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Abstract

Background: Histopathological studies on lung specimens from patients with cystic fibrosis (CF) and recent results
from a mouse model indicate that emphysema may contribute to CF lung disease. However, little is known about the
relevance of emphysema in patients with CF. In the present study, we used computationally generated density
masks based on multidetector computed tomography (MDCT) of the chest for non-invasive characterization and
quantification of emphysema in CF.
Methods: Volumetric MDCT scans were acquired in parallel to pulmonary function testing in 41 patients with CF
(median age 20.1 years; range 7-66 years) and 21 non-CF controls (median age 30.4 years; range 4-68 years), and
subjected to dedicated software. The lung was segmented, low attenuation volumes below a threshold of -950
Hounsfield units were assigned to emphysema volume (EV), and the emphysema index was computed (EI). Results
were correlated with forced expiratory volume in 1 s percent predicted (FEV1%), residual volume (RV), and RV/total
lung capacity (RV/TLC).
Results: We show that EV was increased in CF (457±530 ml) compared to non-CF controls (78±90 ml) (P<0.01). EI
was also increased in CF (7.7±7.5%) compared to the control group (1.2±1.4%) (P<0.05). EI correlated inversely with
FEV1% (rs=-0.66), and directly with RV (rs=0.69) and RV/TLC (rs=0.47) in patients with CF (P<0.007), but not in non-
CF controls. Emphysema in CF was detected from early adolescence (~13 years) and increased with age (rs=0.67,
P<0.001).
Conclusions: Our results indicate that early onset emphysema detected by densitometry on chest MDCT is a
characteristic pathology that contributes to airflow limitation and may serve as a novel endpoint for monitoring lung
disease in CF.
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Introduction

Cystic fibrosis (CF) lung disease is caused by mutations in
the cystic fibrosis transmembrane conductance regulator
(CFTR) gene and is the most common genetic form of chronic
obstructive pulmonary disease (COPD) [1,2]. CFTR

malfunction results in airway surface dehydration and impaired
mucociliary clearance leading to airway mucus obstruction,
neutrophilic inflammation and bacterial infection [3–5]. It is well
established that this pathogenic sequence lead to early onset
bronchiectasis that contributes to progressive loss of lung
function and disease burden in patients with CF [5–7].
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Histopathological studies in necropsy specimens from
patients with CF performed in the 1960s to 1980s also reported
structural changes in the peripheral airways consistent with
emphysema [8–10]. Our previous studies in mice with airway-
specific overexpression of the β-subunit of the epithelial Na+

channel (ENaC) demonstrated that CF-like airway surface
dehydration does not only cause chronic mucus obstruction
and inflammation, but also emphysema [11–14]. Further,
recent studies showed that cigarette smoke decreases CFTR
expression and function [15,16], and that CFTR protein
expression correlates inversely with emphysema severity in
lungs from patients with cigarette smoke-induced COPD
suggesting that impaired CFTR function may be implicated in
emphysema formation in humans [17]. However, in contrast to
COPD, where emphysema has long been recognized as an
important phenotype [18], limited imaging data on emphysema
in CF is available [19,20] and the clinical relevance of
emphysema in CF remains largely unknown.

Multidetector computed tomography (MDCT) of the chest is
widely used for the quantification of emphysema in cigarette
smoke-induced COPD and α1-antytrypsin deficiency [21,22],
employing density masks generated by dedicated post-
processing tools based on Hounsfield units (HU). Previous
MDCT imaging and histomorphological studies of lung
parenchyma defined a threshold density of -950 HU on
inspiratory MDCT and demonstrated that values below this
density are diagnostic for emphysema and correlate well with
loss of lung function in COPD [21,23,24]. Further, previous
studies also demonstrated that MDCT allows to distinguish
emphysema from air-trapping [25–27].

Based on previous histopathological studies [8–10], potential
pathophysiological commonalities with cigarette-smoke
induced COPD [15–17] and our own results from a mouse
model of CF lung disease [11–14], we hypothesized that
emphysema is present and contributes to airflow limitation in
patients with CF. To test this hypothesis, we used MDCT of the
chest as a non-invasive method to study the frequency and
severity of emphysema in CF. Emphysema indices were
determined from thin-section MDCT employing computationally
generated density masks and results obtained for CF patients
were compared with non-CF controls. To study the relationship
between emphysema and lung function, emphysema severity
was correlated with pulmonary function testing (PFT). Finally,
emphysema severity was correlated with age to determine the
onset and progression of emphysema in patients with CF.

Materials and Methods

Ethics Statement
The study was carried out as a retrospective analysis of

clinically indicated MDCT performed between April 2003 and
January 2012 and has been approved by the Ethics Committee
of the Medical Faculty of the University of Heidelberg. Informed
written consent for examination and further data processing
was obtained from patients or legal guardians.

Study Population
Table 1 provides a summary of the clinical characteristics of

our study population. The diagnosis of CF was established by
clinical symptoms characteristic of CF, increased sweat Cl-
concentrations and/or detection of disease causing mutations
in the CFTR gene as previously described [28]. The CFTR
genotypes of CF patients are provided in the online supplement
(Table S1). All CF patients showed characteristic signs of CF
lung disease such as bronchial wall thickening, mucus plugging
and bronchiectasis of at least one lobe. The non-CF control
group was recruited from non-smoking patients who obtained a
diagnostic chest MDCT for various indications but showed no
evidence of airway disease, emphysema or major parenchymal
changes upon reading of the diagnostic MDCT scan. Additional
information is provided in the online supplement (Methods S1).

Multidetector Computed Tomography
Non-enhanced MDCT at end-inspiratory breath-hold in

supine position and thin-section reconstructions with a medium
soft kernel algorithm were performed as previously described
[21,29]. Further details are provided in the online supplement
(Methods S1).

Quantitative MDCT Densitometry
The MDCT images were analyzed using a custom in-house

software (YACTA) as previously described, and controlled for
extra-corporal air attenuation [29,30]. After the segmentation of
the lung from the stack of MDCT images, a lung voxel was
assigned to emphysema if its density was equal to or below the
threshold of -950 HU, as routinely used for the quantification of
emphysema in COPD [21,31]. The volume of the segmented
lung (LV) and emphysema (EV), EV/LV ratio (pixel index =
emphysema index, EI), lung weight (LW), mean lung density in

Table 1. Characteristics of study population.

 CONTROL CF
Age [a] 30.4 (4-68) 20.1 (7-66)
Sex 13 ♂ / 8 ♀ 22 ♂ / 19 ♀
MDCT n = 21 41
PFT n = 15 39
ΔPFT-MDCT [d] 1 (0 - 66) 0 (0 - 73)
FEV1 [l] 3.7 ± 0.9 1.6 ± 1.2†

FEV1% 102 ± 16 46 ± 30†

VC [l] 4.3 ± 1.0 2.4 ± 1.3†

VC% 100 ± 15 64 ± 23†

RV [l] 1.8 ± 0.6 2.8 ± 1.5*
RV% 107 ± 26 192 ± 71†

TLC [l] 5.9 ± 0.8 5.3 ± 2.1
TLC% 101 ± 9 103 ± 12

Summary of age, gender and lung function data from patients with cystic fibrosis
(CF) and non-CF controls (CONTROL), who underwent multidetector computed
tomography (MDCT) and pulmonary function testing (PFT), including forced
expiratory volume in 1 s (FEV1), vital capacity (VC), residual volume (RV), and
total lung capacity (TLC). Data given as mean or median ± SD or with data range
in brackets as appropriate. * P<0.05, † P<0.001.

Quantitative MDCT for Emphysema in Cystic Fibrosis
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HU (MLD) and the 15th percentile of the density histogram
(15th) were calculated automatically. 15th is defined as the
threshold value in HU for which 15% of lung voxels have a
lower density. A manual correction of the results was carried
out to exclude sacculations, abscesses, cysts or
bronchiectases from emphysema voxels (Figure S1). This step
became necessary in most CF patients and took around 15 min
per patient. Additional information on densitometry is provided
in the online supplement (Methods S1).

Pulmonary Function Testing
The following lung function parameters (absolute and

percent predicted values) acquired by whole-body
plethysmography were chosen for correlation analysis: forced
expiratory volume in 1 s (FEV1, FEV1%), vital capacity (VC,
VC%), FEV1 to VC ratio (FEV1/VC, “Tiffeneau index”), residual
volume (RV, RV%), total lung capacity (TLC, TLC%). To
estimate the degree of hyperinflation, the RV to TLC ratio was
calculated (RV/TLC). Additional information is provided in the
online supplement (Methods S1 and Figure S2).

Statistical Analysis
Data were analyzed using SigmaPlot® (Systat Software

GmbH, Erkrath, Germany). Groups were compared by
Student’s t-test or Wilcoxon rank sum test, and the Pearson r
(absolute values) or Spearman rank order correlation
coefficient rs (EI, percent predicted values) were calculated for
selected MDCT vs. PFT parameters as appropriate. A P-value
of <0.05 or <0.05/m (number of tests) with Bonferroni’s method
to correct for multiple testing was accepted to indicate
statistical significance [32].

Results

Detection of emphysema in patients with CF by MDCT
Different patterns of emphysematous lesions were observed

in CF patients with increasing age and severity of lung disease
(Figure 1). In young CF patients with a low EI, emphysema
voxels were mainly observed in the subpleural regions. With
increasing EI, more voxels were found along bronchovascular
structures with an emphasis on the lung periphery (Figure
1A,B). High EI resulted in extensive involvement of the
parenchyma with a spread to the perihilar region (Figure 1C,D).
Some CF patients with advanced lung disease showed a
centrilobular and paraseptal emphysema pattern (Figure 1E–
G).

Quantification of emphysema in CF lung disease
For quantification of emphysema in our CF study population,

we next determined LV, EV, EI, LW, MLD and 15th, and
compared values obtained from CF patients with non-CF
controls (Figure 2). These quantitative analyses of the density
masks demonstrated that LV remained unchanged (Figure 2A),
but that EV (P<0.01) and EI (P<0.001) were significantly
increased in CF patients compared to non-CF controls (Figure
2B,C). LW was also increased in CF (P<0.001), probably due
to areas of increased density, e.g. due to mucus or

inflammation, whereas MLD was not different in CF compared
to non-CF controls (Figure 2D,E). Finally, 15th was significantly
reduced in CF patients versus controls (P<0.05) (Figure 2F).
Taken together, these results identify emphysema as a
characteristic lesion in CF lung disease.

Correlation between emphysema severity and lung
function in CF

Next, we studied the correlation between quantitative
emphysema indices, as determined from MDCT densitometry
and pulmonary function (Tab. 2 and Figure 3). As shown in
Figure 3, EI showed a significant inverse correlation with
FEV1% (rs = -0.66, P<0.05/7) (Figure 3A), i.e. rs

2 = 43% of the
decrease in FEV1% may be explained by variations in EI.
Further, EI was directly correlated with total RV as well as
RV/TLC (Figure 3B,C). This relationship between lung density
and lung function was also confirmed by significant correlations
of 15th with FEV1%, RV and RV/TLC in CF, but not in non-CF
controls (Tab. 2). These results indicate that emphysema
contributes to airflow limitation in CF.

Timing of onset and progression of emphysema in CF
lung disease

Plotting the EI against age demonstrated that normal lung
ageing was associated with a small increase of EI in individuals
from the non-CF control group. In the CF group, emphysema
severity correlated significantly with patient age, and the slope
of incline with age was significantly larger in CF (regression
slope of 0.35) compared to non-CF controls (regression slope
0.04) (P<0.0001) (Figure 4). The limits of the 95% confidence

Table 2. Correlation analysis of densitometry with lung
function.

  FEV1 FEV1% VC FEV1/VC RV TLC RV/TLC
CONTROL LV 0.67 0.75* 0.67 -0.14 0.16 0.79* -0.38
 LW 0.47 0.61* 0.40 0.19 0.13 0.29 -0.02
 EV 0.67 0.71* 0.70 -0.04 0.37 0.83* -0.13
 EI 0.55 0.67* 0.62 0.01 0.33 0.78* -0.04
 MLD -0.47 -0.62* -0.54 0.10 -0.37 -0.66 0.15
 15th -0.48 -0.70* -0.52 0.00 -0.39 -0.67 0.14

CF LV 0.29 -0.46* 0.50* -0.56* 0.75* 0.92* 0.37
 LW 0.15 -0.44* 0.35 -0.49* 0.80* 0.88* 0.35
 EV 0.24 -0.55* 0.40 -0.65* 0.59* 0.73* 0.48*
 EI -0.27 -0.66* 0.05 -0.63* 0.69* 0.61* 0.47*
 MLD -0.09 0.22 -0.23 0.38 -0.42 -0.46* -0.19
 15th 0.16 0.56* -0.01 0.64* -0.62* -0.49* -0.50*

Summary of correlation analyses between densitometry on chest multidetector
computed tomography (MDCT) and pulmonary function testing in patients with
cystic fibrosis (CF) and non-CF control subjects (CONTROL). Pearson r or
Spearman rs rank order coefficient were calculated for lung volume (LV), lung
weight (LW), emphysema volume (EV), emphysema index (EI), mean lung density
(MLD), and 15th percentile of lung density (15th) with forced expiratory volume
within 1 s (FEV1, FEV1%), vital capacity (VC), Tiffeneau index (FEV1/VC), residual
volume (RV), total lung capacity (TLC), and RV/TLC ratio. * P<0.05/7 (Bonferroni’s
method, 7 tests per MDCT parameter).

Quantitative MDCT for Emphysema in Cystic Fibrosis
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intervals for regression curves obtained from CF patients and
non-CF controls intersected at ~13 years of age (Figure 4).
These results suggest that the majority of CF patients develop
significant emphysema beyond this threshold age.

Discussion

Emphysema is a major disease phenotype that determines
the morbidity and mortality of many patients with cigarette

Figure 1.  Visualization of emphysema distribution in cystic fibrosis (CF) patients by chest MDCT density masks.  (A–G)
Representative examples of morphologic images from non-enhanced multidetector computed tomography (MDCT) of the chest (left
panels A, C, E) are complemented by density maps generated by dedicated software highlighting low attenuation areas below -950
Hounsfield units (HU) in yellow (right panels B, D, G). (A,B) MDCT image of a 36 year-old female CF patient with FEV1% = 48%
showing bronchiectasis (A) as well as hypodense areas corresponding to emphysema (EI = 13.2%) mainly along subpleural and
bronchovascular structures (B). (C,D) 38 year-old male CF patient with FEV1% = 29% with the lung parenchyma of the upper
segments of the inferior lobes showing an overall hypodense texture and constricted vasculature (C). The density map shows
extensive emphysema (EI = 24.0%) of both lungs with an emphasis on the lower lobes (D). (E–G) 46 year-old male cystic fibrosis
patient (FEV1% = 55%) with marked bullous paraseptal emphysema of the right lung apex (black arrow) and centrilobular
emphysema predominantly of both upper lobes (white arrowhead) (E). Note that these bullae do not possess walls differentiating
them from cysts or sacculations (compare Figure S1). The minimum intensity projection (MinIP, 5 mm slice thickness) emphasizes
emphysema visualization by accentuating low attenuation areas (F) with an overall EI of 18.0% (G).
doi: 10.1371/journal.pone.0073142.g001
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smoke-induced COPD [33]. Although it is well established that
CF and COPD share key features including small airways
mucus obstruction and chronic pulmonary inflammation [5,34],
little is known about the frequency of occurrence and clinical
relevance of emphysema in patients with CF [8,35,36]. Besides
histopathological post-mortem studies [8–10], emphysema was
depicted in CF in some previous MDCT imaging studies
including a semi-quantitative visual scoring system developed
for assessment of morphological changes of the CF lung
[19,20]. However, these studies did not report any quantitative
or densitometric data on emphysema. Furthermore,

subsequent work did not further assess the relevance of
emphysema, but rather focused on the development of
bronchiectasis [37,38] and the contribution of air-trapping to
ventilation impairment [39,40] in CF lung disease. Air-trapping
results in regional hypoperfusion on inspiratory MDCT, and
may be diagnosed more sensitively by paired inspiratory/
expiratory MDCT [40]. Of note, previous imaging studies in
patients with COPD demonstrated that air-trapping is
associated with a density range between -860 and -950 HU,
which is higher than the density threshold defining emphysema
[41].

Figure 2.  Quantification of emphysema in cystic fibrosis (CF) lung disease by densitometry.  (A–F) Box-and-whisker plots for
lung volume (LV) (A), emphysema volume (EV) (B) and emphysema index (EI) (C), lung weight (LW) (D), mean lung density (MLD)
(E) and 15th percentile of the lung density histogram (15th) (F) in the non-CF control group (CONTROL) and patients with CF. The
central line represents the median, the box encompasses the 25th-75th percentiles, whiskers show 10th and 90th percentiles, and
closed circles (•) represent individual outliers. * P<0.05, † P<0.01 and ‡ P<0.001 compared to CONTROL.
doi: 10.1371/journal.pone.0073142.g002

Quantitative MDCT for Emphysema in Cystic Fibrosis
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In phenotyping of patients with COPD, MDCT has long been
accepted for the visual and computational quantification of
emphysema [21,31,42], including recent large epidemiological
trials (COPDGene, ECLIPSE) [43,44]. In the present study, we
demonstrate that CF patients develop significant emphysema
in addition to airway mucus plugging and bronchiectasis (Fig.
1). Using MDCT densitometry as a non-invasive method with a
threshold value of -950 HU, and indices well established for the
diagnosis and quantification of emphysema in patients with
cigarette smoke-induced COPD [31], emphysema in CF
patients was evidenced by a significant increase in EV and EI
(Figures 1 and 2). Similar to previous studies in patients with
COPD [26,29], emphysema severity in CF correlated
significantly with airflow limitation and hyperinflation, as
determined from FEV1%, RV and RV/TLC (Figure 3). Based on
this correlation, we estimate that on average, emphysema
accounted for ~43% of FEV1% reduction in the CF patients
included in our study. These results show that emphysema is a
clinically relevant phenotype contributing to the severity of lung
disease in a subgroup of patients with CF. Further, our results
suggest that chest MDCT densitometry might be a suitable
non-invasive method for the diagnosis and quantitative
monitoring of emphysema progression in individual patients
with CF.

Compared to patients with COPD, overall emphysema
severity was moderate in our cross-sectional study in children
and mostly young adults with CF [29,45,46]. Values for EV and
EI were on average less elevated in CF compared to the
values previously reported for patients with advanced stages of
COPD. Further, the mean MLD, often used as an emphysema
marker in COPD, did not differ and the estimated lung weight
(LW) was increased rather than reduced in patients with CF
compared to non-CF controls (Figure 2). We speculate that
normal MLD and elevated LW in CF may result from areas with
increased density due to regional mucus retention,
inflammation and/or compensatory hyperperfusion, which may

all hamper the use of MLD and LW as emphysema parameters
in CF. However, the values for 15th of lung density were
significantly reduced in CF compared to age-matched non-CF
controls (Figure 2). Taken together, these results support the
notion that lesions with elevated tissue density and
emphysema coexist in the CF lung, and suggest that the EI
and 15th may be more reliable than MLD in estimating
emphysema severity in CF.

Correlating the EI with age demonstrated that, in contrast to
common early lesions of the conducting airways such as
mucus obstruction associated with air-trapping, airway wall
thickening and bronchiectasis [7,47], emphysema is rarely
present in children with CF (Figure 4). However, emphysema
formation was observed in early adolescence (~13 years of
age) and emphysema severity progressed in adult patients with
CF (Figure 4). In contrast, consistent with previous reports in
healthy adults, little emphysema was observed in non-CF
controls (Figures 2 and 4) [48]. This timing of occurrence and
progression shows that early onset emphysema is a
characteristic feature of CF lung disease, and suggests that
emphysema develops secondary to chronic airways disease in
patients with CF. The clinical relevance of this phenotype is
highlighted by an increase in life expectancy of patients with
CF with a median survival of ~40 years in North America and
Western Europe [49,50].

In COPD, emphysema pathogenesis with structural damage
and remodeling of distal airspaces has been linked to cigarette
smoke-induced oxidative stress, inflammation, extracellular
matrix proteolysis, alveolar cell death, and disrupted alveolar
maintenance triggering apoptosis and autophagy [51]. We
speculate that CFTR dysfunction may trigger several of these
mechanisms and thereby induce emphysema formation in
patients with CF. First, it is well established that airway surface
dehydration caused by CFTR malfunction in airway epithelia is
an important disease mechanisms that impairs mucociliary
clearance and triggers the pathogenetic cascade of airway

Figure 3.  Emphysema severity correlates with impairment in lung function in cystic fibrosis (CF).  (A–C) Dot plots with linear
regression curves for emphysema index (EI) plotted against forced expiratory volume in 1 s percent predicted (FEV1%) (A), residual
volume (RV) (B), and RV as ratio of total lung capacity (RV/TLC) (C) for patients with CF and the non-CF control group
(CONTROL). Spearman rank order correlation coefficients (rs) are given for each plot. * P<0.05/7 (Bonferroni’s method, see Table
2).
doi: 10.1371/journal.pone.0073142.g003
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mucus obstruction, chronic inflammation and bacterial infection
in CF lung disease [3–5]. Our previous studies in βENaC-
overexpressing mice demonstrated that mucus obstruction and
airway inflammation caused by airway surface dehydration are
associated with emphysema formation in vivo with increased
lung volumes, distal airspace enlargement, increased lung

compliance and reduced density of lung parenchyma, as
determined from volumetric CT studies [12,14,52]. Recent
studies indicate that airway surface dehydration causes
impaired in vivo clearance of inhaled particulates and bacterial
products such as lipopolysaccharide (LPS), which trigger the
recruitment of macrophages and neutrophils, and increase

Figure 4.  Emphysema progresses with age in cystic fibrosis (CF).  Dot plots with linear regression curves for emphysema
index (EI) plotted against patient age for patients with CF and the non-CF control group (CONTROL). Spearman rank order
correlation coefficients (rs) are given for each plot. Dashed curves indicate 95% confidence intervals. * P<0.001.
doi: 10.1371/journal.pone.0073142.g004

Quantitative MDCT for Emphysema in Cystic Fibrosis
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secretion of elastolytic proteases such as macrophage elastase
(matrix metalloprotease 12) and neutrophil elastase into the
airspaces [53–55]. Hence, similar to cigarette smoke-induced
COPD [56], proteolytic damage of distal airspaces due to a
protease/antiprotease imbalance caused by proteases
released in chronic inflammation, may also play an important
role in emphysema formation in CF. A second link between
CFTR dysfunction and emphysema formation was suggested
by recent studies demonstrating i) that cigarette smoke
exposure reduces CFTR expression and function [15,16,57] in
vitro and in vivo; ii) that CFTR protein levels correlate inversely
with ceramide accumulation and emphysema severity in lungs
from COPD patients [17]; and iii) that CFTR controls cigarette-
smoke induced apoptosis and autophagy in mice [58]. These
studies suggest that, in addition to airway surface dehydration
and mucostasis caused by impaired CFTR Cl- channel function,
CFTR dysfunction may cause other abnormalities on the
cellular level, such as altered ceramide metabolism, that may
play an important role in alveolar inflammation and emphysema
formation in CF [59–61]. However, further studies are required
to determine the relative role of these mechanisms for
emphysema formation in patients with CF.

In addition to further mechanistic studies on emphysema
pathophysiology, it will also be important to assess the
relationship between CFTR genotypes, as well as treatment
regimens, and emphysema development in CF [1,5,28]. Due to
the limited number of patients available for analysis, we were
not able to address these issues in this retrospective study.
Hence, future longitudinal studies in larger patient cohorts are
necessary to determine the impact of different classes of CFTR
mutations, differences in treatment regimens and adherence to
therapy, as well as other environmental and genetic factors on
emphysema in patients with CF.

In summary, we demonstrate that early onset and
progressive emphysema is a characteristic feature of CF lung
disease. Emphysema severity determined by chest MDCT
correlated with airflow limitation, suggesting MDCT
densitometry as a non-invasive method for detection and
monitoring of emphysema progression in individual patients
with CF. Our results also suggest that emphysema contributes
to disease severity and may therefore serve as a novel
endpoint for monitoring of lung disease in patients with CF.

Supporting Information

Figure S1.  Necessity of manual adaptation of density
maps. Coronary reconstructions of a multidetector computed

tomogram of the chest of a 22 year-old female cystic fibrosis
patient without density map (A), with the density map
(emphysema depicted in yellow color) generated by the
automatic software algorithm (B), and after manual adaptation
to exclude cystic lesions and bronchiectasis in the right
superior lobe (black arrows). Emphysema severity may be
overestimated by the automatic software algorithm, if they are
not connected to the airway tree or airway segmentation was
interrupted. The emphysema index of the right lung was
calculated as 15.3% without manual correction (B) and 13.6%
after manual correction (C).
(TIF)

Figure S2.  Validation of segmented lung volume from
inspiratory computed tomography (CT) against pulmonary
function testing. Dot plot with linear regression curve for lung
volume (LV) determined from CT images plotted against total
lung capacity (TLC) as derived from whole-body
plethysmography. Data from cystic fibrosis (CF) patients are
shown as closed circles and data from non-CF controls
(CONTROL) as open circles. The Pearson correlation
coefficient (r) for pooled analysis is indicated. * P<0.001.
(TIF)

Table S1.  CFTR genotypes of patients with CF.
(DOC)

Methods S1.  Supplementary methods section.
(DOC)
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