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Abstract: Cell signal transduction is a non-equilibrium process characterized by the reaction cascade.
This study aims to quantify and compare signal transduction cascades using a model of signal
transduction. The signal duration was found to be linked to step-by-step transition probability,
which was determined using information theory. By applying the fluctuation theorem for reversible
signal steps, the transition probability was described using the average entropy production rate.
Specifically, when the signal event number during the cascade was maximized, the average entropy
production rate was found to be conserved during the entire cascade. This approach provides
a quantitative means of analyzing signal transduction and identifies an effective cascade for
a signaling network.
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1. Introduction

Cell signal transduction is a non-equilibrium process, which is characterized by the existence
of signal transduction caused by a chemical reservoir of energetic metabolites, such as adenosine
triphosphate (ATP). Systems biology has been developed to analyze the signal transduction
network [1–8], including computational neural network studies [2,9,10]. Methodologies for analyzing
gene expression associated with protein–protein interactions [11–16] and studies of cancer cells have
been conducted [17,18]. Furthermore, cell–cell communication has been investigated from the point
of view of signaling network [19–21]. Relationship between entropy and biological information has
been extensively discussed on signal transduction network [22]. From statistical data of the correlation
between expression of selected gene or proteins as a node in the network, a type of entropy has been
considered in protein–protein interactions and in gene expression interactions [12,14,23]. “Single cell
entropy” was recently introduced as the basis of the microstate of a single cell [24]. On the other hand,
a significant amount of data on signal transduction has accumulated in the cell biology field [25–39],
and quantitative analyses of signal transduction have been recently performed using an Escherichia Coli
model [40–43]. Using an information theory of mutual information, Uda et al. have conducted
quantitative analysis in the MAPK (mitogen-activated protein kinases) cascade [40,44]. Thus, various
studies of cell signal cascade and network have been conducted.

We have reported analyses of the relationship between signal step occurrence/transition
probability and step duration based on information theory [7,45,46]. In the current study, we focused
on the entropy production rate in signal transduction [7,12,14,23,40,44,46,47]. The objective of our
current study is to evaluate signal transduction efficiency from the perspectives of the average
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entropy production rate (AEPR) in individual steps in actual biochemical reaction kinetics [45,48].
Source coding theory for information transmission efficiency was discussed by Brillouin and
Shannon [48,49], and Kullback and Leibler [50], who generalized Shannon’s entropy theory. For the
purposes of our study, we introduce a model of signal transduction and define transitional probability
of the individual steps, as well as step duration, in reference to the application of source coding theory
and fluctuation theorem (FT) to signal transduction [40–43].

The signal events consist of a sequence of phosphorylation/dephosphorylation reactions of
signaling molecules in a cell. We used suffixes m and j to represent the number of cascades and
the step number. Here, a model of cascades is presented in Equation (1) [25–35,39]. In this model,
the signaling molecule at step 1 of cascade m, denoted as Xm1, extracellular ligand, induces the
modification of the Xm2 receptor on the cell membrane, such as epidermal growth factor receptor
(EGFR), into Xm2*. Subsequently, Xm2 activates Xm3 in the same manner. In this way, the signaling
molecule at the j – 1-th step of cascade m, denoted as Xmj−1, induces the modification of Xmj into Xmj*.
First, dephosphorylation of Xmj* into Xmj occurs spontaneously or via an enzymatic reaction catalyzed
by the phosphatase (Phmj−1; 1 ≤ j ≤ n), at the j – 1-th step of cascade m, and the pre-stimulation
steady state is subsequently recovered. The signal step is described in our previous study is given as
follows [7]:

Xm1 + Xm2 + ATP→ Xm1 + Xm2
∗ + ADP : km1, 1ststep

Phm1 + Xm2
∗ → Phm1 + Xm2 + Pi : k−m1,−1st

. . . . . .
Xmj−1

∗ + Xmj + ATP→ Xmj−1
∗ + Xmj

∗ + ADP : km,j−1, j− 1− th
Phm,j−1

∗ + Xmj
∗ → Phm,j−1

∗ + Xmj + Pi : km,−j−1,−j− 1− th
. . . . . .
Xm,n−1

∗ + Xmn + ATP→ Xm,n−1
∗ + Xmn

∗ + ADP : km,n−1, n− 1− th
Phm,n−1

∗ + Xmn
∗ → Phm,n−1

∗ + Xmn + Pi : km,−n−1, −n− 1− th
(1 ≤ m ≤ M; 1 ≤ j ≤ n)

(1)

The lowercase m represents the total number of the cascade. In (1), km, j−1 and km, -j−1 are
the kinetic coefficients for the individual steps. ADP, and Pi represent adenosine diphosphate,
and inorganic phosphate, respectively. Subsequently, we arrange the selected steps in chronological
activation order. For instance, a cascade consisting of signaling molecule sequence is described
as follows:

Xm1 Xm2* Xm3* Xm4* Xm5* Xm3 Xm2 Xm5 Xm4 (2)

As the extracellular factor, or ligand, Xm1, stimulates the cell system, phosphorylated receptor
Xm2* is tentatively increased. Subsequently, the increase in other molecules follows sequentially as
shown in (2). The above sequence represents an order of the increase in concentration of signaling
molecules. Here we consider Ψm, the total number of distinct signal events that is described by a set of
sequences (2). We define information I, derived as shown above, as the total number, Ψm, of signal
events in the cascade m,

I = K log ψm (3)

Here, if we use the entropy unit, we take K = kB, Boltzmann’s constant, and Ψm can be given
as the total number of combinations of Xmj and Xmj* (1 ≤ j ≤ n). On the other hand, in information
science, K is equivalent to log2e. Shannon defined the channel capacity as follows [49]:

C = max lim
τ→∞

K log ψm

τ
= max lim

τ→∞

I
τ

(4)

As shown in Figure 1, we defined the duration, as forward τmj and backward τ−mj. We assigned
positive and negative value to τmj and τ−mj to distinguish the direction of the step in the m
cascade. τmj represents the duration in which the active molecule Xmj* tentatively increases in
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concentration, and τ−mj represents the duration in which the active molecule Xmj* tentatively decreases
in concentration. The individual step consists of both steps, and in the single j-th molecule the duration
is represented by τmj − τ−mj.
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Figure 1. A common time course of the j-th step, showing fold changes during phosphorylation.
The vertical axis denotes the concentration of signaling active molecule. The horizontal axis denotes
the duration (min or time unit) of the j-th step. τmj and τ−mj represent the duration of the j-th step and
the −j-th step, respectively. The line Xj* = Xj*st denotes the concentration of Xj* at the steady state.

2. A Model of Signal Transduction

The occurrence probability, pmj, which represents the selection probability of Xmj used in the j-th
step in cascade m in the forward direction, takes the form of the j-th molecule. pmj*, which represents
the selection probability of Xmj*, used in the −j-th step for cascade m for backward direction in the
cascade, as follows:

pmj = Xmj/X
pmj
∗ = Xmj

∗/X
(5)

with
n

∑
j=1

(
pmj + pmj

∗) = 1 (6)

Here, X without suffix represents the total concentration of signaling molecules:

X =
n

∑
j=1

(
Xmj + Xmj

∗) (7)

The total concentration of non-phosphorylated signaling molecules is given by:

n

∑
j=1

Xmj = Xm (8)

and the total concentration of phosphorylated signaling molecules is given by:

n

∑
j=1

Xmj
∗ = Xm

∗ (9)
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The entire duration, τm, which signifies the sum of forward and backward cascades consisting of
a set of signaling molecules, is determined by:

τm =
n

∑
j=1

(
Xmjτmj–Xmj

∗τ−mj
)

(10)

In Equations (5)–(9), we determined the entire duration using the probabilities pmj and pmj*.
The entire duration is given here by:

τm = X
n

∑
j=1

(
pmjτmj–pmj

∗τ−mj
)

(11)

Subsequently, the total number of signal events, Ψm is introduced as follows:

ψm = X!/(
n

∏
j=1

Xmj!
n

∏
j=1

Xmj
∗!) (12)

Using (5) and (6), Stirling’s approximation of (12), entropy Sm is given as follows:

Sm = log ψm = −X

(
n

∑
j=1

pmj log pmj+
n

∑
j=1

pmj
∗ log pmj

∗
)

(13)

To maximize Sm, using non-determined parameters αm, and βm, in reference to the constraints
established by Equations (6) and (11), we introduce a function G to apply Lagrange’s method for
undetermined multipliers:

G(pm1, pm2, · · · pmn; pm1
∗, pm2

∗, · · · pmn
∗; X)

= Sm − αm
n
∑

j=1

(
pmj + pmj

∗)− βmτm

= Sm − αm
n
∑

j=1

(
pmj + pmj

∗)− βmX
n
∑

j=1

(
pmjτmj − pmj

∗τ−mj
) (14)

Then, we have
∂G

∂pmj
= −X

(
log pmj − βmτmj

)
− αm − X (15)

∂G
∂pmj

∗ = −X
(
log pmj

∗ + βmτ−mj
)
− αm − X (16)

∂G
∂X

= −
(

n

∑
j=1

pmj log pmj +
n

∑
j=1

pmj
∗ log pmj

∗
)
− βm

(
n

∑
j=1

τmj pmj −
n

∑
j=1

τ−mj pmj
∗
)

(17)

For maximization of G, setting the right sides of Equations (15)–(17) equal to zero gives

− log pmj = βmτmj (τjm > 0) (18)

− log pmj
∗ = −βmτ−mj(τ−mj < 0) (19)

and
αm = −X (20)

Above, the two Equations (18) and (19) imply an important result that the coefficient βm is
independent of the step number j.
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3. Average Entropy Production Rate in a Signal Cascade and Fluctuation Theorem (FT)

We attempted to determine the parameter, βm, using thermodynamic parameters. pm(j|j − 1),
the transitional probability of the j-th step given j − 1-th step, is defined. vm(j|j − 1), the transitional
rate of the j-th step in a forward signaling direction, given j − 1-th step, is also defined. In addition,
we define pm (−j − 1|−j) as the transitional probability of the –j − 1-th step given step −j-th step,
and vm (−j − 1|−j) as the transitional rate of the –j − 1-th step in a backward signaling direction in
a given cascade, given step −j-th step. The cell system is considered to stay at the detailed steady state,
as follows:

pm(j|j− 1 )vm( j|j− 1)
= pm(−j− 1|−j )vm(−j− 1| − j)

(21)

Therefore, we have:

log
pm(−j− 1| − j)

pm( j|j− 1)
= log

vm( j|j− 1)
vm(−j− 1| − j)

(22)

From (1), using kinetic coefficients kmj and k−mj,

log
pm(−j− 1|−j )

pm(j|j− 1 )
= log

kmjXm,j−1
∗Xmj ATP

k−mjPhm,j−1Xmj
∗ (23)

Using (5),

log
pm(−j− 1|−j )

pm(j|j− 1 )
= log

kmjXm,j−1
∗pmj ATP

k−mjPhm,j−1 pmj
∗ (24)

Dividing the both sides by τmj − τ−mj and taking the limit,

lim
τmj− τ−mj→∞

1
τmj−τ−mj

log pm(−j−1|−j )
pm(j|j−1 )

= lim
τmj− τ−mj→∞

1
τmj−τ−mj

log
pmj
pmj
∗

(25)

Above, we set the parameters of the right side in (24) constant, except pmj and pmj*, because the
parameters are supposed to be constants during the j-th step. Using Equations (18), (19), and (25),
we have:

1
τmj − τ−mj

log
pm(j|j− 1 )

pm(−j− 1|−j )
= −βm (26)

1∣∣τ−mj − τmj
∣∣ log

pm(−j− 1|−j )
pm(j|j− 1 )

= βm (27)

Here, the AEPR
〈
ζmj
〉

and
〈
ζ−mj

〉
during signal transduction is defined during τmj − τ−mj or

|τ−mj - τ−mj| for m cascade and reverse cascade –m using an arbitrary time parameter t :

〈
ζmj
〉
,

1
τmj − τ−mj

∫ τmj−τ−mj

0
ζmj(tmj)dtmj (28)

〈
ζ−mj

〉
,

1∣∣τ−mj − τmj
∣∣∫ |τ−mj−τmj |

0
ζ−mj(t−mj)dt−mj (29)

From Equations (26)–(29), the FT gives

1
τmj − τ−mj

log
pm(j|j− 1 )

pm(−j− 1|−j )
=
〈
ζmj
〉

(30)
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1∣∣τ−mj − τmj
∣∣ log

pm(−j− 1|−j )
pm(j|j− 1 )

=
〈
ζ−mj

〉
(31)

Then, Equations (26), (27), (30), and (31) give

βm = −
〈
ζmj
〉
=
〈
ζ−mj

〉
(32)

where βm has dimension of entropy production rate and AEPRs are independent of the step number.
AEPRs are redefined using (18) and (19) as follows:

−
〈
ζ−mj

〉
, 〈ζm〉 = −

log pmj

τmj
(33)

Equations (32) and (33) indicate conservation of entropy production rate during signal
transduction. Accordingly, using Smj (= −log pmj) of the j-th step, we have:

Smj = τmj〈ζm〉 (34)

Here, we obtained an important result that the channel capacity is given by AEPR. Accordingly,
we obtained the following result from (18), (19), (32) and (33).

− log pmj = 〈ζm〉τmj (35)

log pmj
∗ = 〈ζm〉τ−mj (36)

In previous reports [7,45], we suggested a simple formulation between code occurrence probability
pmj and duration τmj, using an arbitrary parameter, ζ, which was independent of step numbers
− log pmj = ζτmj. In the current study, we developed the final proof and more detailed formulae of
AEPR consistency based on source cording theory and FT as shown in Equations (35) and (36).

Therefore, from Equations (4), (11), (35) and (36), the channel capacity of the m cascade, Cm,
is given by:

Cm = max lim
τm→∞

K log ψm

τm
= K〈ζm〉 (37)

4. Conclusions

To maximize the signal event number at each signal step, that is to minimize code duration,
we deduced a simple relational formula between the logarithm of the selection probability and the
signal duration in Equations (18) and (19) [48]. Significantly, AEPR, <ζm>, was independent of the step
number and conserved during the whole cascade. In other words, AEPR is conserved in the model of
signal transduction in which the signal transduction is performed in the most effective manner.

Lapidus et al. [47] stated that having fewer fluctuations in rates leads to a more robust network
and more energy efficiency. Our current conclusion is compatible with this. In the recent work
from Sagawa and Ito [42,43], the entropy production rate is another important parameter for signal
transduction and transmission that involves a feedback controller, Maxwell’s daemon.

Further study will be required to prove which strategy of signal transduction the biological system
will select [41,42]. In particular, the cell system may select a strategy to maximize signal event number
during a given duration [45]—probably from a concern for metabolic efficiency, i.e., energetic cost in
consumption of ATP—or it may select the strategy of maximizing accuracy in information transmission
via a coding system with redundancy. Luo et al. actually measured the heat production in energy
consumption in carbohydrate metabolism and were successful at measuring the consumption in normal
and cancer cells; this can be applied to diagnosis of and therapy for cancer [18]. Another research has
shown that sensory adaptation systems from a viewpoint of minimize cost; however, whether there are
general thermodynamic principles governing cellular information processing remains unknown [51].
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Considering that entropy production results from chemical substances from a chemical bath, such as
ATP, channel capacity is a measurable quantity because information quantity can be discerned by
measuring concentration changes of ATP. In a similar fashion, we can estimate the whole entropy
production on the basis of the concentration change of ATP [46]. MAPK has been extensively studied
and sufficient data have been reported [25–39]. Then, we have a planning of analysis based on
the reported data as well as our own experimental data in future study. For the presented signal
transduction, we developed a simple formula governing cellular signal transduction, the conservation
of AEPR. In conclusion, this article’s information thermodynamic approach can provide a quantitative
method of analyzing signal transduction.
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