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Mild traumatic brain injury (mTBI) may affect normal cognition and behavior by disrupting the functional con-
nectivity networks that mediate efficient communication among brain regions. In this study, we analyzed
brain connectivity profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 31
mTBI patients and 55 normal controls. We used phase-locking value estimates to compute functional connectiv-
ity graphs to quantify frequency-specific couplings between sensors at various frequency bands. Overall, normal
controls showed a dense network of strong local connections and a limited number of long-range connections
that accounted for approximately 20% of all connections, whereasmTBI patients showed networks characterized
by weak local connections and strong long-range connections that accounted for more than 60% of all connec-
tions. Comparison of the two distinct general patterns at different frequencies using a tensor representation for
the connectivity graphs and tensor subspace analysis for optimal feature extraction showed that mTBI patients
could be separated from normal controls with 100% classification accuracy in the alpha band. These encouraging
findings support the hypothesis thatMEG-based functional connectivity patternsmay be used as biomarkers that
can provide more accurate diagnoses, help guide treatment, and monitor effectiveness of intervention in mTBI.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Traumatic brain injury is a major cause of sustained morbidity and
disability both in the military and civilian populations (Tarapore et al.,
2013). In the case of mild traumatic brain injury (mTBI), an initial
brief change in mental state or consciousness is typically followed by
postconcussion symptoms (Cassidy et al., 2004), such as headaches,
fatigue, and dizziness, which usually emerge on the day of injury and
persist for at least the first few days thereafter (Boccaletti et al., 2006).
In most patients cognition recovers and symptoms resolve within
3 months; however, up to 25% of patients (Sigurdardottir et al., 2009)
, University of Houston, 4730
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suffer residual symptoms, long-term impairment, and sometimes
disability (Levin, 2009). In a large percentage of patientsmTBI is difficult
to diagnose because of the absence of apparent external injuries and ob-
vious focal brain lesions in conventional computed tomography (CT) or
magnetic resonance imaging (MRI) scans (Tarapore et al., 2013),
although mTBI-related morphological changes at a microscopic level
have been recently reported using MRI (Pasternak et al., 2014; Sasaki
et al., 2014). There is a large body of literature for the accurate classifica-
tion of TBI. A common practice is to classify TBI asmild,moderate, or se-
vere based on the level of consciousness assessed using thewell-known
Glasgow Coma Scale (GCS, Teasdale and Jennet, 1974). Some studies
have attempted to classify TBI and predict long-term outcome based
on CT findings (Zhu et al., 2009) or the amount of exosomes released
in the peripheral circulation due to injury (Taylor and Taylor, 2014).

One mechanism by which TBI is thought to affect cognition and be-
havior is through changes in functional connectivity (Castellanos et al.,
2010; Martino et al., 2011). Functional brain connectivity refers to
temporally correlated activity in spatially distinct brain regions and is
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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believed to mediate neural communication among these regions
(Aertsen et al., 1989; Salvador et al., 2005).

Several imaging studies have demonstrated the existence of a net-
work of functionally connected brain regions that support a default
mode of brain function (Guskiewicz et al., 2005). Changes in brain activ-
ity caused by focal lesions result in abnormal interactions among local
and remote brain regions that are functionally connected (Quigley
et al., 2001; Van Cappellen vanWalsum et al., 2003), and these changes
are reflected on the configuration of the default brain network. Thus,
functional connectivity analysis offers a unique opportunity to quantify
changes in neurophysiological processes that correlatewell with clinical
symptoms (Huang et al., 2009, 2012; Lewine et al., 2007).

The literature shows several examples of pathological alterations, in-
cluding increase (Van Dellen et al., 2012) and decrease (Sharp et al.,
2014) of functional connectivity using different modalities (Congedo
et al., 2010; Rubinov and Bullmore, 2013), which provide evidence
that a balance in the synchronization level in healthy controls is re-
quired for optimal brain function. Several brain connectivity studies in
clinical populations focus on the description of topological differences
with control group employing various synchronization measures, net-
work metrics and statistics (Sporns et al., 2005; Guggisberg et al.,
2008; Micheloyannis et al., 2006; Shiver et al., 2012; Stam et al., 2007;
Bassett et al., 2009; Bullmore and Sporns, 2009; Castellano et al., 2010;
Dimitriadis et al., 2013b; Bigler, 2013). In the area of brain injury in par-
ticular, during the last two decades there has been a growing effort to
characterize the structural and functional effects of mTBI using the full
range of neuroimaging methods (see the excellent review by Eierud
et al., 2014), and various biomarkers have been proposedbased on func-
tional MRI (fMRI) and diffusion tensor imaging (DTI) (Kou et al., 2010;
Hunter et al., 2012; Bigler, 2013). Among these methods, MEG plays a
special role because it measures neuromagnetic fields resulting from
primary neuronal currents that are not subject to the distortion induced
by the variable conductance of brain tissues (Tarapore et al., 2013). Of
particular interest are recordings of resting state MEG (de Pasquale et
al., 2012; Mantini et al., 2011; Qian et al., 2013) because they require
no training or experience with cognitive tasks, and they impose mini-
mal demands on a patient, which is especially important after brain in-
jury. Thus, resting state MEG is particularly suitable for detecting
changes in functional connectivity networks in patientswithmTBI com-
pared to matched controls.

One of the very first studies using resting-stateMEG as a possible neu-
rophysiological biomarker for mTBI provided clear evidence that analysis
of functional connectivity patterns could be a valuable tool for early de-
tection of mTBI (Zouridakis et al., 2012). Other studies showed abnormal
slowing in brain areas affected by TBI (Huang et al., 2014) and reduced
overall functional connectivity in TBI patients compared to controls
(Tarapore et al., 2013). In particular, using resting-state MEG and low-
frequency source imaging, Huang et al. (2012) showed 87% and 100% ac-
curacy in detecting abnormalities in mild andmoderate TBI, respectively.
Furthermore, Lewine et al. (1999) used MRI and MEG to examine
postconcussive symptomatology and were able to discriminate between
healthy adults and individuals with resolved mTBI. Another MEG study
attempting to characterize system complexity and potential neural net-
work damage found reduced complexity in multiple brain areas in mTBI
subjects relative to healthy controls (Luo et al., 2013). Other studies fur-
ther demonstrated that decreased connectivity in resting-state MEG
may persist for years after mTBI, even in mild TBI cases (Castellanos
et al., 2011), but the abnormally reduced connectivity might improve
over time across serial MEG scans, suggesting neuroplasticity during
recovery from TBI (Tarapore et al., 2013).

Continuing our earlier attempt (Zouridakis et al., 2012) to under-
stand how mTBI affects communication in the human brain network,
the present study extends our previous work in several ways: first, we
employ amuch larger sample of patients and controls, 31mTBI patients
and 50 normal controls, compared to only 10 and 10, respectively;
second, we use the phase locking value estimator and graph theory to
compute functional connectivity graphs (FCGs), whereas in the earlier
study we used Granger causality as the estimator; and third, we follow
a tensor-based instead of vector-based approach for subject classifica-
tion. Here we consider FCGs as second-order tensors, which, after
dimensionality reduction, are used for subject classification, whereas
the earlier study considered the Granger connectivity matrices as one-
dimensional vectors and used them for subject classification; and
fourth, we performed the analysis in several frequency bands, instead
of only one, based on recent studies that found differences in FCGs
across frequency bands (Ηillebrand et al., 2012; Engel et al., 2013).

The remainder of this paper is structured as follows: Section 2
describes the data and the detailed analysis procedure, Section 3
presents the classification results, Section 4 is devoted to discussing
our findings, and Section 5 summarizes some concluding remarks.

2. Methods

The overall methodology employed in this study is outlined in Fig. 1
and includes the following steps: data collection, preprocessing,wavelet
decomposition, computation of functional connectivity graphs (FCGs),
selection of significant links, feature extraction, optimization of the
number of features, designing a classifier, evaluating its performance,
and assessing the topological properties of the FCGs. Each step is
described in detail in the following sections.

2.1. Subjects and recording procedure

Thepresent project is part of a larger study ofmTBI, supported by the
Department of Defense (DoD). The definition of mTBI used in this study
followed the guidelines of DoD (Assistant Secretary, 2007) and the
American Congress of Rehabilitation Medicine (Kay T., 1993). This
work was approved by the Institutional Review Boards (IRBs) at the
participating institutions and the Human Research Protection Official3s
(HRPO) Review of Research Protocols for DoD. All procedures were
compliant with the Health Insurance Portability and Accountability
Act (HIPAA).

Subjects included in this analysis included a group of mTBI subjects
from the DoD project and a group of age-matched normal controls
drawn from a database that was being assembled as a normative
data repository at UTHSC-Houston. The mTBI group consisted of
31 right-handed mTBI participants (29.33 ± 9.2 years of age).
Subjects were recruited from the Emergency Departments (EDs) of
two Level 1 trauma centers and one Level III community hospital in
a large ethnically diverse southwestern metropolitan area. Subjects
were recruited by healthcare professionals (RN, MD, EMT-P) who
had clinical experience with brain injury patients, knowledge of
research, and excellent interpersonal and problem-solving skills.
Screening occurred through review of data in the EDs3 electronic
healthcare system (EHS), consultation with ED staff, and subject
interviews. Special permission was obtained from the institutional
IRBs to administer the Galveston Orientation and Amnesia Test (GOAT)
(Levin et al., 2008) prior to obtaining informed consent to identify cogni-
tive impairment that would preclude provision of informed consent.
All subjects showed GOAT scores of 75 or greater and so have provided
informed consent.

The inclusion criteria for all subjects in the DoD project included
age 18–50 years, injury occurring within the preceding 24 h, and no re-
quirement for hospitalization for the injury for which the participant
was enrolled. For mTBI subjects, the inclusion criteria also required
the presence of a head injury (documented in medical records and/or
verified by witnesses), Glasgow Coma Scale (GCS) (Teasdale and
Jennett, 1974) score 13–15, loss of consciousness b30 min including
0 min, post-traumatic amnesia b24 h including 0 min, and a negative
head computed tomography (CT) scan. The exclusion criteria included
a score on the Abbreviated Injury Scale (AIS) N3 for any body part,



Fig. 1. Various steps of the proposed analysis procedure.

521S.I. Dimitriadis et al. / NeuroImage: Clinical 9 (2015) 519–531
history of significant pre-existing disease (e.g., psychotic disorder,
bipolar disorder, post-traumatic stress disorder (PTSD) diagnosed by a
psychiatrist or psychologist, past treatment for alcohol dependence or
substance abuse), blood alcohol level N80mg/dL at the time of consent,
documentation of intoxication, left-handedness, and contraindications
forMRI (including claustrophobia and pregnancy). Previous head injury
requiring hospitalization or ED treatment was also an exclusion criteri-
on. The demographics of mTBI subjects and the location of injury are
given in Table 1.

The control group (group N) consisted of 55 right-handed age-
matched normal subjects (29.25 ± 9.1 years of age). Previous hospital-
ization for mTBI, history of neurologic disorder, schizophrenia, bipolar
disorder, substance abuse, and extensive dental work and implants
incompatible with MEG were also the exclusion criteria for the control
subjects. The research protocol for the control group also received IRB
approval, and all participants provided written informed consent.

Subjects were asked to lie down and remain as still as possible
during the recording procedure with eyes closed. Approximately
10 min of resting state MEG activity was recorded from each subject.
Data collection in this large multicenter study involved two different
MEG scanners, a 248-channel whole-head Magnes WH3600 system
(4D Neuroimaging Inc., San Diego, CA) featuring axial gradiometer
sensors, and a 306-channel Elekta Neuromag system (Elekta AB,
Stockholm, Sweden) featuring 204 planar gradiometers and 102
magnetometers. To make the recordings from various projects of the
larger study comparable, all data collected with axial gradiometers
were transformed to planar gradiometer field approximations using
the sincos method implemented in Fieldtrip (Oostenveld et al., 2011).
Planar gradiometers have maximum sensitivity to superficial cortical
sources directly under them (Hämäläinen, 1995), which makes them
less sensitive to artifacts and distant disturbances.

2.2. Data preprocessing

The MEG multichannel recordings were preprocessed using
Matlab (The MathWorks, Inc., Natick, MA, USA) and Fieldtrip
(Oostenveld et al., 2011). Axial gradiometer data were originally col-
lected at a sampling rate of 1017.25 Hz and bandpassed between
0.1–200 Hz using hardware filters, whereas the planar gradiometer
data were collected at 1000 Hz and bandpass filtered via software
between 0.1–200 Hz. Artifact reduction was performed based on in-
dependent component analysis (ICA) as implemented in the EEGLAB
toolbox (Delorme and Makeig, 2004). The extended Informax algo-
rithm (Delorme et al., 2007a; Onton et al., 2006; Romero et al.,
2008) was used to remove components associated with eye, muscle,
and cardiac artifactual activity (Dimitriadis et al., 2010, 2012). In ad-
dition to visually inspecting the time course and topographical lay-
out of all ICs, we estimated their kurtosis and skewness values.



Table 1
Subject demographics, location, and mode of impact (MOI) for the mTBI group.

Subject Age at injury Gender Primary MOI Primary MOI type Primary MOI location Location Side

1 21.7 M Auto pedestrian Laceration — no sutures Head F, C
2 42.0 M Motor vehicle Abrasion Head P
3 22.1 M Motor vehicle Tenderness Head O
4 43.1 M Motor vehicle Tenderness Head F, C
5 34.6 M Fall raised surface Abrasion Head T
6 42.3 F Assault Bruising Head P
7 20.3 M Motor vehicle Bruising Head T L
8 24.0 F All-terrain vehicle Laceration — no sutures Head Fa, F, C
9 24.9 M Sports-related Laceration — with sutures Head Fa, F, C L, M, R
10 24.4 F Motor vehicle Bruising Head/face L
11 43.7 F Motor vehicle Tenderness Head P, T L
12 36.3 M Blow to head Tenderness Head O
13 49.1 M Motorcycle Contusion Head F, C, O
14 43.3 F Fall standing Laceration — no sutures Head F, C L
15 23.3 F Fall standing Laceration — with sutures Head L
16 33.4 M Fall raised surface Laceration — no sutures Head Fa, F, C
17 27.3 M Auto pedestrian Tenderness Head/face Fa, F, C R
18 49.8 F Fall moving object Laceration — with sutures Head Fa, T R
19 25.3 M Fall Abrasion Head R
20 27.7 M Fall moving object Abrasion Head P
21 20.5 M Motor vehicle Bruising Head Fa, F, C
22 27.0 F Auto pedestrian Bruising Head P, T L
23 22.6 F Motor vehicle Contusion Head F, C
24 34.8 M Assault Contusion Head F, C
25 20.3 M Sports-related Contusion Head/face Fa B
26 43.8 F Fall standing Contusion Head O
27 28.8 F Motor vehicle Contusion Head F, C, O
28 27.8 M Assault Contusion Head Fa, F, C B
29 24.7 F Assault Contusion Head Fa, F, C
30 22.8 F
31 19.3 M Assault Contusion Head O
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Components reflecting cardiac activity were recognized from their
typical rhythmic pattern in the time domain and their widespread
topography. ICs related to muscle activity were identified based
on statistical measures (kurtosis higher than a predefined threshold,
kurtthr = 12, determined empirically), spectral characteristics
(increased energy in the frequency range between 20–60 Hz), and
topographies encompassing temporal brain areas (Delorme et al.,
2007b; Dimitriadis et al., 2010, 2012). Artifactual ICs were zeroed,
whereas the remaining ICs were used to generate artifact-free
signals that were back-projected to the original MEG sensor space
via the inverse ICA transformation.

Occasionally, activity from a bad sensor was replaced with the
interpolated activity of its immediate neighbors after applying ICA
to avoid introducing dependencies in the recordings. Line noise
was removed using a notch filter at 60 Hz. This interpolation proce-
dure was necessary for five control and two mTBI subjects for at
most four MEG sensors.
2.3. Wavelet decomposition

MEG signal oscillations in specific frequency bands were studied
using wavelet transform analysis (Mallat, 2008). After preprocess-
ing, all data were further lowpass filtered and decimated by a factor
of six, giving an effective sampling rate of 166 Hz, which constrained
the frequency bands of the wavelet transform to roughly conform
to the classical frequency bands (Βassett et al., 2009). Decimation
was used to reduce the processing time, while the new sampling
rate was higher than twice the minimum rate required by the
Nyquist theorem to avoid distortion of the MEG signals in the effec-
tive range of frequencies of interest (1–60 Hz). Each frequency
band was isolated by applying the maximum overlap discrete
wavelet transform to each time series (Daubechies, 1992) using the
Daubechies 5 wavelet in line with previous work (Βassett et al.,
2009). Thus, wavelet scale 1 (30–60 Hz) roughly corresponded to
the classical low-γ band, scale 2 (15–30 Hz) to β, scale 3 (8–15 Hz)
to α, scale 4 (4–8 Hz) to θ, and scale 5 (1–4 Hz) to δ.

2.4. Functional connectivity graphs

We constructed FCG by quantifying the coupling between pairs of
sensors using the phase locking value (PLV) as an estimator (Lachaux
et al., 1999), separately for each frequency band. PLV is defined as

PLV ¼ 1
N ‖∑Nt¼1

ejθðtÞ‖ ð1Þ

where θ(t) is the difference in phase between the two time series and N
is the number of samples. PLV estimates the variability of this phase
difference over time. If the phase difference varies by a little, PLV is
close to one; otherwise it is close to zero. PLV can assess phase relation-
ships between two signals but it cannot detect any causal relationships
(lags or delays) between the signals. To construct intra-frequency
functional connectivity matrices, we calculated the PLV between the
time series in each frequency band for all possible pairs of sensors to
create the weights matrix FCG. Through this process, we created 5
such connectivity matrices (δ, θ, α, β, and γ) per subject.

2.5. Significant links in FCGs

For each subject, the aforementioned procedures yielded a fully con-
nected, weighted, symmetric FCG representing the mutual influences
among all cortical regions. The maximum number of possible undirect-
ed connections in a network with k nodes is Nmax= k(k− 1) / 2. When
k = 248, the corresponding Nmax = 30,628, and the FCG is extremely
dense. Therefore, it must be filtered so that the pattern of the most sig-
nificant connections can emerge. We performed two kinds of filtering
based on statistical analysis and graph theory principles.

For statistical filtering a surrogate datamethod (Lachaux et al., 1999)
with multiple realizations was used to select the most significant FCG
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values at the 99% confidence level. Generating 200 surrogates from the
original time series was enough to reveal significant interactions
(Lachaux et al., 1999). Surrogates were obtained by randomizing the
phase of the original signals while keeping their spectral profile intact
to remove all temporal correlations (Theiler, 1992). After computing
the surrogate PLVs, we assigned a p-value to each connection in the
FCG matrix by estimating the proportion of surrogate PLV values that
were higher than the observed values (Theiler et al., 1992). To correct
the effects of multiple comparisons, p-values were adjusted using the
false discovery rate (FDR) method (Benjamini and Hochberg, 1995).
A threshold of significance q was set such that the expected fraction of
false positives was restricted to q ≤ 0.01 (Dimitriadis et al., 2012;
Ioannides et al., 2012).

Graph theory-based analysis (Bullmore and Sporns, 2009; Bassett and
Bullmore, 2009; He and Evans, 2010; Stam, 2010) was used to capture
the structure of the neural system under investigation and the rela-
tionship between separation and integration of neural populations.
Small-word structures are characterized by a dense network of
local connections and a limited number of long-range connections
that provide efficient communication between distant nodes. Efficiency
in information transmission between nodes is measured as the inverse
of the shortest distance between the nodes, while the average of all
pair-wise efficiencies represents the global efficiency of the graph. The
function cost relates to the energy expenditure needed for a network
tomaintain its efficiency, and it is given by the ratio of existing connec-
tions divided by the total number of possible pairwise connections in a
network. Global cost efficiency is defined as the global efficiency E at a
given cost Cminus the cost (E− C), which typically has a positive max-
imum value at some cost Cmax, for an economical small-world network.
Importantly, this metric of network topology is independent of arbi-
trary, investigator-specified thresholds. Instead, the cost efficiency
curve is estimated over a wide range of thresholds, and the behavior
of the curve is summarized by its maximum value, which occurs at a
data-driven connection density or cost C (Bassett et al., 2009)1

The physical distance among the MEG sensors was used to
separate the local from the long-range connections. For each sensor,
we computed its neighbors of order one, two, three, and four,
i.e., neighbors in all directions that were one, two, three, and four
steps away, based on the topographical layout of the MEG sensors
(Zouridakis et al., 2012).
2.6. Classifier development

To optimize the performance and generalizability of ourmethodolo-
gy (Hastie et al., 2003), we implemented a true external cross-validation
procedure by splitting the data into two subsets: a training set that
included 80% of the subjects (44 N and 25 mTBI) and was used for
designing the classifier and a test set that included the remaining 20%
of the subjects (11 N and 6 mTBI) and was used for assessing the classi-
fier performance. As a metric, we used the correct classification rate,
which was defined as the proportion of subjects in the test set for
which the correct label was predicted. The entire cross-validation pro-
cedure was repeated 100 times to avoid any adaptation effects, and
the average value of the correct classification rate was used to compute
the overall accuracy of the procedure. The optimum number of feature
to represent the data was determined using only the training dataset
in a five-fold cross-validation procedure as described in Fig. 1. Test
subjects were removed from the analysis at the very beginning of the
procedure, prior to feature selection and five-fold cross validation.
Thus, test subjects were treated as a truly external dataset.
1 The adopted thresholding scheme can be downloaded from http://users.auth.gr/
~stdimitr/software.html.
2.6.1. Feature extraction: tensor subspace analysis
Most of the previous studies in this area represent FCGs as vectors in

a high-dimensional space (Shen et al., 2010; Pollolini et al., 2010;
Richiardi et al., 2011). The main limitation of this approach (and the
related feature extraction algorithms) is that it overlooks the inherent
form of FCGs. Each FCG has a natural tabular representation and
hence it can be thought of as a second-order tensor. The relationship
between the row and column vectors of the associated matrix might
be important for deriving a suitable low-dimensional representation
(projection), especially when the number of available connectivity
patterns is small. To overcome the limitations of previous approaches,
in this study we treated FCGs as tensors and resorted to tensor subspace
analysis (TSA) (He and Cai, 2005) as the most appropriate feature
extraction algorithm. In our formulation, the tensor form was given by
(subjects × sensors × sensors) (Dimitriadis et al., 2013a, 2015).

FCGs from individual subjects were represented based on a recent
methodology that blends ideas from multi-linear algebra and manifold
data learning (He and Cai, 2005). Briefly, given a set of FCGs sampled
from the space of functional connectivity patterns, we approximated
the underlying manifold by first building an adjacency graph that
captured the proximity relationships among the connectivity patterns,
and then derived a tensor subspace that faithfully represented these
relationships. TSA provided an optimal linear approximation to the
FCG manifold.

2.6.2. Feature selection: tensor space dimensionality reduction
Mathematically, an FCG X∈ℜn1�n2 of size n1× n2, where n1 and n2

denote the dimensions of a second order tensor (in our case, n1 and n2
are equal to the number of MEG sensors), can be thought of as a second
order tensor in the tensor spaceℜn1 ⊗ℜn2. Then, the generic problem of
linear dimensionality reduction in the second order space is expressed
as follows: given a set ofm tensors X1; :::;Xm∈ℜn1⊗ℜn2 , find two trans-
formationmatrices U andVof size (n1×l1) and (n2×l2), respectively, that
map these m tensors to a new set of tensors Y1; :::; Ym∈ℜl1 ⊗ ℜl2 ,
where Yi=UTXiV, l1b n1, and l2b n2, such that each new tensor Yi repre-
sents uniquely a tensor Xi in the original set. Themethod is of particular
interest in the special case when X1, X2, …, Xm ∈ M, where M is a non-
linear sub-manifold embedded in ℜn1⊗ℜn2 . Traditional linear dimen-
sionality reduction algorithms, such as principal component analysis
and linear discriminant analysis, find first-order mappings from ℜn to
ℜl with l b n, but TSA finds a second-order mapping from ℜn1 ⊗ ℜn2

to ℜl1 ⊗ ℜl2 with l1b n1 and l2 b n2.

2.6.3. Optimal linear embedding
The “true” domain of FCGs most probably forms a nonlinear

sub-manifold embedded in the ambient space of second order tensors
(Lu et al., 2013). Using TSA, we attempted to find a linear subspace
approximation to the sub-manifold in the sense of local isometry
using a technique that is the tensorial counterpart of the locality
preserving projection (He et al., 2005).

Given a set ofm tensors {Xi}i = 1:m, where each tensor is the tabular
version of a single FCG having the group membership as class label
(N or mTBI), TSA starts by building an (m × m) weight matrix S that
represents the nearest neighbor graph G among the tensors. The value
of m is given by the total number of subjects in the training dataset.
The elements of Sij are given by

Sij ¼ f expð−jjXi − Xjjj2=rÞ Condition 1
0 otherwise

g ð2Þ

where the exponential is known as the heat kernel and is employedwith
the Frobenius norm (Golub and van Loan, 1996), r is a control parameter
usually referred to as radius of influence, and Condition 1 states that
tensors Xi and Xj share the same class label and each of them is among
the k-nearest neighbors of the other, while the indices i and j vary across

http://users.auth.gr/~stdimitr/software.html
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them tensors (m equals the number of subjects in the training dataset).
Then TSA seeks two transformation matrices U and V which, when
applied to each tensor, result in a mapping that preserves the
neighborhood relationship encoded in graph G. Mathematically,
this is formulated in the following optimization problem,

min
U;V

∑
i j

‖UTXiV−UTX jV‖
2
Si j: ð3Þ

Denoting with D a diagonal matrix with elements Dii ¼ ∑ jSi j , the
above problem is reformulated as two coupled problems of eigenvector
analysis (He et al., 2005):

ðDU − SUÞv ¼ λDUv
DU ¼ ∑iDiiX

T
i UU

TXi
; SU ¼ ∑i jSi jX

T
i UU

TX j ð4Þ

ðDV − SV Þu ¼ λDVu
DV ¼ ∑iDiiXiVV

TXT
i

SV ¼ ∑i jSi jXiVV
TXT

j : ð5Þ

The optimal matrices U and V can be obtained by iteratively
computing the generalized eigenvectors of Eq. (4) and Eq. (5) after
initializing U with the identity matrix. TSA detects the intrinsic local
geometric structure of the tensor space by learning the topology of a
new tensor subspace of lower dimension. The objective function in
Eq. (3) incurs a heavy penalty if neighboring points Xi and Xj are
mapped far apart. Therefore, minimizing Eq. (3) ensures that when
the original tensors Xi and Xj are close, the new tensors Yi = UT XiV
and Yj = UT XjV will be close as well.

The dimensionality of the reduced tensors Yi, i.e., the number of
eigenvectors used for mapping Yi = UT Xi V, was optimized using a
five-fold cross-validation procedure that achievedmaximumseparation
between the N and mTBI groups. Specifically, we randomly partitioned
the training dataset into five equal sized subsets and used four subsets
for building a k-nearest neighbor (k-NN) classifier (Altman, 1992)
and one subset for testing its performance. The overall classification
performance was obtained by averaging the results across the five
folds. The number of neighbors k and the heat parameter were set in a
similar way.

2.7. Classifier testing

Ourmethodology employed the so-called extreme learningmachine
(ELM) classifier (Huang et al., 2006), an emerging learning technique
that provides efficient unified solutions to generalized feed-forward
networks, including single- and multi-layer neural networks. We
chose this relatively new classification procedure because of its compu-
tational elegance and fast-learning capabilities, which lead to improved
performance compared to other learning algorithms, like back propaga-
tion neural networks, radial basis function networks, and support vector
machines (Kim et al., 2009). The proposed scheme combined tensor
subspace analysis with extreme learning machine classification and it
was thus denoted as TSA+ELM2.

For comparison purposes, we used two additional popular classifiers
as a baseline: the k-NN algorithm with the Frobenius norm (Horn and
Mathias, 1990) as ameasure of similarity, and a support vectormachine
(SVM) with a linear kernel (Cortes and Vapnik, 1995). Furthermore,
to demonstrate the superiority of the proposed tensorial approach, we
considered FCGs as vectors with or without feature extraction. The
FCG tensors were first vectorized, i.e., converted to high dimensional
vectors by traversing the corresponding matrices in a systematic way,
and then their dimensionality was reduced using linear discriminant
analysis (LDA; Fisher, 1936) for feature extraction. The dimensions
2 Source code can be downloaded from: ELM: http://www.ntu.edu.sg/eee/icis/cv/
egbhuang.htm. Tsa: http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.
html.
kept by LDA were selected to optimize classification performance of
the two groups. Therefore, our analysis employed various combinations
of approach (TSA, LDA, and vectorial) and classifier (ELM, k-NN,
and SVMs).

After selecting a classifier/approach combination, and optimizing it
using the training data, the classifier was validated using the test data
as follows: each FCG in the test set was compared against FCGs
of known group membership (normal or mTBI) developed from the
training dataset. The FCG was finally assigned to the group with which
it had the highest similarity.

2.8. Topological properties of underlying brain networks

Following the significant link selection procedure described previ-
ously, the resulting FCGswere described using thewell-known topolog-
ical metrics of global and local efficiency defined for weighted graphs.
The global efficiency GE of a network is given by

GE¼
1
N
∑
i∈N

1
N−1

∑
j∈N; j≠i

ðdi jÞ−1
ð6Þ

where N represents the total number of nodes in the network and dij is
the shortest path length between nodes i and j. GE is the inverse of the
harmonicmean of paths between nodes and reflects the overall efficien-
cy of parallel information transfer in the network (Achard and Bullmore,
2007; Latora andMarchiori, 2001). On the other hand, local efficiency LE
is a measure of fault tolerance in the network and is defined as

LE¼
1
N

∑
i∈N

nodal LEi ¼
1
N
∑
i∈N

∑
j;h∈Gi; j;h≠i

ðdjhÞ−1

kiðki−1Þ

ð7Þ

where ki corresponds to the functional neighbors of the ith node,
N represents the total number of nodes in the network, and dij is
the shortest path length between nodes i and j. LE indicates how
well subgraphs exchange information when a particular node is
eliminated (Achard and Bullmore, 2007).

To identify cost-efficient functional networks, the same link
selection procedure was applied to the average FCGs, independently
for each frequency band and group. Statistical analyses were performed
using the Wilcoxon rank sum test (p b 0.001).

3. Results

3.1. Classification performance

Table 2 summarizes the classification performance obtained for var-
ious combinations of approach (vectorial, LDA, and TSA) and classifier
(k-NN, ELM, and SVMs). For TSA, the parameters used were as follows,
weight mode: Ηeat Kernel, neighbor mode: 10, supervised learning,
and number of dimensions: 6 (Dimitriadis et al., 2013a, 2015). For the
k-NNalgorithmweusedmajority voting. For each of the three classifiers
(k-NN, ELM, and linear SVM), the corresponding dimensions kept
by LDA in each frequency band were as follows, δ: (5, 6, 5), θ: (6, 6, 5),
α: (6-6-5), β: (7-6-7), and γ: (6-6-5).

As it can be seen in Table 2, the proposed classification scheme of
TSA+ELM provided clear separation of the two groups, in all frequency
bands, with high sensitivity and specificity. In particular, in the α band
normal controls andmTBI patients could be separated with 100% classi-
fication accuracy. The combination of LDA + k-NN showed reduced
classification accuracy (approximately 80% across all frequency bands)
compared to TSA+ kNN (Table 2a). On the other hand, the ELM classi-
fier showed improved performance compared to k-NN (Table 2b) in all
cases. Using the SVM classifier with TSA resulted in decreased perfor-
mance compared to ELM classifier (Table 2c). However, the use of the

http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm
http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm
http://www.cad.zju.edu.cn/home/dengcai/data/dimensionreduction.html
http://www.cad.zju.edu.cn/home/dengcai/data/dimensionreduction.html


Table 2
Average classification performance (CP%) over five frequency bands using vectorized, tensorial, and LDA FCG representations with k-NN, ELM, and linear SVM classifiers.

(a) k-NN classifier

Frequency Band LDA treatment of vectorized
FCGs (LDA + k-NN)

Tensorial treatment of FCGs
(TSA + k-NN)

Vectorized FCGs (k-NN)

CP% Sensitivity % Specificity % CP% Sensitivity % Specificity % CP% Sensitivity % Specificity %

δ 77.65 73.05 75.34 82.15 79.45 80.45 67.35 71.65 71.45θ 78.23 75.75 78.65 85.30 81.40 82.34 70.35 71.47 68.08α 80.45 76.45 74.55 87.34 82.78 83.30 71.65 71.36 70.09β 79.45 74.30 75.38 83.50 80.87 81.54 67.05 72.08 71.28γ 77.59 73.45 75.76 83.34 78.25 80.85 68.28 72.38 70.26

(b) ELM classifier

Frequency Band LDA treatment of vectorized
FCGs (LDA + ELM)

Tensorial treatment of FCGs
(TSA + ELM)

Vectorized FCGs (ELM)

CP% Sensitivity
%

Specificity % CP% Sensitivity % Specificity % CP% Sensitivity % Specificity %

δ 80.45 74.68 74.28 96.48 95.22 96.02 68.85 71.25 70.95θ 80.25 78.28 78.64 97.64 95.05 96.12 72.77 71.15 70.75α 82.27 78.65 76.45 100 100 100 73.03 68.75 70.14β 81.25 75.25 77.36 97.85 95.34 96.32 69.09 69.64 70.32γ 78.38 73.58 76.30 96.58 100 97.85 70.05 69.88 69.78

(c) Linear SVM

Frequency Band LDA treatment of vectorized
FCGs (LDA + k-NN)

Tensorial treatment of FCGs
(TSA + k-NN)

Vectorized FCGs (k-NN)

CP% Sensitivity % Specificity % CP% Sensitivity % Specificity % CP% Sensitivity % Specificity %

δ 81.37 73.75 77.45 94.05 92.15 93.23 70.32 70.23 69.73θ 82.46 78.86 79.68 93.32 90.73 93.12 74.42 72.76 70.23α 83.93 78.24 77.27 94.26 93.62 92.12 75.63 73.27 72.83β 82.88 75.68 76.83 93.10 91.91 90.34 70.05 69.83 69.35γ 80.34 74.95 77.32 91.23 92.34 92.81 71.07 70.63 69.76
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SVM classifier improved performance for both the LDA and vectorial
approaches compared to the ELM classifier (Table 2c).

To demonstrate visually the ability of the proposed TSA+ELM
scheme to absolutely separate mTBI patients from normal controls in
the α frequency band, we computed a three-dimensional representa-
tion for the FCGs, each of which was originally described by a vector of
36 dimensions (in TSA each dimension of the second order tensor was
6, thus the total number of dimensions needed for the vector represen-
tation was 6 × 6= 36). We estimated the pair-wise similarity between
all possible pairs of vectors A and B across all subjects using cosine
similarity (CoS), which was given by

CoS A;Bð Þ ¼ A � B
Ak k Bk k ¼

XN
i¼1

AiBi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

A2
i

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

B2
i

vuut
ð8Þ
Fig. 2. Separation of normal controls (N) from patients (mTBI) in the α frequency band
using the proposed methodology: convex hull of points obtained after projecting the
functional connectivity graphs of both groups in 3D space.
CoS(A,B) measures the cosine of the angle between vectors A and B,
and thus it is a judgment on their orientation, not on their magnitude.
The final CoS estimates were tabulated in a matrix with dimensions
86 × 86 (since 86 is the total number of subjects in the two groups).
By employing multidimensional scaling (Borg and Groenen, 2003),
a well-known dimensionality reduction technique, we were able
to project the original multidimensional matrix onto a set of
three-dimensional points. Finally, we estimated the convex hull
(Borst et al., 1999) of the 3D points corresponding to each group.
The results are shown in Fig. 2, which shows complete separation
of the two groups and also illustrates their variance.

3.2. Topological differences between normal and mTBI connectivity profiles

Fig. 3 illustrates the average functional connectivity patterns for
each frequency band and group after applying the cost–efficiency
thresholding scheme. As it can be seen in Figs. 3 and 4, the functional
connectivity profile of the control group exhibited a consistent network
with stronger local connections (level 1 and 2 neighbors) whereas
the mTBI group showed a variable network with stronger distant con-
nections (level 3 and 4 neighbors). Across most frequencies, with the
exception of the δ band, in the N groupmore than 80% of the total num-
ber of connections was distributed locally (level 1 and 2 neighbors),
whereas in the mTBI group, more than 60% of the connections were
shared between distant sensors (level 3 and 4 neighbors). Additionally,
from θ to γ, the N group exhibited significantly stronger connections
locally, whereas the mean strength of distant connections was signifi-
cantly higher in the mTBI group (see Fig. 5).

Furthermore, as Fig. 5 shows, when long-range connections were
compared across subjects, the N group exhibited mostly central-to-
central or central-to-peripheral connections, especially in the θ to γ
frequency bands, whereas the mTBI group showed connections
involving primarily peripheral locations, practically bypassing fronto-
central and centro-parietal brain regions.



Fig. 3. Functional connectivity patterns for normal controls (N) and patients (mTBI) computed at various frequency bands (δ, θ, α, β, and γ).
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3.3. Network analysis

In all frequency bands, global efficiency (GE) values were in general
higher in normal controls compared to mTBI patients, but without
reaching significance (pδ = 0.61, pθ = 0.57, pα = 0.61, pβ = 0.83, and
pγ = 0.76). In contrast, local efficiency (LE) values were significantly
higher (p b 0.001) in the N group compared to themTBI in all frequency
bands, except for θ (Fig. 6).
Fig. 4. Topographical illustration of connections according to neighbor level for normal con
4. Discussion

In this studywe used PLV estimation and graph theory to investigate
topological differences in the functional connectivity networks of
mTBI patients and normal controls computed from resting-state MEG.
Our results showed that normal subjects exhibited the typical “small
world” configuration, i.e., a dense network of local connections and a
limited number of long-range connections. Level 1 and 2 neighbors
trols (N) and patients (mTBI) computed at various frequency bands (δ, θ, α, β, and γ).



Fig. 5.Mean strength values and density (%) of connections (pie-charts) for each neighbor level in both groups and across frequency bands (*p b 0.001, **p b 0.001 × 104 Wilcoxon rank
sum test. N1, N2, N3, and N4 correspond to neighborhood level 1, 2, 3, and 4, respectively).
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accounted for more than 80% of the total number of connections and,
on average, they were significantly stronger compared to the ones
seen in mTBI subjects. In contrast, mTBI subjects showed sparse ar-
rangements of weak local connections and a large number of
stronger distant connections. Level 3 and 4 neighbors covered more
than 60% of their connectivity profiles and the average strength was
significantly higher compared to the control group (Figs. 4 and 5). How-
ever, these long-range connections in the mTBI group involved



Fig. 6. Global (GE) and local (LE) efficiency in normal controls (N) and patients (mTBI) at
various frequency bands (*p b 0.01, Wilcoxon rank sum test).

3 http://www.humanbrainproject.eu/ and http://www.whitehouse.gov/infographics/
brain-initiative
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primarily peripheral locations, whereas in the controls, long-range links
connected frontal-to-central or central-to-peripheral locations. These
findings echo the results of our earlier study (Zouridakis et al., 2012).
Marked differences between the two groups were seen in all frequency
bands, except for δ, where the connection strength and sensor location
were not significantly different between the two groups, at any
neighborhood level.

As an extension of our earlier work, in the present study we pro-
posed a novel approach that features two improvements: estimation
of functional connectivity graphs based on the PLV estimator and a
multivariate tensorial treatment of these graphs. As Table 2 shows, the
ELM classifier provided 100% classification accuracy in the α frequency
band and more than 96% accuracy in the rest of the frequency bands
studied. This new approach provided a more accurate “connectomic”
biomarker to characterize mTBI, instead of the typical univariate
estimates, like relative power. This can be clearly seen in Table S1 in
the Supplementary material, where we provide a detailed analysis
based on relative power.

Our findings of frequency-specific differences between the two
groups match current research on spontaneous activity. A number
of studies used MEG source localization (de Pasquale et al., 2010;
Brookes et al., 2012; Hipp et al., 2011, 2012; Hillebrand et al., 2012;
Bardouille and Boe, 2012; Marzetti et al., 2013) to explore two different
modes of intrinsic coupling, namely phase coupling between band-
limited oscillations and coupling between aperiodic fluctuations of sig-
nal envelopes (Hipp et al., 2012). There is now evidence that the former
ismore sensitive to functional changes due to injury even in the absence
of structural damage, as in the case ofmTBI, while the latter can quantify
functional abnormalities when structural damage predominates
(Ηipp et al., 2012). These studies used various connectivity estimators,
including power correlations (de Pasquale et al., 2010; Brookes et al.,
2012, 2012; Hipp et al., 2012), phase coherence (Hipp et al., 2011;
Bardouille and Boe, 2012), phase lag index (Hillebrand et al., 2012),
and imaginary coherence (Marzetti et al., 2013). Thus, our findings of
δ band differences between the two groups using the PLV estimator
are in line with the current literature.

In terms of topology, even though our analysis was performed
at the sensor level, our findings follow closely the results of studies
that explored frequency-dependent networks at the source level
(Hillebrand et al., 2012). In general, the brain areas that are part of
the default-mode network showed a dense network of connections
extended over the entire brain for low frequencies and a more anatom-
ically constrained network for higher frequencies (Buzsaki, G. and
Draguhn, 2004; Fox and Raichle, 2007; Florin and Baillet, 2015). We
found that, in the range of high frequencies, both the number (80% of
total connections) and strength of local connections were higher in
the control group, whereas in the δ band there were fewer (only 20%)
and weaker connections. Additionally, we showed local topological
differences with higher local efficiency for controls compared to mTBI
subjects in the δ band, which resulted in 96.48% classification accuracy
and partially matched previous findings of abnormal brain activity in
mTBI patients in the δ band (Huang et al., 2009, 2012).
Nevertheless, despite the very interesting results obtained, the
present study has some limitations. For instance, we estimated FCGs
at the sensor level, although some studies have applied source recon-
struction methods to identify activation patterns at the source level
(Huang et al., 2009, 2012; Hillebrand et al., 2012). Even though we
cannot interpret the activation patterns in terms of intracranial cortical
locations, we are still able to describe statistically significant differences
in the connectivity patterns of mTBI and control subjects using surface
brain regions. Another potential criticism of the present study could
be attributed to volume conduction effects, i.e., the transmission of
electromagnetic fields from a primary intracranial source through bio-
logical tissue towards the measurement sensors resulting in distorted
recordings. Although these effects can be reduced using connectivity es-
timators that are robust to volume conduction, such as the phase lag
index (Hillebrand et al., 2012) and imaginary coherence (Marzetti
et al., 2013), or through orthogonalization preprocessing (Hipp et al.,
2012), we decided not to employ any correction, since the absence of
correlation between power and connectivity profiles in all frequency
bands (see the Supplementary material) was a strong argument that a
common source did not alter the functional connectivity patterns; oth-
erwise, a common source would have changed also the signal power.
Furthermore, any possible volume conduction effects would be com-
mon to both groups, but we were looking only for differences between
the two groups. Finally, some details on subject demographics are in-
complete, as Table 1 shows, making it difficult to establish correlations
between lesion locations and connectivity patterns for every participant
in the study.

The present study has focused on the development of noninvasive
biomarkers that can be used to uniquely characterize mTBI patients
and normal controls. It follows a general trend in current research in
the area of neuroinformatics, where the big challenge for the next
decade is the development and deployment of a large database with
pre-computed brain connectivity profiles and derived network metrics
(e.g., a “Connectome database”) in both healthy and mTBI subjects
(Sporns, 2012). This would allow recording resting-state MEG in the
laboratory, estimating the related connectivity maps in both sensor
and source space, querying the Connectome database, and visualizing
the results in a laboratory PC (Akil et al., 2011; Iakovidou et al., 2013a,
2013b). Understanding brain function and visualizing the human
Connectome are slowly becoming a reality (Human Brain Project,
Europe and USA)3. In the near future, computational approaches
applied to connectomics will undergo rapid expansion, especially with
shared neuroimaging resources, and complex network analysis and
modeling (Jirsa et al., 2010; Sporns, 2012), and may be helpful in
designing optimal recovery strategies following traumatic brain injury
(Irimia et al., 2012).

5. Conclusions

The proposedmethodology can estimate patterns of brain activation
in the form of connectivity networks that are highly consistent and
can uniquely characterize subject groups using resting state MEG,
a noninvasive modality with superior temporal resolution over other
neuroimaging techniques. Furthermore, resting state recordings are
easy to obtain, as they do not require engagement from the subject,
which makes such tests suitable for all sorts of patient types and age
groups, including children. These encouraging findings support the hy-
pothesis that functional connectivity patterns may be used as general
biomarkers for predicting a subject3s brain state (Dimitriadis et al.,
2013a, 2015), for detecting various brain diseases (Dimitriadis, 2015),
and for developing image-based tools that can provide more accurate
diagnosis, help guide treatment, and monitor the effectiveness of
intervention in mTBI patients.

http://www.humanbrainproject.eu/
http://www.whitehouse.gov/infographics/brain-initiative
http://www.whitehouse.gov/infographics/brain-initiative
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