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A large focus of modern neuroscience has revolved around preselected brain regions
of interest based on prior studies. While there are reasons to focus on brain regions
implicated in prior work, the result has been a biased assessment of brain function.
Thus, many brain regions that may prove crucial in a wide range of neurobiological
problems, including neurodegenerative diseases and neuropsychiatric disorders, have
been neglected. Advances in neuroimaging and computational neuroscience have
made it possible to make unbiased assessments of whole-brain function and identify
previously overlooked regions of the brain. This review will discuss the tools that
have been developed to advance neuroscience and network-based computational
approaches used to further analyze the interconnectivity of the brain. Furthermore, it will
survey examples of neural network approaches that assess connectivity in clinical (i.e.,
human) and preclinical (i.e., animal model) studies and discuss how preclinical studies
of neurodegenerative diseases and neuropsychiatric disorders can greatly benefit from
the unbiased nature of whole-brain imaging and network neuroscience.
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INTRODUCTION

Historically, neuroscience has focused on specific regions of the brain such as the hippocampus
for learning and memory (Scoville and Milner, 1957; Milner et al., 1998; Bird and Burgess, 2008),
the hypothalamus for basal survival functions and motivated behavior (Swanson, 2000; Sternson,
2013), and the cerebellum for sensorimotor control (Buckner, 2013). These regions have distinct
morphology and are large in comparison to the rest of the brain, making them simple targets for
early exploration in neuroanatomy, staining, and electrophysiology techniques. This approach has
left many regions understudied. This is highlighted in Figure 1, where during a search of 197 brain
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FIGURE 1 | Number of publications listed on PubMed for 197 brain region terms searched for based on the Allen Mouse Brain Atlas (Allen Institute for Brain
Science, 2004) nomenclature. The top nine brain regions represent 75% of the total publications, while the remaining 188 regions searched only represent 25% of
total publications.

regions, 75% of the publications in PubMed were found to
correspond to only 9 brain regions, while the remaining 188
brain regions belonged to 25% of the search results. It is the
natural progression of good science to continue the examination
of brain regions or circuits that have prior evidence to suggest
their importance to a given disease, however this neglects a vast
array of brain regions and circuits that may also be critical.

Until recent years there was a lack of the technology and
computing power necessary to assess the whole brain in a truly
unbiased manner, as well as to interrogate the interconnectivity
and functionality of the entire neural network. Probing the
brain as an integrated organ allows for novel methods to map,
record, and analyze interactions between and within regions. The
vastness and complexity of large data sets from the brain have
required new ways to reduce dimensionality without significant
data loss or bias (Hinton and Salakhutdinov, 2006; Cunningham
and Yu, 2014; Mwangi et al., 2014; Beyeler et al., 2019; Crimi et al.,
2019). Recent advances in computational tools have enabled the
processing of dense information clouds following modulation of
circuits, as well as the ability to create comprehensive connectivity
maps to make network analysis possible (Thompson et al., 2007;
Hawrylycz et al., 2012; Wohnoutka et al., 2014; Bakken et al.,
2016; Bassett and Sporns, 2017).

Preclinical (i.e., animal model) whole-brain imaging
approaches are now capable of providing immense data
sets of neural activity with improved resolution (either timescale
or brain structure resolution) than previously available.
Additionally, advances in computational analysis of brain-
wide function offer unique ways to assess brain activity from
these data sets, during critical neural states, in an unbiased
manner. Together, these approaches can help identify previously
overlooked brain regions that may be critical for given disease
states and help to contextualize the contribution of heavily
studied brain regions to overall brain function. This review will

cover the use of preclinical whole brain imaging and neural
network tools to assess neural activity of the brain.

Circuit Manipulation and Whole Brain
Imaging Methods in Preclinical
Neuroscience
The ability to alter the excitatory or inhibitory properties of a
neuron is critical to the study of the brain. Multiple circuit and
imaging approaches can be leveraged to measure and manipulate
brain activity. An early example of these tools is electrodes,
which are a robust way to electrically stimulate or inhibit cells.
Deep-brain stimulation using implantable electrodes has been
highly effective in the treatment of epilepsy (Boon et al., 2009;
Zangiabadi et al., 2019) but this technique requires invasive
surgery and implantation. Clinically, transcranial magnetic
stimulation (TMS) and focused ultrasound (FUS) are alternative
ways to stimulate the brain without the need for invasive
implantation (Lynn et al., 1942; Fry et al., 1955; Fishman and
Frenkel, 2017). Further discussion of the methods and the
progression of emergent technologies to manipulate the brain will
be discussed in the following section.

Preclinical methods to influence neural signaling include
electrophysiology, pharmacology, and more recently,
optogenetics and chemogenetics for more specific neural
stimulation. Optogenetics, leverages light sensitive ion channels
to alter the activity of brain regions with a high degree of
specificity. Light-gated cation channels such as excitatory
channelrhodopsin-2 (ChR2) and inhibitory channels (i.e.,
halorhodopsin and archaerhopsin) can easily be integrated into
neural tissue using viral vectors to confer temporal and spatial
specificity (Boyden et al., 2005; Deisseroth et al., 2006; Zhang
et al., 2006; Gradinaru et al., 2008; Miesenbock, 2009; Chow
et al., 2010; Abe et al., 2012). Optogenetics has been employed to
map neural circuitry, identify behaviors associated with poorly
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understood brain regions, and develop animal models to better
understand of the contributions of a specific brain region or cell
type in behavioral and emotional states (Bernstein and Boyden,
2011; Tye et al., 2011, 2013; Kim et al., 2013; Ye et al., 2016).

Furthermore, the combination of optogenetics and fMRI
(ofMRI) has enabled preclinical investigation of the functional
connectivity between neural circuits with spatial and temporal
specificity (Lee et al., 2010; Abe et al., 2012; Lee, 2012; Lin
et al., 2016; Lein et al., 2018). The use of ofMRI enables
millisecond-timescale modulation of activity in the intact brain
and has elucidated novel global and local fMRI signals driven
by populations of optogenetically defined neurons. Development
of this paradigm has improved the understanding of widespread
brain responses to specific local activation (Weitz and Lee, 2013).

Chemogenetics, like optogenetics, has been used to identify
distinct neural circuits associated with behavioral and emotional
states (Strader et al., 1991; Bishop et al., 1998; Chen et al.,
2005; Sternson and Roth, 2014; Zhu et al., 2014; Vetere et al.,
2017). A benefit of chemogenetics is that the receptors can be
genetically encoded and do not require the implantation of a
light delivery device; however, the timescale is different from
the millisecond activation of optogenetics, ranging 1–6 h for
CNO DREADDS, and 5–60 min for KORD-activated DREADDS
(Alexander et al., 2009; Guettier et al., 2009; Sternson and Roth,
2014; Roth, 2016; Urban et al., 2016; Whissell et al., 2016).
Chemogenetics approaches can reduce surgical manipulation,
leaving the brain tissue intact for later analysis, and simplify
the associated behavioral assays. Additionally, these receptors
can have a diverse range of cellular functions and signaling
processes ranging from engineered kinases (Strader et al., 1991;
Bishop et al., 1998; Chen et al., 2005), and G-protein coupled
receptors (GPCRs) (Redfern et al., 1999; Armbruster et al., 2007;
Alexander et al., 2009; Vardy et al., 2015) to ligand-gated ion
channels (Lerchner et al., 2007; Arenkiel et al., 2008; Magnus
et al., 2011) and the most commonly implemented DREADDs
(Armbruster et al., 2007).

While optogenetics and chemogenetics focus on altering the
excitability of the brain, visualizing the innate activation of
neurons is just as crucial. Previously, the innate electrical activity
of the brain was monitored by single electrodes or multielectrode
arrays (Nicolelis and Ribeiro, 2002); however, this technique
is limited by spatial specificity and is difficult to scale at the
cellular level (Lewis et al., 2015). Ex vivo approaches, such as
measurement of brain-wide protein from the immediate early
gene c-fos, accomplish a snapshot of activity at a particular brain
state (Ragan et al., 2012; Osten and Margrie, 2013) with intricate
pipelines to employ serial sectioning and realignment (Mesina
et al., 2016). However, this approach is limited to a generalized
timescale with no way to repeatedly sample the same brain. The
invention of two-photon calcium imaging allowed for some of
the first in vivo visualizations of the activity of distinct neurons
in brain tissue (Tsien, 1988). This real-time analysis revealed
activity at the cellular and subcellular level. Calcium imaging can
also be employed in in vitro studies in brain slices and in vivo
preparations using two-photon microscopy (Denk et al., 1990;
Mao et al., 2001; Oh et al., 2005; Benninger and Piston, 2013) or
in combination with multielectrode recordings in freely moving

animals to interrogate and reconstruct functional connectivity in
real-time (Ozbay et al., 2018; Bonifazi and Massobrio, 2019).

Resting-state fMRI (R-fMRI) is another useful technique
in comparing functional similarities across species. Xu et al.
explored R-fMRI data from macaques and humans combined
with a computational approach called joint embedding. They
were able to assign common brain architecture features between
human and macaque brains. Xu et al. (2020) further developed
a Functional Connectivity Homology Index (FCHI) to quantify
the cross-species similarities, pushing the limits of network
analysis both within a species and between species. Additional
methods to elucidate common features within fMRI data such
as independent component analysis (ICA) can be employed
as an exploratory method to reveal network patterning even
when the stimuli are complex or are not time-locked to a
specific event (Calhoun et al., 2001; Mckeown et al., 2003;
Beckmann et al., 2005; Calhoun and Adali, 2012). This type
of exploratory approach is data-driven, eliminating bias of a
specific brain region or treatment/event (Mckeown et al., 1998).
A complementary tool to ICA is Sparse Dictionary Learning
(SDL) which is capable of evaluating functional networks with
significant spatial overlap. However, ICA performs better in
networks without spatial overlap (Zhang et al., 2019). Tools such
as these are useful in bridging the cross-species gap that often
emerges comparing preclinical models and human.

Another emerging technique in preclinical network science
is 4D functional ultrasound (4DFUS) imagining of whole-
brain for preclinical applications (Rabut et al., 2019). This
approach developed by Rabut et al. implements multiplate wave
transmissions on matrix arrays at thousands of frames per
second to allow for volumetric recordings of blood volume
changes in the brain with high resolution in both space and
time. Ultrafast imaging relies on coherent compounding of
backscattered echoes. The use of Hadamard coefficients can
increase resolution without compromising the frame rate (Tiran
et al., 2015). 4DFUS complements electrophysiological and
optical methods because while those approaches provide similar
specificity in terms of resolution, they lack the ability to expand
monitoring to a larger-scale network.

Functional readouts provide insight to activity in the
awake, behaving brain, but lack cellular resolution. Recent
preclinical developments in tissue-clearing methods allow for
three-dimensional imaging of the intact brain. There are
many approaches for clearing tissues which include CLARITY
(cleared lipid-extracted acryl-hybridized rigid immunostaining)
(Chung et al., 2013), DISCO (Three-dimensional imaging of
solvent-cleared organs) (Erturk et al., 2011, 2012), iDISCO
(immunolabeling-enabled DISCO) (Renier et al., 2014), SHIELD
(stabilization under harsh conditions via intra molecular
epoxide linkages to prevent degradation) (Park et al., 2018),
FocusClear (Fu and Tang, 2010), SeeDB (see Deep Brain) (Ke
et al., 2013), FRUIT (Fructose Urea in α-Thioglycerol) (Hou
et al., 2015), and CUBIC (clear, unobstructed brain imaging
cocktails and computational analysis) (Susaki et al., 2015;
Susaki and Ueda, 2016; Murakami et al., 2018; Matsumoto
et al., 2019). The CLARITY approach consists of a hydrogel-
based method which uses covalent linkage to an acryl-based
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hydrogel for complete lipid removal with limited structural
damage and protein loss (Chung et al., 2013). The DISCO
approach uses tetrahydrofuran, a dehydrating and delipidating
agent, instead of an alcohol (Erturk et al., 2011, 2012).
Further iterating on this method, Renier et al. (2014, 2016)
developed iDISCO and iDISCO+, which allows for whole-
mount immunolabeling of whole cleared organs and wide-
scale mapping of brain activity by analysis of immediate early
genes. As an alternative to the use of hydrophobic solvent
clearing techniques, tissues can be impregnated with high-
osmotic aqueous solutions for a hydrophilic approach with
beneficial refractive indices (Tainaka et al., 2018). These methods
include SeeDB (Ke et al., 2013), FRUIT (Hou et al., 2015),
FocusClear (Fu and Tang, 2010), and CUBIC (Susaki and Ueda,
2016; Tainaka et al., 2018). For an extensive comparison of
clearing techniques and microscopy applications (see Richardson
and Lichtman, 2015; Silvestri et al., 2016; Vigouroux et al., 2017;
Muntifering et al., 2018).

From circuit manipulation to novel clearing techniques the
development of tools to enable the observation and alteration
of an intact brain with a spatial and temporal resolution has
encouraged the exploration of brain regions that were previously
impossible to assess. However, the data that is produced by
these techniques is immense and difficult to directly interpret.
Advanced computational network-based approaches, especially
with regard to brain clearing and neural activity, such as
ClearMap (Renier et al., 2016) are necessary for taking full
advantage of data from cleared brains.

Computational Analysis of Neural
Networks
The combination of preclinical whole-brain imaging approaches
with advances in computational analysis of brain-wide function
serves as a unique way to assess brain activity during critical
neural states in an unbiased manner. Methods of unbiased
assessment including fMRI, calcium imaging, and immediate
early gene imaging, may provide a pivotal way to identify brain
regions that have been overlooked previously due to technical
difficulty or lack of interest that are critical for a given behavior
or disease state. These types of imaging data can be studied in
greater detail using network-based approaches.

In neuroscience, network-based approaches offer unique
ways to assess neural activity at a brain-wide scale that may
be critical for identifying aspects of disease, such as, such
as improvement of treatment methods and identification of
biomarkers (Lydon-Staley and Bassett, 2018; Zhang et al., 2020).
Network neuroscience can be used to assess the structural or
functional connectivity of the brain. Structural networks measure
the physical connectivity of brain regions (i.e., do two brain
regions have physical connections for direct communication)
by identifying fiber tracts and axonal connections, whereas
functional networks examine the correlative connectivity of
neural activity between regions (i.e., are two brain regions usually
activated simultaneously in a given state, suggesting direct or
indirect communication) in an unbiased manner (Bullmore and
Sporns, 2009; Vertes et al., 2012; Bassett and Sporns, 2017).

Networks measuring functional connectivity, using graph
theory, can be employed to identify specific features of neural
networks in more detail. Graph theory can be applied to neural
network data across multiple levels (e.g., whole brain, regions,
circuits, neurons). This approach models the pairwise relations
between nodes, through connected edges (Sporns, 2018). When
modeling the brain, the nodes can be individual neurons or
specific anatomical brain regions, allowing for the scale that
is often lost using traditional recording techniques. Edges are
defined as the functional connectivity between neurons or brain
regions, as measured by correlation of neural activity.

Networks can be divided into modules (i.e., groups brain
regions) of nodes (i.e., brain regions) that may share specific
neural functions (Meunier et al., 2010). For instance, the nucleus
accumbens and ventral tegmental area are both involved in
reward processes and could be grouped together in a reward
module as such for a given brain state. In human data,
many neural networks show small-worldness and modular
organization (Bassett and Bullmore, 2006; Sporns and Betzel,
2016). The “world” of a network is termed as “small” if the average
number of connections between nodes (geodesic distance) is
small relative to the total number of nodes within the network
(Achard et al., 2006; Humphries and Gurney, 2008; Muldoon
et al., 2016; Bassett and Bullmore, 2017). This means that
most nodes are not connected to each other but are connected
indirectly through the overall network through only a few
connections. In contrast a highly modular network contains a
large number of interconnected nodes and few intra-connected
nodes (Stam, 2004; Ahn et al., 2010; Sporns and Betzel, 2016).
A graphical representation of small-world networks and highly
modular networks can be found in Figure 2A. To simplify
these complex datasets, machine learning can be used. Machine
and deep learning are among the novel computational methods
employed to reduce network complexity. Although an in-depth
discussion of these techniques is outside the scope of this review,
we recommend Vu et al. (2018); Glaser et al. (2019), and Valliani
et al. (2019) for further review of the topic.

Graph theory can be used illuminate other intrinsic qualities
of the network, such as overall network efficiency (how easily
information is exchanged between nodes) and node centrality
(the most influential component of a node). In this context, the
efficiency of a given network is characterized by the average
of the shortest path lengths between any set of nodes (Sporns
et al., 2004; Bassett and Bullmore, 2006). Node centrality is
the output of the relative importance of a node for a given
network. Centrality looks at several measurements such as
degree, efficiency (Achard and Bullmore, 2007; Joyce et al.,
2010), closeness, and betweenness of each node (Wang et al.,
2010). Nodes with a high number of connections (lower path
length) and that are central to the network (most important)
are considered hubs. Groupings of important hubs with many
connects are grouped together in something called a “rich club”
to identify high-importance nodes (Guimera et al., 2005; Sporns
et al., 2007; Vertes et al., 2014).

A network hub is a node with high intramodule connectivity
(a provincial hub), high intermodule connectivity (a connector
hub), or both high intra- and inter- module connectivity (a dual
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FIGURE 2 | Network properties and uses in preclinical studies. (A) Graphical example of small-world and highly modular networks. (B) Workflow for preclinical
network analysis using Fos as a marker for neural activity. Animals first undergo a behavioral, pharmacological, or alternative manipulation to induce neural activity.
Brains are collected and then processed to identify Fos protein expression using one of several immunostaining and imaging strategies. The main strategies are: (1)
traditional immunohistochemistry and microscopy on Fos stained sliced brain tissue, (2) whole brain immunostaining/clearing of Fos and light-sheet microscopy, and
(3) serial two-photon imaging of fluorescent brain slices. Once data is collected from any given imaging strategy, functional connectivity networks can be delineated
by calculating Pearson correlations of Fos activity from one brain region to another brain region across animals in a given treatment group. This is done for all brain
regions expressing Fos to create a functional connectivity matrix. The functional connectivity matrix can be used to create a modular network that contains brain
regions grouped based on function (e.g., stress, pain, or reward). Network analysis can then reveal novel functions for brain regions with other known roles and
additionally, the function of overlooked and understudied brain regions can be identified. This workflow will be useful for identifying novel brain regions that contribute
to neuropsychiatric diseases in the future.

hub) (Guimera and Nunes Amaral, 2005; Guimera et al., 2005;
Joyce et al., 2010; Stevens et al., 2012; Pedersen et al., 2020). In the
context of the brain, hub brain regions represent the highest level
of connectivity and are thought to be critical to the function of the
neural network (Sporns et al., 2007; Rubinov and Sporns, 2010;
Wheeler et al., 2013; Vetere et al., 2017; Kimbrough et al., 2020;

Pedersen et al., 2020). Importantly, hubs identified to be crucial in
neural networks have been demonstrated to be conserved across
species and scales (Arnatkeviciute et al., 2019), both validating the
use of the model and suggesting the importance of assessment of
networks in disease states across species. To determine activity,
immediate early genes have been leveraged, of which Fos is
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most widely recognized as a marker of activity. The nuclear
staining of Fos also makes it an easy marker for imaging and
computational analysis.

A key feature of imaging approaches paired with network
analysis, whether in clinical or preclinical studies is the unbiased
nature of the brain-wide activity being assessed, which can
uncover important connectivity and function of the brain
without relying on a priori selection of a specific circuit
or region to study. Clinical and preclinical studies focused
on neuropsychiatric disorders and other brain diseases can
greatly benefit from taking advantage of network neuroscience
to determine important connections between brain regions
and potential hubs associated with a given brain state.
Identification of critical hub brain regions within a given
disease state help to delineate novel signaling pathways and find
potential brain regions and/or therapeutic treatments that were
previously overlooked.

Applications of Network Neuroscience in
the Treatment and Study of Disease
The primary application of network neuroscience over the
last 10 years has been in human studies. One of the main
ways to study functional connectivity of the human brain has
been through R-fMRI, which can assess differences in default
mode network (DMN) function among groups (Gonen et al.,
2020). R-fMRI is not without issues, however, as there is a
need to standardize the methods among research groups (Dinis
Fernandes et al., 2020) and to determine the importance of time-
varying functional connectivity measured at rest (Lurie et al.,
2020). Using fMRI and DTI scans Akiki et al. (2018) described
DMN abnormalities in PTSD patients through a novel network
restricted topology approach. They combined fMRI, DTI, and
graph theory to systematically examine DMN connectivity and its
relationship with PTSD symptom severity. DMN abnormalities
were observed in patients with severe PTSD and computational
analysis revealed decreased overall interconnections within this
group. Other neuropsychiatric disorders such as depression
(Jacob et al., 2020), schizophrenia (Whitfield-Gabrieli et al., 2018)
and anxiety (Qiao et al., 2017) have been studied similarly.
Clinical approaches using machine and deep learning are applied
to data collection in prior studies to identify novel markers
and disease states. Jo et al. compiled functional scans of brains
from Alzheimer’s disease patients and were able to develop a
model to predict Alzheimer’s disease progression with a high
level of confidence (Jo et al., 2019). Machine learning has also
been applied to comorbid psychiatric disease that are difficult
to tease apart such as anxiety and depression. This analysis
clarifies distinct behavioral measures that contribute to the
prediction and crucial mechanisms in one condition vs. the other
(Richter et al., 2020).

Network neuroscience has been recently been applied to
study preclinical animal models of disease. In preclinical
research brain-wide neural networks can be assessed by
pairing brain imaging techniques such as fMRI, traditional
immunohistochemistry, single-cell whole-brain imaging, and
two-photon imaging with network analysis. Using fMRI for
preclinical network analysis, Gass et al. interrogated the

difference in neural network reorganization between stress-
resilient rats and stress-sensitive rats (Gass et al., 2016). This
study identified alterations in the role of hubs in a default-
mode-like-network sensitive vs. resilient rats that uncovered
novel internodal shifts that would have been undetectable using
traditional methods.

Calcium imaging is appropriate for the preclinical exploration
of the brain; however, it is not applicable to clinical studies
in humans. To overcome this issue, the most commonly used
clinical neuroimaging techniques are MRI, fMRI, and DTI, which
are all relatively fast and non-invasive (Kwong et al., 1992;
Basser et al., 1994; Glover, 2011). Used in combination with
traditional MRI, DTI extends the imaging capability of the whole
brain in vivo. These approaches are beginning to bridge the gap
between clinical and preclinical studies, enabling comparison of
functional brain activity in human subjects as well as preclinical
animal models (Denic et al., 2011; Glover, 2011).

Although preclinical calcium and fMRI imaging provide near
instant time resolution, the resolution of individual brain regions
is greatly reduced. Further, animals often need to be head fixed
or anesthetized in order to record activity data, which greatly
limits the ability to assess activity during complex behavioral
tasks. Thus, there is value in taking advantage of postmortem
immediate early gene protein signaling measurements of neural
activity (e.g., tissue clearing techniques and two-photon imaging)
to examine brain-wide neural activity.

In addition to the foundational studies focused on whole-brain
imaging of Fos activity (Osten and Margrie, 2013; Renier et al.,
2014, 2016), others have begun to combine Fos measures with
functional connectivity and network analysis to assess activity
in the brain. Traditional quantification of brain regions by
staining for Fos after fear conditioning was used to establish
a neural network associated with fear memory (Wheeler et al.,
2013). Further assessment of the fear memory network using
functional chemogenetic silencing of different network nodes
in vivo aided in the identification of a novel causal role of the
reuniens and laterodorsal thalamic nucleus in behavior for key
hub brain regions predicted by network models (Vetere et al.,
2017). Additionally, graph theory was applied to predict the
influence of the hippocampus in driving transitions between non-
dependent and dependent states leveraging a control theoretic
approach (Brynildsen et al., 2020). Figure 2B represents the
workflow from behavior through novel function and region
detection. These studies provided a blueprint for using Fos
immunostaining in network models that could be extended to
the whole brain with advances in brain-wide imaging. There
are some caveats to the use of Fos as a marker of activity. Not
all immediate early genes are expressed similarly by all neurons
(Gallo et al., 2018). Other immediate early genes such as Egr1
and Arc have been demonstrated to have distinct patterns on
expression from Fos, and exhibit different timescales from the
initiation of activity (Milbrandt, 1987). The present review has
highlighted how network-based approaches in preclinical models
of disease can examine brain-wide neural activity in an unbiased
manner, which will help identify critical brain regions that may
have been overlooked previously.

Recently, the combination of iDISCO+, light-sheet
microscopy, functional connectivity, and graph theory has
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been used to reveal the neural network involved in alcohol
abstinence. A massive increase in functional coactivation among
brain regions and reduced modular structuring of the brain
was found in the alcohol abstinence network (Kimbrough
et al., 2020). Further, the study by Kimbrough et al. identified
critical hub brain regions, validating regions known to play
a role in alcohol withdrawal (e.g., the central amygdala;
Gilpin et al., 2015) and identified some regions such as the
parasubthalamic nucleus, tuberal nucleus, cortical amygdala,
and intercalated amygdala that has been overlooked in alcohol
studies and need more detailed research (Kimbrough et al.,
2020). Combining single-cell whole-brain imaging approaches of
immediate early gene immunostaining (e.g., iDISCO/light-sheet
microscopy, traditional immunohistochemistry, or serial two-
photon imaging) with network analysis can be used to identify
novel brain regions of interest for various disease states and
neuropsychiatric disorders that were previously overlooked, and
also alternative functions for known regions that may contribute
to disease progression (Figure 2).

As network neuroscience approaches develop, the way to
analyze imaging data of disease states from the clinic has
expanded. Neural networks provide unveil previously hidden
contributors to disease states (Lydon-Staley and Bassett, 2018;
Zhang et al., 2020). Neural network analysis of humans for
various neuropsychiatric disorders such as depression, anxiety,
post-traumatic stress disorder (PTSD), and Alzheimer’s disease
have uncovered contributions of the brain to the disorders
(Bashyal, 2005; Jo et al., 2019).

DISCUSSION

Past research in neuroscience has been heavily skewed to
focus on a handful of major groups of brain regions and
circuits (Figure 1). The use of single-cell whole-brain imaging
combined with network analysis in preclinical models is
a valuable tool moving forward in neuroscience research,
especially when taking advantage of the synergy with other
recently developed preclinical technologies. For example,
pharmacological, chemogenetic, and optogenetics approaches
can be combined with single-cell whole-brain imaging to examine
how the modification of specific cell types or brain regions impact
the connectivity and granularity of each hub within the whole
brain. This approach provides a platform for testing brain regions
identified by network analysis as potential hubs for a causal role
in behavioral output. Additionally, the combination of single-cell
whole-brain imaging and chemogenetics or optogenetics allows
for modifying regions known to play a role in a given behavior
to explore the interconnectedness of brain regions associated
with the specific circuit but that is at a tertiary, quaternary, or
further connection away from the region of interest. Functional
read-outs such as calcium imaging can be used to elucidate
neuron specificity at the cellular and local network levels within a
given brain region in combination with the unbiased evaluation
of brain-wide networks within the same animals.

There are some caveats to preclinical whole-brain
imaging/network analysis approaches. First, depending on

the method there will be limitations on the resolution of
timescale (in the case of immediate early gene imaging) or brain
region specificity (in the case of fMRI and calcium imaging).
The issue of resolution suggests that there are benefits to both
approaches and they can both prove informative in different
aspects of the study of disease. In animal models, fMRI also
restricts the type of behavior or brain state that can be examined
due to the methods for imaging, whereas using immediate
early genes requires postmortem tissue and does not allow for
assessment of future behavior/brain activity. Another weakness
with preclinical studies is the ability to translate the information
from animal models to relevance in human disease states.
However, development of methods for comparison of functional
brain activity in human subjects with preclinical animal models
has helped to alleviate these issues (Denic et al., 2011; Glover,
2011). Furthermore, important hubs identified using neural
network methods are maintained across species and scales
(Arnatkeviciute et al., 2019). Whole brain imaging and network
analysis in preclinical animal models will only improve as time
goes on and the issues are minimized.

Despite the limitations discussed above, network-based
approaches in preclinical studies have the potential to make
significant contributions to our understanding of how the brain
functions during behavior and as a result of neuropsychiatric
disease. In combination with other modern neuroscience
techniques, whole-brain imaging and network analysis may
vastly enhance our systems-based understanding of the brain
in a way that was not previously available. Importantly,
examining network function across the whole brain provides
an unbiased examination of brain activity that will help to
identify brain regions that are critical for function but have been
previously overlooked.
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