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Human immunodeficiency virus type 1

(HIV-1) is a chronically replicating lenti-

virus that must escape from adaptive

immune responses that arise during the

course of infection. Viral persistence is

maintained by the rapid rate of HIV-1

replication and the error-prone reverse

transcription of the viral genome, which

produces viral variants that continually

escape antibody and cytotoxic T cell

responses [1–3]. Antibodies directed

against the gp120 and gp41 components

of the viral envelope glycoprotein (Env)

develop within the first few weeks of

infection [4,5], but antibodies that can

neutralize the infecting virus (NAbs) are

usually not detected until more than 12

weeks after HIV-1 infection [6]. Thus, in

natural HIV-1 infection, NAbs are not

believed to play a major role in containing

the acute phase of HIV-1 replication.

However, several studies have shown that

once NAbs arise, they exert immune

selection pressure on the viral quasispecies

[7–14].

Viral escape from autologous NAbs was

first described in lentiviral infections of

several animal species [15–17]. For exam-

ple, the successive waves of viremia in

horses caused by equine infectious anemia

virus are thought to be due to the

sequential development of viral variants

that temporarily evade the host NAb

response. HIV-1 escape from autologous

NAbs was first described in the early 1990s

[18–20]. Subsequently, numerous re-

search groups showed that plasma anti-

bodies from a time point contemporane-

ous with viral isolation did not neutralize

the autologous virus, and that NAbs

against the isolated virus developed only

months later [7–14,21,22]. Thus, the NAb

response continually lags behind viral

replication. The initial studies of NAb

escape were limited by the inefficiency of

isolating replication competent HIV-1

from patient plasma or lymphocytes. The

more recently performed studies used

molecularly cloned Env-pseudoviruses to

more robustly study the plasma viral

quasispecies at sequential time points.

These data confirmed that, at any given

time point during the course of HIV-1

infection, the circulating quasispecies of

viral variants is resistant to the circulating

plasma NAb. At first glance, these findings

might suggest that HIV-1 should become

progressively more resistant to neutraliza-

tion over time. Interestingly, this is not the

case. HIV-1 isolates that are resistant to

circulating autologous NAbs generally

remain sensitive to neutralization by

several known monoclonal antibodies

(mAbs) or by heterologous plasma ob-

tained for other individuals with HIV-1.

This has led to several key questions

related to autologous virus NAb escape:

What are the Env epitopes targeted by

early autologous NAbs and how does the

virus escape from these NAbs? How does

continuous neutralization escape occur

without leading to global changes in viral

neutralization sensitivity? Finally, what are

the implications of NAb escape for HIV-1

vaccines?

In this issue of PLoS Pathogens, two teams

of investigators provide some initial an-

swers to these questions [23,24]. Both

groups utilized clinical samples collected

from seroconversion cohorts of individuals

with subtype C HIV-1. The investigators

studied the development of the autologous

NAb response from the acute phase,

though the first 2 years of infection. A

limiting dilution PCR methodology was

used to clone and study HIV-1 variants

from sequential plasma samples over time.

Moore and colleagues studied four indi-

viduals and found that the early NAb

response was restricted to two epitopes on

the HIV-1 Env. They used chimeric viral

clones and site-specific mutagenesis to

define an epitope composed of the first

and second variable region (V12) of the

HIV-1 Env. A second epitope was identi-

fied within a variable alpha-2 helix region

of Env that is just past the V3 loop. The

restricted nature of the autologous NAb

response to variable Env regions is an

important finding, because it helps to

explain how the virus can readily mutate

to evade the NAb response. The V12

region in particular can tolerate insertions

and deletions of amino acid residues

without sacrificing Env function. In addi-

tion, specific amino acid changes and

alterations in glycosylation in these two

epitopes were found to be associated with

neutralization escape. In one individual,

the development of a NAb response to the

alpha-2 helix region was associated with a

7-fold drop in plasma viremia, and a 4-fold

rebound as neutralization escape oc-

curred. Rong and colleagues similarly

studied longitudinal samples from two

individuals and found a highly restricted

set of NAbs. They also identified the V12

region as a key target of autologous NAbs.

Mapping studies demonstrated that spe-

cific amino acid sequence alterations, as

well as changes in the pattern of glycosyl-

ation, were important components of

neutralization escape. Importantly, they

were able to isolate two mAbs from one

patient, and demonstrated that a single

amino acid substitution affecting a glyco-

sylation site in V2 was responsible for

resistance to these mAbs. In some cases,

mutations outside of the specific neutral-

ization epitopes were also associated with

neutralizing escape. Given the complex

trimeric structure of the HIV-1 Env, it is

well known that distant mutations can

affect the conformational structure of Env

and impact antibody recognition of an

epitope [25]. While these two new studies

have probably not described the full

spectrum of autologous NAb responses,

the consistent finding of an early dominant

NAb response to one or two variable

regions of Env that can vary without major

cost to viral fitness does help explain how

the virus is able to effectively evade the

NAb response.
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The study of the early autologous NAb

response adds to our understanding of the

role of NAbs in natural HIV-1 infection,

and has potential implications for HIV-1

vaccine design. We know that, over time,

more broadly reactive NAbs develop in

some individuals with HIV-1 [26–28].

These NAbs appear to target functionally

conserved regions of Env such as the

receptor or co-recpetor binding sites, or

conserved regions of gp41 [27,29–31].

Thus, immune escape from such NAbs

would, in theory, be much more difficult

[32]. In addition, these antibodies can

protect against AIDS virus infection in

non-human primate models [33,34]. We

still do not understand why such NAbs

arise so late during the course of HIV-1

infection. Hence, investigators should con-

tinue to study the longer-term evolution of

the NAb response in order to better

understand the early epitope dominance

of the autologous NAb response, and the

clinical and virologic factors associated

with the evolution from a type-restricted

NAb response to a more broadly reactive

response. While NAbs may arise too late

during natural HIV-1 infection to have a

major impact on HIV-1 replication, a

major goal of vaccine researchers is to

generate pre-existing NAb responses that

can prevent initial HIV-1 infection, or

contain the virus during the initial phase of

viral dissemination [3,26,35,36]. A better

understanding of the evolution of the

natural NAb response during natural

infection, including the viral epitopes

targeted, can provide insights for vaccine

immunogen design.
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