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Sirtuins compose a unique collection of histone deacetylase enzymes that have a

wide variety of enzymatic activities and regulate diverse cell functions such as cellular

metabolism, longevity and energy homeostasis, mitochondrial function, and biogenesis.

Impaired sirtuin functions or alterations of their expression levels may result in several

pathological conditions and contribute to the altered metabolic phenotype of malignantly

transformed cells in a significant manner. In the twenty-first century, principles of

personalized anticancer treatment need to involve not only the evaluation of changes

of the genetic material, but also the mapping of epigenetic and metabolic alterations,

to both of which the contribution of sirtuin enzymes is fundamental. Since sirtuins

are central players in the maintenance of cellular energy and metabolic homeostasis,

they are key elements in the development of metabolic transformation of cancer cells

referred to as the Warburg effect. Although its most well-known features are enhanced

glycolysis and excessive lactate production, Warburg effect has several aspects involving

both carbohydrate, lipid, and amino acid metabolism, among which different tumor

types have different preferences. Therefore, energy supply of cancer cells can be

impaired by a growing number of antimetabolite agents, for which appropriate vectors

are strongly needed. However, data are controversial about their tumor suppressor

or oncogenic properties, the biological effects of sirtuin enzymes strongly depend on

the tissue microenvironment (TME) in which they are expressed. Immune cells are

regarded as key players of TME. Sirtuins regulate the survival, activation, metabolism,

and mitochondrial function of these cells, therefore, they are not only single elements, but

key regulators of the network that determines anticancer immunity. Altered metabolism

of tumor cells induces changes in the gene expression pattern of cells in TME, due to

altered concentrations of metabolite cofactors of epigenetic modifiers including sirtuins.

In summary, epigenetic and metabolic alterations in malignant diseases are influenced by

sirtuins in a significant manner, and should be treated in a personalized approach. Since

they often develop in early stages of cancer, broad examination of these alterations is

required at time of the diagnosis in order to provide a personalized combination of distinct

therapeutic agents.
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INTRODUCTION

First definition of epigenetics is derived from Conrad Hal
Waddington (1942), who proposed it as “the causal interactions
between genes and their products, which bring the phenotype
into being” (1). Today, the term epigenetics involves all
mechanisms that modify gene expression pattern without
altering the sequence of the DNA (2). Key elements of epigenetic
regulation are DNA methylation, histone modification,
non-coding RNAs, and nucleosome remodeling. Epigenetic
mechanisms are reversible and heritable (3). These features offer
a great opportunity and at the same time, make high demands
on personalized medicine.

First epigenetic alteration to be linked to cancer was global
DNA hypomethylation described by Feinberg and Vogelstein in
1983 (3). To date, it has been confirmed that besides alterations in
the DNAmethylation pattern, changes in the histone code and in
the expression levels of non-coding RNAs also contribute to the
pathogenesis of malignant diseases in a significant manner.

Among the several hallmarks that cancer cells acquire
during tumorigenesis (4) altered metabolism is also a unique
feature (5). The best-known characteristics of this special
metabolic phenotype are increased rates of glycolysis and
lactate production, which will be further detailed. Due to
numerous interactions, epigenetic and metabolic alterations
cannot be considered as independent players in the big puzzle of
pathogenesis. The vast majority of enzymes that are responsible
for catalyzing epigenetic alterations require metabolite cofactors
[Figure 1; (6)]. Enzymes of the intermedier metabolism are also
regulated by epigenetic alterations, for which an elegant example
is the impact of histone acetyltransferase enzymes (HAT) on
the activity of enzymes involved in glycolysis and fatty acid
metabolism (7).

In recent years, numerous crosslinks have been established
between epigenetics and metabolism in cancer, among which
sirtuin enzymes have key significance.

Abbreviations: 2-HG, 2-hydroxyglutarate; AceCS2, Acetyl-CoA synthetase 2;
ACOX1, acyl-CoA oxidase 1; AHR, aryl hydrocarbon receptor; AML, acute
myeloid leukemia; AMPK, AMP activated protein kinase; CPS1, carbamoyl
phosphate synthetase 1; EMT, epithelial-mesenchymal transition; FDG,
fluorodeoxyglucose; FH, fumarate hidratase; FLT3, fms-like tyrosine kinase
3; G6PD, glucose-6-phoshate dehydrogenase; GDH, glutamate dehydrogenase;
HAT, histone acetyltransferase; HCC, hepatocellular carcinoma; HDAC, histone
deacetylase; HK, hexokinase; HMGCS2, 3-hydroxy-3-methylglutaryl CoA
synthase 2; iNOS, inducible nitric oxide synthase; ITD, internal tandem
duplication; LCAD, long chain acyl CoA dehydrogenase; LDH, lactate
dehydrogenase; LKB1, liver kinase B1; LSC, leukemia stem cell; MCAD,
medium chain acyl CoA dehydrogenase; MCP-1, monocyte chemoattractant
protein-1; NSCLC, non-small cell lung cancer; NK, natural killer; OGG1,
8-oxoguanine-DNA glycosylase 1; PDC, pyruvate dehydrogenase complex;
PDHX, pyruvate dehydrogenase X component; PDK, pyruvate dehydrogenase
kinase; PET, positron emission tomography; PGM, phosphoglycerate mutase;
PFK, phosphofructokinase; PGC1α, Peroxisome proliferator-activated receptor
gamma coactivator 1-alpha; PKM2, M2 isoform of pyruvate kinase; RORγ, RAR-
related orphan receptor gamma; ROS, reactive oxygen species; SDH, succinate
dehydrogenase; SHMT, serine hydroxymethyltransferase; SIR2, Silent Information
Regulator 2; SOD, superoxide dismutase; STAT3, signal transducer and activator
of transcription 3; TAM, tumor associated macrophage; TCA, tricarboxylic acid
cycle; TIGAR, tumor protein 53-induced glycolysis and apoptosis regulator; TME,
tissue microenvironment; TNFα, tumor necrosis factor-α; TRAP1, tumor necrosis
factor receptor associated protein 1.

FIGURE 1 | Metabolite cofactors of epigenetic modifier enzymes. 2-HG,

2-hydroxyglutarate; αKG, alpha-ketoglutarate; DNMT, DNA-methyltransferase;

HAT, histone acetyltransferase; HDAC, histone deacetylase; HMT, histone

methyltransferase; IDH, isocitrate-dehydrogenase; JHDM, Jumonji domain

containing histone demethylase; LSD, lysinspecific demethylase; SAH,

S-adenosyl homosysteine; SAM, S-adenosylmethionine; TET,

DNA-hidroxymethylase enzyme; THF, tetrahydrofolate.

SIRTUINS AND CANCER

The currently known 18 histone deacetylase enzymes (HDACs)
are divided into four groups, among which sirtuin enzymes,
that are homologs to the yeast SIR2 protein (Silent Information
Regulator 2), comprise group III, requiring NAD+ as a
cofactor. They are a seven member family of protein deacylases
and ADP-ribosyl-transferases with different targets, enzymatic
activities, subcellular localizations, and regulatory mechanisms
[Table 1; (8, 9)]. Since they are major hubs in the regulatory
network of energy homeostasis and metabolism, sirtuins are
potential therapeutic targets both in oncology and in the field of
inborn errors of metabolism as well.

In cancer, sirtuins have both oncogenic and tumor suppressor
properties, however, data are controversial at several points.
As an example for emphasizing the importance of tissue
microenvironment, SIRT1 has been proposed both as a tumor
suppressor and as an oncogene in different types of malignancies
(8). SIRT4 acts as a tumor suppressor by regulating cell
metabolism and inflammation as well (10). Oncogenic and
tumor suppressor effects of sirtuins are also determined by the
targets that they regulate. For example, SIRT7 was identified
as a suppressor of MYC function, however, SIRT7 is essential
in maintaining low levels of H3K18ac in cancer cells that is
associated with poor clinical outcome (11, 12).

Altered expression levels of sirtuins contribute to
chemoresistance and metastasis formation, and in some
cases, they are associated with clinical outcome. In endometria
carcinoma cell lines, SIRT1 overexpression enhanced resistance
to paclitaxel and cisplatin (13). SIRT1 activation by MYC
promotes resistance of FLT3-ITD-mutated acute myeloid
leukemia stem cells to tyrosine kinase inhibitors (14). SIRT4
enzyme enhances the sensitivity of breast cancer cells to
tamoxifen (15). SIRT4 also inhibits the migration and metastasis
formation of thyroid cancer cells (16). SIRT6 promotes papillary
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TABLE 1 | Localization, enzymatic activity, and role of sirtuin enzymes in the

regulation of metabolic pathways.

Sirtuin Primary

localization

Enzymatic

activities

Metabolism

SIRT1 Nucleus Deacetylation Gluconeogenesis, glycolysis,

insulin secretion, cholesterol, and

fatty acid synthesis

SIRT2 Cytoplasm Deacetylation

Demyristoylation

Gluconeogenesis, triglycerid

synthesis

SIRT3 Mitochondria Deacetylation

Decrotonylation

Glutamine metabolism, ketone

body formation, Urea cycle,

ß-oxidation of fatty acids

SIRT4 Mitochondria Deacetylation

ADP-ribosylation

Glutamine, leucine and

carbohydrate metabolism,

ß-oxidation of fatty acids

SIRT5 Mitochondria Deacetylation

Demalonylation

Desuccinylation

Deglutarylation

Glycolysis, TCA cycle, ketone

body formation

SIRT6 Nucleus Deacetylation

Deacylation

ADP-ribosylation

Glycolysis, gluconeogenesis,

ß-oxidation of fatty acids

SIRT7 Nucleus Deacetylation

ADP-ribosylation

Lipid metabolism

thyroid cancer progression by inducing epithelial-mesenchymal
transition (EMT) (17). In non-small cell lung cancer (NSCLC),
expression of SIRT1 and SIRT2 is associated with poor
prognosis (18).

Sirtuins are also involved in the pathogenesis of hematological
malignancies. SIRT1 is overexpressed in human leukemia stem
cells (LSC), and its inhibition suppressed proliferation of
primitive progenitor cells and increased apoptosis in LSC (19).
Due to our previous results, the expression level of SIRT6 enzyme
negatively correlates with the level of the tumor suppressor
miR-124 in acute myeloid leukemia (AML) (20).

The central role of sirtuin enzymes in the metabolism of
cancer cells is confirmed by a growing number of evidences
about their role in both promoting and inhibiting the Warburg
effect (see below) in several tumor types. This strong impact on
metabolism is highly associated with the numerous interactions
of sirtuins with oncogenic and tumor suppressor proteins,
microRNAs that regulate metabolism, and proteins involved in
signal transduction pathways as well.

THE WARBURG EFFECT

Nobel Laureate Otto Warburg observed in the 1920s that
malignantly transformed cells prefer lactate production over
oxidative phosphorylation regardless of the level of oxygen (21).
The discovery of elevated glycolytic rate in tumor cells is still the
basis of the worldwide used diagnostic method 18FDG PET (6).

Enhanced glycolysis is the most widely known feature of
the altered metabolic phenotype of cancer cells. Glycolytic
rate can be up to 200 times higher in malignantly transformed
cells compared to healthy cells, to which up-regulation of
GLUT transporters and overexpression of glycolytic enzymes

also contribute (22, 23). MYC and HIF1α are both essential
transcription factors in regulating the expression levels of
enzymes involved in glycolysis, however, it is an important
difference that while MYC enhances, HIF1α represses
mitochondrial biogenesis (24, 25). Recently, many sirtuins
have been proved to affect the activity of HIF1α: SIRT1 inhibits
its transcriptional activity by deacetylation, SIRT2 increases
its stability, while SIRT3 and SIRT7 destabilize it (26). The
inhibition of HIF1α enzyme is a promising therapeutic target in
several tumor types. Bortezomib, which was approved for the
treatment of multiple myeloma in 2008, has also been proved to
inhibit the transcriptional activity of HIF1α (27).

Though high rate of glycolysis results in excessive lactate
production, systemic effects of lactate byproducts are rarely
significant. However, type B lactate acidosis that develops under
normoxic conditions is a rare, but life-threatening complication
of hematological malignancies (28). Recent findings on a
novel type of in vivo post-translational histone modifications,
lysine lactylation, highlights the impact of elevated lactate
production on gene expression (29). Histone lysine lactylation
can directly promote the transcription of certain genes, however,
its involvement in the metabolic switch of cancer cells has yet to
be clarified (29).

Tumor suppressor proteins are also involved in the regulation
of glycolysis. Excessive glycolysis and lactate production is
counteracted by p53, which activates TIGAR enzyme and inhibits
phosphoglycerate mutase 2 (PGM2). TIGAR is responsible for
the cleavage of fructose-2,6-bisphosphate, the allosteric activator
of phosphofructokinase I (PFK I) (23).

Opposite to oxidative phosphorylation that produces 36
molecules of ATP from one molecule glucose, glycolysis yields
only 2. Despite this inefficient ATP generation, up-regulation of
glycolysis provides cancer cells a number of advantages. Cancer
cells accumulate several intermediary metabolites that may be
shunted to interconnected pathways to support the biosynthesis
of essential macromolecules and rapid proliferation (11, 30).
One possible direction is the pentose phosphate pathway, while
glyceraldehyde-3-phosphate, 3-phosphoglycerate, and fructose-
6-phosphate are critical for the de novo synthesis of amino acids,
phospholipids, and ribonucleotides, respectively (25, 31).

Increased glutamine demand and consumption are also
important characteristics of the Warburg effect. Among
transcription factors, MYC has been proven to induce glutamine
transporters as well (25). Cancer cells utilize glutamine to fuel
biosynthesis of nucleotides, to reload tricarboxylic acid cycle
(TCA) intermediates, or to convert glutamine into lactate by the
stepwise process of glutaminolysis (32). Besides biosynthesis,
glutamine is also utilized for antioxidant defense function, since
glutamine metabolism results in the concomitant production of
NADPH, decreasing concentration of reactive oxygen species
(ROS) and increasing glutathione levels, thereby protecting cells
from oxidative stress (25, 33).

In malignantly transformed cells some tumor specific
isoforms of metabolic enzymes also have been described.
Opposite to normal cells that express pyruvate kinaseM1 isoform
(PKM1), tumor cells primarily express the M2 isoform that
is responsible for the regulation of the final and rate-limiting
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reaction of the glycolytic pathway (34). PKM2 acts as a
coactivator of HIF1α, inducing the expression of pyruvate
dehydrogenase kinase (PDK) and lactate dehydrogenase (LDH)
(34). Hexokinase II (HK II) is another example of tumor specific
enzyme isoforms promoted by Akt protein (23).

Besides the tumor specific isoforms, the mutations of some
metabolic enzymes also contribute to the metabolic switch
featuring cancer cells. Gain of function mutations of isocitrate
dehydrogenase (IDH) result in novel enzymatic activity and the
production of the oncometabolite 2-hydroxyglutarate (2-HG)
(35). Mutations of succinate dehydrogenase (SDH) and fumarate
hydratase (FH) lead to the accumulation of succinate and
fumarate, respectively, which inhibit α-ketoglutarate dependent
enzymes including DNA-hydroxymethylating TET enzymes and
Jumonji C domain containing histone demethylases (36). These
mutations also contribute to the stabilization of HIF1α, due to
the inhibition of α-ketoglutarate-dependent prolyl hydroxylase
enzyme (37).

Cancer stem cells, the maintenance and self-renewal
properties of which are tightly regulated by sirtuin enzymes,
demonstrate unique metabolic flexibility. In general, they are
characterized by even higher glycolytic rate (38), however, they
can switch between glycolysis and oxidative phosphorylation
in the presence of oxygen to maintain cellular homeostasis and
promote tumor growth as well (39).

EPIGENETIC BACKGROUND OF
WARBURG EFFECT WITH EMPHASIS ON
SIRTUIN ENZYMES

Development of Warburg-like metabolic phenotype of cancer
cells is strongly regulated by epigenetic mechanisms where
sirtuin enzymes play a key role. Various enzymatic activities,
subcellular localizations and an enormous interactome with
metabolic enzymes, epigenetic modifiers, and proteins of signal
transduction pathways enable sirtuins to be central players in this
field. In this section, we summarize data about the involvement
of distinct sirtuins in the regulation of metabolism of cancer cells.

SIRT1 is a key metabolic sensor and regulator of
mitochondrial biogenesis as well. SIRT1 and AMP-activated
protein kinase (AMPK) directly activate the nuclear receptor
Peroxisome Proliferator Activated Receptor Gamma Coactivator
1 alpha (PGC1α) through deacetylation and phosphorylation,
respectively, resulting in increased mitochondrial biogenesis
(40). In glioblastoma multiforme, activation of PGC1α leads to
the differentiation of cells into a mature phenotype by activating
some transcription factors related to mitochondrial biogenesis,
therefore counteracting the Warburg effect (41).

In acute myeloid leukemia (AML) cell models, SIRT2
promoted the Warburg effect by deacetylating and activating
glucose-6-phosphate dehydrogenase (G6PD) enzyme, increasing
the production of NADPH, and supporting the biosynthesis of
macromolecules that are essential for rapid cell proliferation
(42). However, SIRT2 also deacetylates and destabilizes the ATP-
citrate lyase (ACLY) enzyme (43), the low expression level of
which is associated with favorable overall survival in AML

patients (44). In cholangiocarcinoma, SIRT2 induces Warburg-
like metabolic reprogramming resulting in decreased oxidative
phosphorylation and increased activity of the serine synthesis
pathway, consequently protecting cholangiocarcinoma cells from
oxidative stress and apoptosis (45).

SIRT3 is the best characterized mitochondrial sirtuin enzyme,
its expression level is increased by caloric restriction, fasting,
and exercise training (9). The first reported target of SIRT3 was
acetyl-CoA synthetase 2 (AceCS2) (46), that promotes metastasis
formation of renal cell carcinoma (47), however, in gastric
cancer, loss of AceCS2 expression predicts poor prognosis (48),
which further emphasizes the significance of TME. SIRT3 down-
regulates HIF1α and pyruvate dehydrogenase kinase 1 (PDK1)
in cholangiocarcinoma (49), and suppresses the Warburg effect
also by the activation of pyruvate dehydrogenase complex (PDC)
and the indirect inhibition of the tumor specific isoenzyme
hexokinase II (HK II) (11). SIRT3 regulates fatty acid oxidation
via the deacetylation and activation of long chain acyl-CoA
dehydrogenase (LCAD) enzyme (50), opposite to HIF1α that
suppresses fatty acid oxidation to facilitate cancer progression
(51). In cancer cells, similarly to the reduction of ATP production,
the decrease of mitochondrial ROS formation is also significant,
in which SIRT3 has been proved to play a pivotal role by the
deacetylation and activation of superoxide dismutase 2 (SOD2)
enzyme (52). Though SIRT3 promotes mitochondrial biogenesis
(53), it also protects mitochondrial DNA from oxidative damage
because of the deacetylation of 8-oxoguanine-DNA glycosylase
1 (OGG1), an enzyme that is involved in the process of
DNA repair (54). Despite the fact that SIRT3 counteracts
the Warburg effect in several ways, Warburg-promoting effect
of this enzyme has also been confirmed. SIRT3 deacetylates
and activates mitochondrial glutamate dehydrogenase (GDH)
(55), therefore contributing to enhanced glutaminolysis, that
is characteristic of Warburg effect. The rate-limiting enzyme
of ketone body formation, 3-hydroxy-3-methylglutaryl-CoA
synthase 2 (HMGCS2) is also regulated by SIRT3 (56). HMGCS2
is a tumor suppressor in prostate cancer, the knockdown of
which promotes cell proliferation, colony formation, migration,
and invasion of prostate cancer cells (57). SIRT3 was also found
to deacetylate the serine hydroxymethyltransferase 2 (SHMT2)
enzyme. Deacetylated SHMT2 is less stable, and indirectly
counteracts the proliferation of colon cancer cells (58).

SIRT4 also has an impact on metabolism of cancer cells
by promoting the Warburg effect. Besides the inhibition of
glutamate dehydrogenase (GDH) enzyme (59), SIRT4 was
described to inhibit malonyl-CoA decarboxylase, resulting in the
repression of fatty acid oxidation (54). SIRT4 is also involved
in the regulation of carbohydrate metabolism: according to
novel findings, it increases the activity of PDC by repressing
the expression of PDK1 enzyme (60). SIRT4 has also been
described to regulate the leucine oxidation pathway (61). In a rat
model, leucine-rich diet resulted in less glycolytic phenotype and
decreased tumor aggressiveness (62).

SIRT5 regulates metabolic enzymes by deacetlyation,
desuccinylation, deglutarylation, and demalonylation as well.
Carbamoyl phosphate synthetase 1 (CPS1) is the only known
protein that is deacetylated by SIRT5 (54). Elevated expression
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level of CPS1 would be supported by acetylation, and was
associated with poor overall survival in LKB1-inactivated
lung adenocarcinoma (63). SIRT5 desuccinylates and activates
superoxide dismutase 1 (SOD1) (9), the oncogene serine
hydroxymethyltransferase (SHMT2) (64), and pyruvate kinase
M2 (PKM2) at two residues, K311 and K498 (8). Desuccinylation
of PKM2 at K498 was shown to promote tumor development
(8), while the role of K311 desuccinylation in cancer has not
been described yet (65). In hepatocellular carcinoma, SIRT5
was shown to keep oxidative damage below toxic levels by
desuccinylating and inhibiting peroxisomal acyl-CoA oxidase
1 (ACOX1) enzyme (66). In colorectal carcinoma cell lines,
SIRT5 deglutarylates and activates glutamate dehydrogenase
(GDH) enzyme, contributing to the Warburg effect (67). SIRT5
demalonylates and inactivates succinate dehydrogenase (SDH)
enzyme leading to succinate accumulation, that results in
the inhibition of α-ketoglutarate dependent dioxygenases as
mentioned before (68).

SIRT6, which is one of the major epigenetic regulator of
the glucose homeostasis of cells, exerts anti-Warburg effect by
the inhibition of increased glucose uptake and overexpression
of glycolytic enzymes as well. The latter results from the
deacetylase activity of the enzyme, because H3K9 and H3K56
deacetylation of glycolytic genes inhibits their transcription
by HIF1α and MYC, respectively (11). SIRT6 also inhibits
hepatic gluconeogenesis by promoting the deacetylation of
PGC1α transcription factor (69). Among tumor specific enzyme
isoforms, SIRT6 deacetylates PKM2 at K433, leading to
its nuclear export and the inhibition of PKM2 oncogenic
functions (70).

SIRT7 has recently been described as an enzyme with ADP-
ribosyl transferase activity (71). SIRT7 controls mitochondrial
biogenesis, increases hepatic lipid accumulation and enhances
adipogenesis in white adipocytes (72), however, its role in
Warburg effect has yet to be examined.

Besides sirtuins, microRNAs are also important epigenetic
regulators of the metabolic switch characteristic to cancer cells.
MicroRNAs can either promote or inhibit the Warburg effect,
depending on the target metabolic enzymes. MiR-26a promotes
the Warburg effect by targeting pyruvate dehydrogenase X
component (PDHX) in colorectal cancer cells, which inhibits
the conversion of pyruvate to acetyl-CoA in the tricarboxylic
acid cycle (TCA) (73). Both tumor suppressor and oncogenic
microRNAs are involved in the regulation of tumor specific
isoforms of some metabolic enzymes. Oncogenic miR-155
promotes the expression of hexokinase II, while tumor
suppressor miR-124 inhibits the expression of pyruvate kinase
M2 isoform (74). In non-small cell lung cancer cells, down-
regulation of miR-214 inhibits glycolysis and proliferation,
resulting from the decreased expression levels of hexokinase II
and PKM2 enzymes (75). MiR-378∗ contributes to the down-
regulation of enzymes involved in TCA (22).

MicroRNAs and sirtuins cannot be regarded as independent
regulators of the metabolism of cancer cells, since numerous
interactions have been revealed between them. For example,
miR-31 targets SIRT3 enzyme to increase oxidative stress in oral
carcinoma (76).

ANTICANCER IMMUNITY AND ITS
CONNECTION WITH ALTERED
METABOLIC PHENOTYPE: ROLE OF
SIRTUIN ENZYMES

It has been clear for more than a half century that one
of the most important functions of the immune system is
to identify and eliminate transformed cell clones (Macfarlane
Burnet−1950) (77). On the other hand, tumors dampen
antitumor immunity by several mechanisms, which is also a
hallmark of cancer (25). Besides widespread crosstalk between
immune cells and transformed clones, this hallmark involves a
strong connection with metabolism as well: “if T cells play the
music during an adaptive immune response, the metabolic tumor
microenvironment calls the tune” (25, 78).

Cancer cells have been proved to induce decreased levels
of nutrients and a hypoxic, acidic condition in the tumor
microenvironment (25). Therefore, metabolic reprogramming is
required by both tumor cells and immune cells in order to adapt
to this microenvironment (78). However, adaptation results in
the preference of different metabolic pathways in case of distinct
cell types, in which sirtuin enzymes play an important role
(Table 2).

T cells are the major components for antitumor immunity
(78), however, a complex immunosuppressive network in cancer
leads to the abrogation of immune and metabolic checkpoints,
resulting in the limited activation and dysfunction of T cells (25).
Similarly to cancer cells, T cells also undergo a metabolic switch
upon their activation. Naive T cells rely mostly on oxidative
phosphorylation and require relatively small amounts of glucose
to maintain basic energetic demands (25). Though activated T
cells engage in increased rates of glycolysis and glutaminolysis,
it is important to note that opposite to transformed cells, this
is the part of a physiological adaptation process in case of T
cells (25). Metabolic intermediates generated by this metabolic
switch are important for cytotoxicity and cytokine production
as well (25). In recent years, sirtuins have been confirmed to
regulate the differentiation and function of T cells in TME.
SIRT1 negatively regulates the differentiation of IL-9-producing
antitumor Th 9 cells in cancer (79) and suppresses the activity
of regulatory T cells (80). On the contrary, SIRT3 has been
proved to maintain immunosuppressive activity of regulatory T
cells (80).

M2 polarized tumor-associated macrophages (TAMs) support
tumor growth and provide a barrier against the natural killer
(NK) cells and cytotoxic T lymphocytes (81). They exhibit up-
regulated fatty acid synthesis and ß-oxidation (78), decreased
glycolysis and the utilization of oxidative metabolism (82). TAMs
are also characterized by high expression of IL-10, while they
produce low levels of IL-12, tumor necrosis factor-α (TNFα) and
inducible nitric oxide synthase (iNOS) (10). In hepatocellular
carcinoma (HCC), SIRT1 was found to inhibit metastasis
formation by promoting M1 macrophage polarization (83). Also
in HCC, down-regulation of SIRT4 induces elevated monocyte
chemoattractant protein-1 (MCP-1) expression, resulting in
increased TAM infiltration of peritumor tissues (10).
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TABLE 2 | Characteristic metabolic phenotypes of cancer cells and immune cells of tissue microenvironment.

Cancer cell Tumor-associated

macrophage

Naive T cell Activated T cell Cytotoxic T lymphocyte

Glycolysis ↑ ↓ ↑ ↓

Oxidative phosphorylation ↓ ↑ ↑ ↑

Tricarboxylic acid cycle ↓

Fatty acid oxidation ↓ ↑

Glutaminolysis ↑ ↑

Production of ROS ↓

Similarly to M2 polarized TAMs, cytotoxic T lymphocytes
are also featured by a decreased rate of glycolysis and enhanced
oxidative phosphorylation (78).

Central role of mitochondria in the maintenance of metabolic
and redox homeostasis also has a strong impact on antitumor
immunity. Mitochondrial oxidative metabolism was described
as a critical suppressor of metastasis (84), while high levels
of reactive oxygen species (ROS) in TME were confirmed
to down-regulate the activity of antitumor effector T cells
(85). Complexes of the electron transfer chain are regulated
by the major mitochondrial deacetylase SIRT3, knockdown
or deficiency of which correlates with decreased complex
activity (86). In glioma stem cells, cooperative interplay between
the mitochondrial chaperone TRAP1 and SIRT3 increases
mitochondrial respiratory capacity and reduces the production
of ROS (87).

Activation of the transcription factor aryl hydrocarbon
receptor (AHR) induces the differentiation of CD4+ naive T
cells into immunosuppressive regulatory T cells (88, 89). Besides
playing critical roles in the initiation, promotion, progression,
and metastasis of cancer (78), AHR is involved in the regulation
of two NADases, contributing to decreased SIRT1 activity and
the deregulation of glucose and fatty acid homeostasis as well
(90). However, to our knowledge, interaction between AHR and
sirtuin enzymes in cancer has not been established yet. There is
also evidence that metabolites such as succinate and NAD+ are
signals that regulate innate immunity, by acting via deacetylases
such as SIRT1 and SIRT2 and regulating HIF1α, respectively (82).

SPECIAL ASPECTS OF NOVEL
EPIGENETIC AND METABOLIC
THERAPEUTIC APPROACHES

In the twenty-first century, principles of personalized anticancer
treatment need to involve the mapping of epigenetic and
metabolic alterations, to both of which the contribution of
sirtuin enzymes is fundamental. In parallel with this aim,
growing number of antimetabolites and sirtuin inhibitors are
administered. As an example for the latter, inhibition of SIRT1
by the up-regulation of miR-211-5p was associated with the
induction of apoptosis in breast cancer cells (91). Inhibition
of SIRT2 has been confirmed to induce the susceptibility of
melanoma cell to the multikinase inhibitor dasatinib (92).

Inactivation of SIRT3 leads to metabolic alterations, loss of
stemness, and suppression of tumor formation by glioma stem
cells in vivo (87).

Manipulating metabolism is also a tool to enhance antitumor
immunity, since metabolic pathways have been proved to shape
both function and survival of antitumor T cells (25). However,
different metabolic interventionsmay be required in transformed
clones and in distinct cell types of the immune system. For
example, while inhibition of mevalonate metabolism in tumor
cells attenuates the proliferation and growth of innate immune
cells, the mevalonate pathway contributes to trained immunity as
well (78).

It should also be considered, that inhibitors of sirtuin enzymes
can induce different changes in distinct cell types of anticancer
immunity. In myeloid cells, SIRT1 inhibition leads to increased
transcription of proinflammatory cytokines, but on the other
hand, targeting SIRT1 results in net immunosuppressive effect in
case of T cells (93).

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Sirtuins are key hubs in the regulatory network of etiological
factors of tumors, having strong impact on the growth, survival,
and metabolism of cancer cells, that also influences antitumor
immunity in a significant manner. One of the major challenges of
modern oncology is to establish novel elements of this regulatory-
etiological network in order to provide personalized treatment
for patients. Investigation of the exciting world of sirtuin enzymes
is definitely one of the most effective tools for this. Further
examinations are required to elucidate cell-specific metabolic
and immunological effects of sirtuin inhibitors and activators.
Appropriate vectors are also needed to deliver these small
molecules and antimetabolites to their definitive target cells.
Together with widespread genetic, epigenetic, and metabolic
mapping at the time of the diagnosis, these efforts could improve
therapeutic results, leading to longer disease-free and overall
survival, with improved life quality as well.
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