
In acute renal tubular damage, KIM1 promotes cell phagocytosis
and the repair of tubular cells, and it also inhibits the renal
inflammatory response. On the other hand, the constant increase
in KIM1 levels in CKD is not a protective factor, causing the
development of renal fibrosis and tubular apoptosis, and can
increase the inflammatory response (56). One study showed
that KIM1 does not predict mortality in pediatric AKI, but it
shows mild performance in the prognosis of renal replacement
therapy (59). Urinary KIM1 levels are higher in children with
stage 2–3 AKI compared to the control group, but in stage
1 AKI, this was true only in the first 12 h of admission (60).
In the ancient articles, for example, Marcus et al. (61) showed
that there is no correlation between urinary KIM1 levels and
DGF (61). Zhang et al. demonstrated that expression of KIM1
is correlated with the degree of kidney damage. KIM1 can also
be involved in regeneration processes and can be considered
a useful marker of renal repair (62). In a study conducted on
140 renal transplanted patients, 37 of whom had DGF, Zhu
et al. (63) demonstrated that urinary KIM1 levels among DGF

patients were higher than among IGF (immediate graft function)
patients at 0 h post-transplantation, as well as on the first day
post-transplantation, indicating that recipients with increased
urinary KIM1 levels after the first post-transplant day have a
23.5% higher risk of developing DGF and a 27.3% higher risk
of long-term graft dysfunction (63). Yadav et al. (64) concluded
that urinary KIM1 is higher in DGF patients compared with IGF
patients at 6–12–18–24 and 48 h after transplantation, having the
100% specificity and 89.9% sensitivity to predict DGF in the first
18 h after KT. Tavernier et al. (65) in a large study with 244
kidney graft recipients determined the urinary KIM1 10 days
after transplantation and found a significant correlation with
time of cold ischemia and DGF and also the serum creatinine
(Table 3).

Uromodulin (UMOD)
Uromodulin, also known as Tamm–Horsfall protein (THP), is
exclusively produced by renal epithelial cells. Levels of UMOD in
the urine and in the blood are the valuable biomarkers to assses
the tubular mass and renal function (66, 67). Despite being the
most common urinary protein, its function remains uncertain,
but some studies suggest that this protein might have a role in salt
transport, in the protection against urinary tract infection and
kidney stones (by reducing the aggregation of calcium crystals).
Uromodulin also plays the role in kidney insult (acute and
chronic) and innate immunity (by binding immunoglobulins)
(68). In humans, uromodulin is encoded by the UMOD
gene, which is located on chromosome 16. Some mutations
in UMOD can cause autosomal dominant tubulointerstitial
kidney disease (ADTKD), leading to the acummulation of
mutant uromodulin in the endoplasmic reticulum of tubular
cells, causing decresed levels of urinary uromodulin and
tubulointerstitial injury. Mutations in UMOD gene can be
also associated with the autosomal dominant renal disorder
medullary cystic kidney disease-2 (MCKD2). Furthermore,
genome studies have identified common variants in UMOD
that can be associated higher risk of CKD and cardiovascular
disease. But further research needs to be done to understand
these findings (68). Some studies showed that patients with CKD
with interstitial fibrosis and tubular atrophy have lower levels of
uromodulin. Therefore, UMOD may represent intact renal mass
better than kidney function and can be used for the recognition of
incipient of CKD (69). Urinary uromodulin was associated with
rapid decline of eGFR, being an independent predictor of rapid
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TABLE 3 | Comparison of studies on urinary KIM1 for the diagnosis of DGF after kidney transplantation.

Group/year Study characteristics Time of measurement after KT Remarks

Zhu et al. (63) 140 KT 37 DGF 0-24h Urinary KIM1 in the DGF group were higher than those in

the immediate graft function (IGF) recipients immediately

post-transplantation and in the first 24 h

post-transplantation

Yadav et al. (64) 56KT 9 DGF 0-6-12-1/8-24-48h Urinary KIM1 levels were notably high at 6, 12, 18, 24,

and 48 h in patients with DGF versus IGF

Tavernier et al. (65) 244 KT 10 days Urinary KIM1 was remarkably associated with cold

ischemia time, delayed graft function, and plasma

creatinine 10 days after transplantation

kidney function loss (70). There are many questions that need
to be aswered about the processes that sustain the production
of uromodulin and its role in different diseases such as CKD,
nephrolithiasis, and UTI. In KT recipients, there is described
an association of low levels of uromodulin levels in accordance
with graft failure (71). Kemmner et al. included a large cohort
of 239 KT recipients, among them 64 experienced DGF. They
determined serum uromodulin pre-KT and 24 h after KT. The
serum uromodulin was not higher in DGF patients (72). Recent
studies regarding uromodulin are controversial; therefore, it is
hard to establish its potential role in predicting the graft survival.

Clusterin
Clusterin, also named apolipoprotein J, is an omnipresent
glycoprotein present in three isoforms, all of them differing in
their functions. Discovered almost four decades ago in ram rete
testis fluid with the ability to cause clustering of red blood cells
– hence the name, this multifunctional protein as of today is
still an enigma (73). In humans, clusterin is coded by a gene
localized on the chromosome 8 (74). The translation of this
gene results in three mRNA isoforms with different localizations:
expressed in several tissues and present in the extracellular
space and various body fluids. The nuclear isoform, a truncated
form of clusterin, can promote apoptosis (75–77) whereas the
mitochondrial isoform has the opposite effect by suppressing
BAX-dependent release of cytochrome c into the cytoplasm,
thus inhibiting apoptosis (78). The secreted form of clusterin
acts as an extracellular chaperone that forms stable and soluble
complexes with misfolded proteins, playing a key role in the
extracellular proteostasis system by facilitating the clearance of
misfolded proteins (79). Emerging data suggest that clusterin
plays an important role in many different diseases. There are
several studies that show its involvement in neuroprotection,
cancer along with chemotherapy resistance, cardioprotection,
addictive behavior development, and pain modulation. The
involvement of clusterin in the pathophysiology of Alzheimer’s
disease is one of the most studied biological roles of this protein
(80). Due to its molecular size, the urinary clusterin level is
specific for kidney (81). Several studies compared clusterin
with traditional markers such as blood urea nitrogen or serum
creatinine (82). Clusterin also appears to be a rational indicator
of tubulointerstitial renal lesions in patients with pediatrics with
lupus nephritis and demonstrates the potentiality to predict

ESRD (83). One study – regarding different biomarker levels in
drug-induced kidney insult, suggests that clusterin levels can be
consistent with the severity grades of proximal tubular injury
(82).Moreover, clusterin appears to be an encouraging biomarker
in the management of diabetic kidney disease as the urinary
levels of clusterin are associated with the severity of diabetic
nephropathy in patients with diabetes (84).

YKL-40
YKL-40, also known as chitinase-3-like protein 1, is a
glycoprotein encoded by the CHI3L1 gene located on
chromosome 1. YKL-40 is expressed and secreted by different
cell types with high cellular activity (85, 86). Expression of
YKL-40 is also found to be high in embryonic and fetal tissues
known to have rapid proliferation and marked differentiation,
and in tissues undergoing morphogenetic changes (85). YKL-40
plays a major role in tissue damage, inflammation, tissue repair
and remodeling responses (87, 88), protection against apoptosis,
and stimulation of angiogenesis. Studies show that YKL-40
modulates renal repair mechanisms after ischemic kidney
injury in mice and showed to be a useful marker of kidney
damage in kidney transplantation in man (89). In patients with
nephrotic syndrome, serum YKL-40 levels are associated with
endothelial dysfunction and increased arterial stiffness and may
predict proteinuria levels for these patients (90). In hemodialysis
patients, YKL-40 levels significantly improved risk prediction
for all-cause and cardiovascular mortality compared to other
cytokines. thus better reflecting inflammatory activity (91).
YKL-40 is a protein that can be measured in urine on the first
day of clinically manifested AKI and combining with other
biomarkers –such as NGAL – could refine AKI prognosis and
better assess renal injury repair (92).

Liver-Type Fatty Acid-Binding Protein
(L-FABP)
Liver-type fatty acid-binding protein is a 14 kDa protein, which
was at first identified in the hepatocytes and afterward was
expressed in the human renal proximal tubule epithelium
(93, 94). L-FABP seems to play a role in fatty acid homeostasis
and expresses also an antioxidant effect (95, 96). In animal
model studies, renal L-FABP showed a protection value
for the tubulointerstitial damage and unilateral ureteral
obstruction (94). Urinary proteins have a renal toxic effect,
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causing tubulointerstitial dysfunction and contributing to the
progression of renal destruction. Albumin-bound free fatty
acids may also contribute to tubulointerstitial damage. In the
case of massive proteinuria, free fatty acids are overexpressed
in the proximal convoluted tubule, inducing the generation of
proinflammatory citokines, thus enhancing protein-induced
tubulointerstitial injury (97). Urinary L-FABP can have a
diagnostic and predictive value in patients with AKI, and it
seems to be a helpful marker for the follow-up in CKD (98, 99).
A study conducted on 92 patients with AKI compared to
62 patients without clinical evidence of AKI found notable
modifications in urine L-FABP (94). Regarding diabetic
nephropathy and renal injury, urinary L-FABP can be an early
diagnostic parameter or prognostic marker of renal function.
Numerous studies have demonstrated that L-FABP is a useful
biomarker for both CKD and AKI. Furthermore, Nakamura
et al. found that urinary L-FABP levels are elevated in patients
with septic shock and are not correlated with the requirement
for extrarenal epuration (94). In patiens with kidney transplant
(KT), Yamamoto et al. (96) concluded that urinary L-FABP levels
were higher in the immediate period after KT. Przybylowski
et al. (100) indicated that urinary L-FABP could be a possible
early marker for damaged kidney function in patients with
KT. Nevertheless, Yang et al. (99) showed that urinary L-FABP
could be useful for predicting poor graft outcome for ≤2 years;
they showed that 0-h urinary L-FABP level was independently
associated with DGF in patients with KT after 2 years. Their
data indicate that urinary L-FABP might be useful for predicting
adverse long-term graft outcomes.

Donor-Derived Cell-Free DNA and Its Role
in DGF
Donor-derived cell-free DNA (ddcf-DNA) is typically
encountered in the body fluids of post-transplant individuals
and refers to cell-free DNA that arises after apoptosis or necrosis
of the allograft tissue. Therefore, ddcf-DNA can be used as a
prospective biomarker to evaluate the status of donor tissues.
Research findings indicate that levels above 1% ddcf-DNA in
recipient plasma are an indicator of acute rejection risk in
transplanted patients. There is no significant difference in early
ddcf-DNA levels between patients with DGF and those without
DGF. When compared to non-DGF subjects, patients with
DGF have a 1.5-fold higher risk of renal allograft rejection. As

such, earlier diagnosis of DGF and acute rejection is of critical
importance for accurate and prompt clinical intervention. In
patients with DGF and acute rejection, ddcf-DNA levels have
been shown to drop and follow a comparable pattern in the early
postoperative stages. However, when plasma ddcf-DNA levels in
patients with DGF remain >1%, it might indicate acute rejection
in renal transplanted patients. Most previously available studies
support elevated ddcf-DNA levels in acute rejection. However,
many other causes of high serum ddcf-DNA levels also exist,
among them infection and acute tubular necrosis. They are both
frequent occurrences in the renal transplanted population. In
conclusion, ddcf-DNA acts as a marker of allograft injury, but
it is not specific to any form of rejection. Increased levels could
occur in allograft-limited conditions, including rejection, but can
also be raised in systemic conditions, such as malignancy and
infection (101, 102).

CONCLUSIONS

These potential DFG biomarkers need supplementary validation
and require more understanding. Although the roles of described
molecules have been established as the markers of renal injury,
there is limited application to translate benchwork to clinical use.
We consider that there is no ideal renal injury biomarker, and
only the combination of a panel containing different biomarkers
can elucidate the DGF mechanism and can predict earlier this
event to maximize the therapeutical strategies.
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