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Abstract 

Background: Uniconazole is an effective plant growth regulator that can be used in banana cultivation to promote 
dwarfing and enhance lodging resistance. However, the mechanisms underlying banana dwarfing induced by uni-
conazole are unknown. In uniconazole-treated bananas, gibberellin (GA) was downregulated compared to the control 
groups. An integrative analysis of transcriptomes and metabolomes was performed on dwarf bananas induced by 
uniconazole and control groups. The key pathways involved in uniconazole-induced dwarfism in banana were deter-
mined according to the overlap of KEGG annotation of differentially expressed genes and (DEGs) differential abundant 
metabolites (DAMs).

Results: Compared with the control groups, the levels of some flavonoids, tannins, and alkaloids increased, and 
those of most lipids, amino acids and derivatives, organic acids, nucleotides and derivatives, and terpenoids decreased 
in uniconazole-treated bananas. Metabolome analysis revealed the significant changes of flavonoids in uniconazole-
treated bananas compared to control samples at both 15 days and 25 days post treatment. Transcriptome analysis 
shows that the DEGs between the treatment and control groups were related to a series of metabolic pathways, 
including lignin biosynthesis, phenylpropanoid metabolism, and peroxidase activity. Comprehensive analysis of the 
key pathways of co-enrichment of DEGs and DAMs from 15 d to 25 d after uniconazole treatment shows that flavo-
noid biosynthesis was upregulated.

Conclusions: In addition to the decrease in GA, the increase in tannin procyanidin B1 may contribute to dwarfing 
of banana plants by inhibiting the activity of GA. The increased of flavonoid biosynthesis and the change of lignin 
biosynthesis may lead to dwarfing phenotype of banana plants. This study expands our understanding of the mecha-
nisms underlying uniconazole-induced banana dwarfing.
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Background
Dwarfing, an important agronomic trait, has been a 
research hotspot for breeders. Varieties with dwarfing 
characteristics not only have unique advantages in pro-
duction management but also have great potential in 
terms of high yield. In the production of bananas (Musa 
spp.), the stems of tall bananas are easily damaged by 
typhoons and require additional support costs. Produc-
tion efficiency can be optimized by controlling grass 
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growth in bananas. Semi-dwarf banana varieties are 
resistant to wind and rain damage [1]. In addition, an 
increase in yield associated with short stems is associated 
with an increase in the harvest index [2]. The crouching 
physique of dwarf banana varieties can resist the harm 
of typhoons to a certain extent and has the advantages of 
convenient cultivation, field management, labor saving, 
and dense planting [3]. The dwarf variant is also help-
ful for mining and researching dwarf-related genes. The 
identification and utilization of dwarf-related banana 
genes are very important for breeding dwarf banana 
varieties.

Plant height traits are not only controlled by internal 
genes, but are also affected by various hormones and 
external environmental factors [4]. Studies have found 
that most dwarf mutations are caused by changes in 
the growth and development of plant stems owing to 
mutations in hormone synthesis pathways or response 
regulation [5]. Many dwarf mutants are related to plant 
gibberellins (GAs) and brassinosteroids, whereas sev-
eral mutations are related to auxins [6, 7]. By analyz-
ing plant hormone synthesis and signaling mutants and 
treating plants with exogenous hormone spray, it was 
found that GAs and brassinosteroids regulate the expan-
sion of plant cells and organs along the longitudinal axis, 
greatly affecting plant height and organ size [8]. They 
are the main hormones that cause plant dwarfing. Uni-
conazole, a highly effective plant growth inhibitor, hin-
ders the oxidative demethylation of kaurene to kaurenoic 
acid, making it difficult to synthesize kaurenoic acid and 
thereby cutting off the biosynthesis of GAs [9]. At the 
same time, it is an effective dwarf plant inducer [10]. At 
present, the application of uniconazole in fruits is mainly 
used to control vegetative growth, promote plant root-
ing and flower formation, promote seed filling, improve 
fruit quality, increase yield, and enhance stress resistance 
[11, 12]. Previous studies on the dwarfing mechanisms of 
model plants such as Arabidopsis thaliana and rice have 
been conducted, and it is believed that plant dwarfing is 
mainly regulated by plant hormones [4]. However, few 
studies have been conducted on the causes and mecha-
nisms underlying banana dwarfing.

GAs play a fundamental role in plant growth and 
development and are involved in regulating a variety 
of developmental processes. The reduction in reactive 
GAs content results in plants exhibiting a dwarf pheno-
type. The GA biosynthetic pathway is well understood 
in model plants and related variants have been isolated 
[5, 13, 14]. GAs are biosynthesized from geranyl diphos-
phate, which is a common C20 precursor of diterpenoids. 
GA20ox, GA3ox, and GA2ox are enzymes that catalyze 
late reactions in the GA biosynthetic pathway and belong 
to the 2OG-Fe (II) oxidase superfamily. In many plant 

species, enzymes are independently encoded by differ-
ent gene families [15] and thus have functional redun-
dancy and tissue specificity [16]. The loss-of-function 
of these GA oxidase genes (except GA2ox) in plants 
produces a dwarf phenotype that can be restored by 
the application of exogenous GA [16–19]. For example, 
the well-known Green Revolution gene sd-1 is gener-
ated by the loss-of-function of OsGA20ox2 in rice [20]. 
Conversely, GA2ox reduces the levels of reactive GAs 
in plants, and overexpression of GA2ox leads to dwarf 
plants [21, 22]. Chen et  al. revealed that MaGA20ox4, 
MaGA20ox5, MaGA20ox7, MaGA2ox7, MaGA2ox12, 
and MaGA2ox14 are the main genes regulating the GA 
content difference between 8818 and its dwarf mutant, 
8818–1, and each gene may perform different functions 
in different tissues or during different developmental 
stages [1].

Banana genome sequencing was completed in 2012 
[23], but related information on dwarfism metabolism 
in bananas is limited. The genes, pathways, and metabo-
lites associated with dwarfism induced by uniconazole in 
bananas have not been explored. In this study, an inte-
grative analysis of transcriptomes and metabolomes was 
performed on uniconazole-induced bananas to inves-
tigate the regulatory mechanisms of dwarfism during 
banana development. The results of this study provide 
both candidate genes and novel approaches that can be 
used to produce improved banana traits.

Results
Characterization of uniconazole‑induced dwarfism 
in banana
To confirm the effect of uniconazole on dwarfism in 
bananas, we designed a concentration gradient (0.1 g, 
0.3 g, and 0.5 g) and compared the induced traits (Fig. 1). 
The plants in the control group exhibited a height 
of approximately 220 cm with normal banana stalks 
(Fig.  1A), and plants dwarfed to approximately 170 cm 
when treated with 0.1 g uniconazole (Fig.  1B). Treat-
ment with 0.3 g uniconazole further dwarfed the plants to 
approximately 140 cm with short comb spacing (Fig. 1C), 
whereas an overdose of uniconazole (0.5 g) induced mal-
formation of buds and a height of 135 cm (Fig. 1D).

Physiological and biochemical changes 
in uniconazole‑induced dwarf banana
GA content was significantly downregulated in uni-
conazole-treated bananas. The lowest GA content was 
observed for both groups treated with 0.3 g and 0.5 g 
uniconazole (Fig.  2A). A considerable number of physi-
ological and biochemical indices, including potassium, 
calcium, magnesium, phosphorus, soluble protein, and 
SOD activity, increased as the concentration gradient 
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of uniconazole increased. In contrast, the levels of these 
indices in the control and paclobutrazol-treated groups 
were the lowest and highest, respectively (Fig.  2B-2I). 
In addition, the enzyme activities of CAT, PAL, and 
PPO showed a similar trend (Fig.  2J-2L). Consequently, 
the dosage of 0.3 g uniconazole was chosen for further 
metabolomic and transcriptomic experiments based 
on to the best dwarfism traits induced in banana and 
the minimum effect on physiological and biochemical 
indices.

Metabolomic changes associated 
with uniconazole‑induced dwarfism
A total of 1082 metabolites were identified based on the 
metabolomics data (Table S1), which showed a high cor-
relation (r > 0.9) between replicates within groups (Fig. 
S1A). PCA showed clustering of samples into distinct 
groups and stages, and the treatment group was closer to 
the control group at 25 d than at 15 d (Fig. S1B).

A considerable number of differential abundant metab-
olites (DAMs) were identified between the treatment and 
control groups at 15 d (Fig.  3A). Among them, the lev-
els of most differential flavonoids, tannins, and alkaloids 
increased after uniconazole induction, whereas those of 
most lipids, amino acids and derivatives, organic acids, 
nucleotides and derivatives, and terpenoids decreased 
(Fig. 3A). These DAMs were significantly enriched in fla-
vone and flavonol biosynthesis, betalain biosynthesis, fla-
vonoid biosynthesis, isoquinoline alkaloid biosynthesis, 
thiamine metabolism, and phenylpropanoid biosynthe-
sis pathways (Fig. 3B). Meanwhile, the levels of differen-
tial flavonoids and tannins also increased when treated 
with uniconazole at 25 d (Fig.  4A), and the differential 

metabolites participated in flavonoid biosynthesis, phe-
nylpropanoid biosynthesis, and plant hormone signal 
transduction pathways (Fig.  4B). The common DAM 
between 15 d and 25 d showed a similar trend, includ-
ing three downregulated (3′-adenylic acid, gentiopicro-
side, and lysoPC 18:4) and 19 upregulated metabolites, 
including mainly flavonoids (pinobanksin, epicatechin-
epiafzelechin, apigenin-6-C-(2′-glucuronyl) xyloside, 
kaempferol-3,7-O-dirhamnoside (kaempferitrin), vitexin-
2″-O-rhamnoside, pelargonidin-3-O-rutinoside, and 
catechin-catechin-catechin), and tannins (such as procy-
anidin, cinnamtannin, and arecatannin) (Table S2).

Global transcriptomic changes in response 
to uniconazole‑induced dwarfism
After the removal of low-quality reads, a minimum of 
40 million clean reads were obtained for each sample 
and mapped to the reference genome at a high mapping 
rate (> 91%) (Table S3). A high correlation (r ≥ 0.87) was 
observed between replicates within groups for transcrip-
tomic data (Fig. S2A), and PCA analysis shows similar 
clusters with the metabolomics data (Figs. S1B and S2B).

Differentially expressed genes (DEGs) between the 
treatment and control groups at 15 d were identified 
(Fig. 5A), which are involved in photosynthesis and oxi-
dative phosphorylation pathways (Fig.  5B) and associ-
ated with photosynthesis, response to cytokinin, xylem 
development, and phenylpropanoid biosynthetic process 
(Fig. 5C). DEG identified at 25 d (Fig. 6A) were enriched 
in protein processing in the endoplasmic reticulum, 
tyrosine metabolism, and isoquinoline alkaloid bio-
synthesis pathways (Fig.  6B) and associated with tyros-
ine metabolic process, fatty acid biosynthetic process, 

Fig. 1 Characterization of uniconazole-induced dwarfism in banana. Plant traits were compared between control (A), and uniconazole treatment 
with a dosage of 0.1 g (B), 0.3 g (C), and 0.5 g (D)
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oxylipin biosynthetic process, suberin biosynthetic pro-
cess, lipid oxidation, phenylpropanoid metabolic process, 
and peroxidase activity (Fig. 6C). No common DEG were 
observed between 15 d and 25 d.

Key pathways involved in uniconazole‑induced dwarfism 
in banana
The common enriched pathways for both DEG and 
DAM between 15 d and 25 d were further examined, 
which included four key pathways: metabolic pathways, 
phenylpropanoid biosynthesis, flavonoid biosynthesis, 
and biosynthesis of secondary metabolites (Fig.  7A). 
Of these, the phenylpropanoid biosynthesis pathway 
comprises flavonoid biosynthesis. We further examined 

the differential factors in the phenylpropanoid biosyn-
thesis pathway and found that the expression levels of 
shikimate O-hydroxycinnamoyltransferase (HCT) and 
peroxidase, and the abundance of pinobanksin, vitexin, 
and epigallocatechol increased in uniconazole-treated 
bananas compared with the control group (Fig. 7B). The 
quantitative real-time PCR (qRT-PCR) analysis also 
confirmed the overexpression of HCT and peroxidase 
genes in treatment group (Fig. S3).

Discussion
Bananas treated with uniconazole showed a significant 
dwarf phenotype, indicating that the dwarfing induc-
tion was successful. The physiological and biochemical 

Fig. 2 Physiological and biochemical changes induced by uniconazole treatment, including (A) GA, (B) potassium, (C) calcium, (D) magnesium, (E) 
phosphorus, (F) nitrogen, (G) silicon, (H) soluble protein, (I) SOD activity, (J) CAT activity, (K) PAL activity, and (L) PPO activity. XX0.1, XX0.3, and XX0.5 
indicate uniconazole treatment with a dosage of 0.1 g, 0.3 g, and 0.5 g, respectively. CK and DX indicate control and treatment with paclobutrazol, 
respectively
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Fig. 3 Differential metabolites (DAM) between the treatment and control groups at 15 d. A Heatmap representing the level of DAM across groups. 
B KEGG pathway enrichment analysis of the DAM identified in (A). XX indicate uniconazole treatment, and CK indicate control
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indexes of the treated group were also significantly dif-
ferent from those of the control group, and GA was sig-
nificantly reduced in the treated group.

In previous studies, the biosynthesis of flavonoids and 
alkaloids has been reported to be activated in dwarfing 

plants, and tannins are associated with plant dwarfing. 
It has previously been reported that the biosynthesis or 
accumulation of flavonoids changes significantly in a 
variety of dwarf plants compared with the higher group. 
The expression levels of some flavonoid biosynthesis 

Fig. 4 Differential metabolites (DAM) between the treatment and control groups at 25 d. A Heatmap representing the level of DAM across groups. 
B KEGG pathway enrichment analysis of the DAM identified in (A). XX indicate uniconazole treatment, and CK indicate control
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genes are significantly different in the dwarf Polish wheat 
mutant Rht1 than in high Polish wheat. These changes 
increase flavonoid content [24]. Rht1 gene encodes a GA 
signaling repressor that reduces the response to GA and 
limits the elongation of wheat stems [2, 25]. In Seashore 
paspalum, the dwarf phenotype of mutant T51 is con-
sidered to be closely related to the upregulation of flavo-
noid biosynthesis in the phenylpropanoid pathway [26]. 
Over-accumulation of flavonoids has been reported not 
only in dwarf herbs, but also in woody apple dwarfing 
rootstocks [27]. Isoquinoline alkaloid biosynthesis was 
reported to be activated in the dwarf wheat infected with 
Tilletia controversa Kühn [28]. In our results, a variety 

of flavonoids were increased, and increased alkaloids 
were significantly enriched in isoquinoline alkaloids in 
the uniconazole-treated banana, similar to the changes 
previously reported in the dwarfing plants mentioned 
above. Various tannins have been reported to inhibit 
GA-induced plant growth [29, 30]. Although unicona-
zole was considered an inhibitor of GA biosynthesis in 
previous reports, we found no significant changes related 
to the GA biosynthesis pathway in bananas treated with 
uniconazole [9, 31]. The reported GA inhibitor tannin 
procyanidin B1 was increased in bananas treated with 
uniconazole, suggesting that reduced GA levels are not 
the only factor responsible for banana dwarfing, as the 

Fig. 5 Differentially expressed genes (DEG) between the treatment and control groups at 15 d. A Heatmap representing the level of DEG across 
groups. B KEGG pathway enrichment analysis of the DEG identified in (A). C GO enrichment analysis of the DEG identified in (A). XX indicate 
uniconazole treatment, and CK indicate control
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over-accumulation of tannins may inhibit GA activity and 
cause banana dwarfing [30]. We propose that increased 
levels of flavonoids, isoquinoline alkaloids, and tannins 
play important roles in uniconazole-induced dwarfing.

The phenylpropanoid pathway is involved in several 
physiological processes. In addition to flavonoid bio-
synthesis, the lignin synthesis pathway is involved in 
the phenylpropanoid pathway [32–35]. Previous studies 
have reported that the knockout or knockdown of one or 
more genes of the phenylpropanoid pathway can lead to 
dwarfism by reducing the lignin content [36]. Lignin is a 
complex, aromatic polymer mainly presenting in second-
arily thickened cell walls and provides rigidity, strength, 
and hydrophobicity [37–39]. In some dwarf plants with 
enhanced flavonoid biosynthesis, lignin biosynthesis is 
downregulated. Compared with high Polish wheat, the 
expression levels of some lignin are significantly different 
in the dwarf Polish wheat mutants Rht1, leading to lignin 
level reduction [24]. In S. paspalum, the dwarf phenotype 
of mutant T51 is considered to be closely related not only 

to the upregulation of flavonoid biosynthesis, but also to 
the downregulation of lignin biosynthesis [26]. In addi-
tion, delayed lignin accumulation was found in dwarfed 
transgenic rice expressing the α-L-arabinofuranosidase of 
Coprinopsis cinerea [40]. However, in some plants, lignin 
accumulation was also found to be detrimental to plant 
growth. Leaf, root and stem growth were significantly 
enhanced in transgenic aspen with the lignin biosyn-
thetic pathway gene Pt4CL1 downregulated [41]. In addi-
tion, banana plants overexpressed with VND1, VND2 or 
VND3 had increased lignin deposition. These transgenic 
banana plants showed stunted growth [42, 43]. Moreo-
ver, the reduction of lignin was observed in transgenic 
bananas overexpressing MusaNAC68 and was considered 
to be linked with the increase in the height of transgenic 
bananas [44]. Although peroxidase increased in unicon-
azole-treated bananas at both 15 d and 25 d, p-coumaryl 
alcohol, the substrate of peroxidase, only increased at 25 
d and decreased at 15 d. At 25 d, peroxidase expression 
was lower than that at 15 d. The inconsistency in the time 

Fig. 6 Differentially expressed genes (DEG) between the treatment and control groups at 25 d. A Heatmap representing the level of DEG across 
groups. B KEGG pathway enrichment analysis of the DEG identified in (A). C GO enrichment analysis of the DEG identified in (A). XX indicate 
uniconazole treatment, and CK indicate control
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and degree of change of the substrate p-coumaryl alcohol 
and peroxidase could not provide sufficient evidence for 
the change in lignin biosynthesis. In addition, some other 
genes or metabolites in the phenylpropanoid synthesis 
pathway that are not involved in lignin biosynthesis also 
increased significantly under uniconazole treatment. 
P-Coumaroyl-CoA can be converted to p-coumaroyl 
alcohol or to the flavonoid epigallocatechol. HCT is an 
enzyme involved in the conversion of p-coumaroyl-CoA 
to epigallocatechol [45]. Both HCT and epigallocatechol 
increased in uniconazole-treated bananas at 15 d and 25 
d. These results suggest that the enhanced biosynthesis 
of flavonoids may reduce the metabolic flux of lignin. 
The important plant hormone auxin and several auxin 
responsive factors (ARFs) have also been reported to reg-
ulate lignin synthesis, and MYB gene has previously been 
reported to be involved in auxin response and endothe-
cium lignification of anther walls [46]. The substantial 
elevation of MYB transcription factors such as MYB4a-
like and MYB4b-like factors was observed in transgenic 
bananas overexpressing MusaNAC68 [44]. However, no 
significant changes in the expression of ARF and MYB 
genes were identified in the uniconazole-treated bananas. 
The mechanism of dwarfism in uniconazole-treated 
bananas may be related to lignin biosynthesis during 
stem elongation, but the specific effect of lignin biosyn-
thesis on banana growth need to be further studied.

In summary, in addition to a decrease in GA content, 
an increase in tannin procyanidin B1 content may con-
tribute to banana dwarfing by inhibiting GA activity. 

Flavonoids and lignin are metabolites of the phenylpro-
panoid pathway, and there is a competitive relationship 
between them. The increase in flavonoid biosynthesis 
promoted the increased flow of metabolites towards 
flavonoid synthesis, which indirectly led to a decrease 
in lignin biosynthesis. Based on the above results, we 
propose a uniconazole-induced dwarfing mechanism 
hypothesis: over-accumulation of tannin inhibits the 
role of GA in banana growth, and abnormal lignin syn-
thesis affects cell wall function, ultimately limiting cell 
expansion and causing dwarfism in uniconazole-treated 
bananas.

Materials and methods
Plant materials and treatment
Experiments were performed at the Libang Scientific 
Base of Guangxi Academy of Agricultural Sciences, 
located in Futang town in Wu Ming district, Nanning 
city, Guangxi province, China. The banana cultivar ‘Gui-
jiao No.9’ was used, and the seeds were planted in Janu-
ary, 2021. We got the permission to collect Banana seeds. 
And the study protocol was complied with relevant insti-
tutional, national, and international guidelines and legis-
lation. Uniconazole wettable powder (5%, Sichuan Runer 
Technology, China) was applied to the plants when they 
grew to 16–18 leaves. The powder was diluted to obtain 
different concentration gradients, and then 200 mL solu-
tions were drenched along the base of the pseudostem, 
resulting a gradient dosage of 0.1 g/plant, 0.3 g/plant, 
and 0.5 g/plant. Plants treated with water at the same 

Fig. 7 Key pathways involved in uniconazole-induced dwarfism. A Venn diagram showing the common enriched pathways for both DEG and 
DAM between 15 d and 25 d. B Schematic representation of the key pathways and the expression/abundance of genes and metabolites associated 
with phenylpropanoid and flavonoid biosynthesis. The top and bottom grids of each heatmap indicate the expression/abundance at 15 d and 25 
d, respectively, and the left and right grids correspond to control and treatment groups, respectively. XX indicate uniconazole treatment, and CK 
indicate control
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stage as described above were used as controls. Twenty 
plants were used for each uniconazole-treated and con-
trol group and used to measure the dwarfed phenotype. 
Leaves were collected at 15, 20, and 25 d after treatment 
for both the uniconazole-induced and control groups. 
A total of 100 g of leaf blade (without leaf vein) was 
clipped from the penultimate piece of leaf for each plant 
and immediately frozen in liquid nitrogen or stored in a 
refrigerator at − 80 °C. Three independent biological rep-
licates were conducted for the subsequent measurement 
of physiological indices, cDNA library construction, and 
RNA sequencing for each uniconazole-treated and con-
trol group.

Measurement of physiological indices
GA production was estimated using a tetramethyl ben-
zidine (TMB) detection system after incubation with an 
HRP-conjugated antibody. GA content was quantified by 
measuring the absorbance at 450 nm. Other physiological 
indices of the leaf samples were assessed using a spectro-
photometric method. Polyphenol oxidase (PPO) activity 
was assayed using pyrocatechol as the substrate. Super-
oxide dismutase (SOD) activity was measured using the 
xanthine oxidase method based on the production of 
 O2 − •. Catalase (CAT) activity was examined by meas-
uring  H2O2 decomposition. Phenylalanine ammonia-
lyase (PAL) activity was measured from the conversion of 
l-phenylalanine to trans-cinnamic acid. Soluble protein 
was quantified based on the reduction of  Cu2+ to  Cu1+ 
in an alkaline environment. PPO, SOD, CAT, PAL, and 
soluble protein activities were determined by measuring 
the absorbance at 410, 450, 240, 290, and 562 nm, respec-
tively, and expressed as units/mg protein.

Measurement of biochemical indices
The potassium, calcium, and magnesium contents were 
determined by atomic absorption spectroscopy (AAS, 
TAS-900 AFG, China). Total phosphorus content was 
measured using phosphorus molybdenum blue spec-
trophotometry at 660 nm, and total phosphorus was 
expressed as the concentrations of organic and inorganic 
phosphorus. Total nitrogen was determined by titration 
with ferrous ammonium sulfate using an azotometer. Si 
concentration was quantified using plasma atomic emis-
sion spectroscopy (ICP-AES).

Metabolite extraction and LC‑MS/MS analysis
Leaf samples were freeze-dried and crushed using a 
mixer mill (MM 400, Retsch). Lyophilized powder 
(100 mg) was dissolved in 1.2 mL of 70% methanol solu-
tion and kept at 4 °C overnight. After centrifugation at 
12000 rpm for 10 min, the extracts were filtered (SCAA-
104, 0.22 μm pore size; ANPEL, Shanghai, China). UPLC 

separation was performed using a 1.8 μm, 2.1 mm * 
100 mm Agilent SB-C18 column. Linear ion trap (LIT) 
and triple quadrupole (QQQ) scans were acquired on an 
Applied Biosystems 4500 Q TRAP LC-MS/MS system, 
including an ESI Turbo ion–spray interface.

Metabolites were extracted and identified using the 
Metware database (Metware Biotechnology, Wuhan, 
China). VIP values for the identified metabolites were 
determined by OPLS-DA analysis using the R package 
MetaboAnalystR. Significantly regulated metabolites 
between groups were determined by VIP ≥ 1 and abso-
lute log2FC (fold-change) ≥ 1 and were then subjected to 
metabolite set enrichment analysis (MSEA).

RNA extraction and RNA‑Seq analysis
Total RNA was extracted from leaf samples using the 
Qiagen RNeasy Plant Kit (Hilden, Germany), according 
to the manufacturer’s protocol. mRNAs were enriched 
by poly(A) selection from the extracted total RNA, and 
rRNA-depleted samples were prepared using the Illu-
mina TruSeq RNA Sample Prep Kit to obtain a strand-
specific library. Purification and size selection of cDNA 
were performed using AMPure XP beads, resulting in 
a median fragment size of 300 bp. The cDNA libraries 
were then checked using Qubit2.0, Agilent 2100, and 
sequenced using the Illumina Novaseq platform.

Raw data were preprocessed using fastp (v0.19.3) with 
parameters “–n_base_limit 15 –qualified_quality_phred 
20,” and clean reads were then aligned to the banana ref-
erence genome (NCBI accession No. GCF_000313855.2) 
with HISAT2 (v2.1.0). Gene expression levels were quan-
tified using featureCounts (v1.6.1), and fragments per 
kilobase of transcript per million fragments mapped 
(FPKM) was calculated. Pearson’s correlation coeffi-
cients between samples were computed, and principal 
component analysis (PCA) was performed based on 
gene expression levels. DESeq2 (v1.22.1) was used to 
perform differential gene expression analysis between 
groups. Genes with |log2foldchang| ≥ 1 and FDR < 0.05 
were identified as significantly DEG. Gene ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were performed for DEG using clus-
terProfiler (v3.10.1).

Quantitative real‑time PCR (qRT‑PCR) analysis
Primers for qRT-PCR were designed using Primer Pre-
mier software (5.0) and were synthesized commercially 
(TIANYI HUIYUAN, Wuhan, China). RNA was iso-
lated using TRI Reagent Solution (Ambion, TR118), 
according to the manufacturer’s instructions. Reverse 
transcription was performed using HiScript QRT 
SuperMix for qPCR (Vazyme, Nanjing, China). The 
primers of HCT and peroxidase genes were listed in 
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Table S4. β-actin was used as an internal control. Quan-
titative real-time PCR was subsequently performed 
using SYBR® Select Master Mix (CFX) on a StepOne-
PlusTM Real-Time System (Applied Biosystems). qPCR 
was performed using the ΔΔCt method.

Statistical analysis
Pearson correlation coefficients (PCC) between sam-
ples were calculated using the cor function in R for 
both transcriptomic and metabolomic data. MSEA, 
GO, and KEGG enrichment analyses were performed 
using hypergeometric tests.
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