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Class I phosphoinositide 3-kinase (PI3K) generates phosphatidylinositol 3,4,5-trisphosphate
(PtdIns(3,4,5)P3) at the plasma membrane in response to growth factors, activating a sig-
nalling cascade that regulates many cellular functions including cell growth, proliferation,
survival, migration and metabolism. The PI3K pathway is commonly dysregulated in human
cancer, and drives tumorigenesis by promoting aberrant cell growth and transformation. Pt-
dIns(3,4,5)P3 facilitates the activation of many pleckstrin homology (PH) domain-containing
proteins including the serine/threonine kinase AKT. There are three AKT isoforms that are
frequently hyperactivated in cancer through mutation, amplification or dysregulation of up-
stream regulatory proteins. AKT isoforms have converging and opposing functions in tu-
morigenesis. PtdIns(3,4,5)P3 signalling is degraded and terminated by phosphoinositide
phosphatases such as phosphatase and tensin homologue (PTEN), proline-rich inositol
polyphosphate 5-phosphatase (PIPP) (INPP5J) and inositol polyphosphate 4-phosphatase
type II (INPP4B). PtdIns(3,4,5)P3 is rapidly hydrolysed by PIPP to generate phosphatidylinos-
itol 3,4-bisphosphate (PtdIns(3,4)P2), which is further hydrolysed by INPP4B to form phos-
phatidylinositol 3-phosphate (PtdIns3P). PtdIns(3,4)P2 and PtdIns3P are also important sig-
nalling molecules; PtdIns(3,4)P2 together with PtdIns(3,4,5)P3 are required for maximal AKT
activation and PtdIns3P activates PI3K-dependent serum and glucocorticoid-regulated ki-
nase (SGK3) signalling. Loss of Pten, Pipp or Inpp4b expression or function promotes tu-
mour growth in murine cancer models through enhanced AKT isoform-specific signalling.
INPP4B inhibits PtdIns(3,4)P2-mediated AKT activation in breast and prostate cancer; how-
ever, INPP4B expression is increased in acute myeloid leukaemia (AML), melanoma and
colon cancer where it paradoxically promotes cell proliferation, transformation and/or drug
resistance. This review will discuss how PTEN, PIPP and INPP4B distinctly regulate Pt-
dIns(3,4,5)P3 signalling downstream of PI3K and how dysregulation of these phosphatases
affects cancer outcomes.

Introduction: the PI3K/AKT signalling pathway
The class I phosphoinositide 3-kinase (PI3K) signalling pathway is a dynamic regulator of physiolog-
ical and cellular processes including cell proliferation, growth, survival, migration and metabolism.
Hyperactivation of PI3K/AKT signalling frequently occurs in human cancers, thus making it an at-
tractive therapeutic target. Class IA PI3Ks are heterodimeric enzymes consisting of a p110α/β/δ
catalytic subunit and a p85 regulatory subunit and are directly activated by receptor tyrosine ki-
nases (RTKs). Class IB PI3K heterodimers consist of a p110γ catalytic subunit and a p101 reg-
ulatory subunit and are activated downstream of G-protein-coupled receptors (GPCRs). PIK3CA,
which encodes the p110α subunit of class I PI3K, is frequently mutated or amplified in solid
and haematological tumours [1,2]. Class IA or IB PI3Ks are activated upon extracellular stimula-
tion of RTKs or GPCRs, and once activated phosphorylate the D3-position of the inositol ring of
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Figure 1. Regulation of PtdIns(3,4,5)P3 signalling by the phosphoinositide phosphatases

Extracellular stimulation of RTKs or GPCRs leads to the recruitment and activation of PI3K1A or PI3K1B respectively, which in turn phospho-

rylate PtdIns(4,5)P2 at the D5-position to transiently generate PtdIns(3,4,5)P3 on the inner leaflet of the plasma membrane. PtdIns(3,4,5)P3

binds several PH domain-containing proteins such as PDK1, mTORC2 and AKT isoforms (AKT1/2/3). PDK1 and mTORC1 phosphorylate

AKT at two distinct phosphorylation sites (e.g. Thr308 and Ser473 of AKT1 respectively) that promotes its activation. Phosphorylated AKT is

dephosphorylated by protein phosphatases PHLPP1/2 and PP2A, which inhibits its activity. PtdIns(3,4,5)P3 is rapidly dephosphorylated by

PTEN to form PtdIns(4,5)P2, terminating PI3K signalling. Alternatively, PtdIns(3,4,5)P3 is also dephosphorylated by inositol polyphosphate

5-phosphatases (5-phosphatases) such as PIPP to generate PtdIns(3,4)P2, which is also required for maximal AKT activation. PtdIns(3,4)P2

is hydrolysed by inositol polyphosphate 4-phosphatases (4-phosphatases) such as INPP4B to generate PtdIns3P, which facilitates phos-

phorylation and activation of SGK3. AKT and SGK3 activate a number of downstream signalling cascades that regulate cellular processes

including cell growth, proliferation, survival, metabolism and migration.

phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) to transiently generate a pool of phosphatidylinositol
3,4,5-trisphosphate (PtdIns(3,4,5)P3) at the plasma membrane (Figure 1). PtdIns(3,4,5)P3 is rapidly dephosphory-
lated at the D5-position of the inositol ring by inositol polyphosphate 5-phosphatases producing phosphatidylinosi-
tol 3,4-bisphosphate (PtdIns(3,4)P2). Both PtdIns(3,4,5)P3 and PtdIns(3,4)P2 facilitate the plasma membrane recruit-
ment of pleckstrin homology (PH)-domain containing proteins such as the serine/threonine kinase AKT [3-5]. Upon
phosphoinositide binding, AKT is phosphorylated at Threonine-308 (Thr308) within the T-loop region of the catalytic
domain by phosphoinositide-dependent kinase 1 (PDK1) and at Serine-473 (Ser473) in the C-terminal hydrophobic
motif by mammalian target of rapamycin complex 2 (mTORC2), thereby promoting its kinase activity to phosphory-
late a diverse spectrum of protein targets [5,6]. PI3K-dependent AKT signalling is inhibited by phosphatase and tensin
homologue (PTEN), which hydrolyses PtdIns(3,4,5)P3 at the D3-position phosphate of the inositol ring to form Pt-
dIns(4,5)P2 thus directly opposing PI3K. Alternatively, PtdIns(3,4,5)P3 can be hydrolysed by inositol polyphosphate
5-phosphatases including proline-rich inositol polyphosphate 5-phosphatase (PIPP) to form PtdIns(3,4)P2, which
in turn is degraded by inositol polyphosphate 4-phosphatases such as inositol polyphosphate 4-phosphatase type
II (INPP4B) to generate phosphatidylinositol 3-phosphate (PtdIns3P), which also terminates PI3K/AKT signalling
[7,8].
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AKT has three distinct isoforms
AKT has three highly homologous isoforms (AKT1, AKT2 and AKT3) expressed from distinct genes that are lo-
cated on separate chromosomes. AKT1 and AKT2 transcripts are ubiquitously expressed in human tissues, but
AKT3 expression is more restricted with the highest levels detected in brain, testes, lungs and mammary tissues
[9]. Isoform-specific Akt knockout mice display distinct physiological phenotypes such as reduced body weight
(Akt1−/−), a diabetic-like phenotype (Akt2−/−) or impaired brain development (Akt3−/−) indicating that the three
isoforms play non-redundant functional roles [10-15]. All three AKT isoforms contain both a T-loop (Thr308) and hy-
drophobic motif (Ser473) and are activated in a similar manner. Following AKT membrane recruitment, co-ordinated
phosphorylation of these residues by protein kinases such as PDK1 and mTORC2 promotes AKT activation [5,6]. In
fact, AKT is bound by the scaffolding protein IQGAP1 in a protein complex with class I PI3K, PDK1 and several other
pathway effectors to facilitate rapid synthesis of PtdIns(3,4,5)P3 and AKT activation [16]. However, whether the IQ-
GAP1 complex mediates AKT isoform-specific activation remains to be determined. Previously, additional protein ki-
nases have been shown to specifically phosphorylate Thr308 or Ser473 residues of AKT including DNA-dependent pro-
tein kinase (DNA-PK), integrin-linked kinase (ILK) and PI3K that may be implicated in isoform-specific activation
[17-20]. Upon its activation, AKT phosphorylates numerous downstream targets including GSK3β, PRAS40, FOXO
and p27 [7]. Although many effectors are phosphorylated by all three AKT isoforms, several isoform-specific sub-
strates have also been identified such as palladin that is phosphorylated exclusively by AKT1 and regulates cytoskeletal
remodelling [21]. Similarly, regulation of a number of AKT isoform-specific downstream effectors have been identi-
fied, including the degradation of nuclear factor of activated T cells (NFAT) mediated by AKT1 and up-regulation of
β1-integrin by AKT2 that regulates breast cancer cell migration [22,23]. Although they have overlapping roles, there
is emerging evidence that the distinct AKT isoforms have specific and sometimes paradoxical functions in cancer,
which may be related to differences in their tissue expression, activation states, subcellular localization or substrates
and downstream effectors.

Alterations of AKT isoforms in cancer
There is evidence of AKT dysregulation in some cancers arising from mutations, amplification or hyperactivation of
specific AKT isoforms. Somatic AKT mutations occur in up to 5% of human cancers and are clustered in the PH and
kinase domains [24]. Although the consequences of most AKT mutations have not been functionally verified, a spo-
radic E17K hotspot mutation in the PH domain of AKT1 has been identified in breast, colorectal and ovarian cancers
that promotes constitutive AKT1 recruitment to the plasma membrane [25]. AKT1E17K is associated with ER-positive
breast cancers [26,27]. Patients with breast cancers bearing AKT1E17K mutations exhibit worse outcomes compared
with patients with tumours expressing wild-type AKT1 [26]. Furthermore, 16% of AKT1-mutant tumours display
no additional alterations involved in disease progression suggesting that AKT1E17K is a potent oncogenic driver [26].
Transgenic expression of AKT1E17K in murine mammary epithelial cells results in mammary hyperplasia and in-
creased oestrogen receptor expression, although these mice do not develop malignant tumours even upon oestrogen
exposure [28]. However, knockin of AKT1E17K in PIK3CAwild-type replete MCF-7 luminal breast cancer cells restores
anchorage-independent cell growth and xenograft tumour growth comparable to parental MCF-7 PIK3CAE545K cells
suggesting that AKTE17K is a bona fide oncogene [29]. An E17K mutation in AKT3 was also identified in one case
of primary human melanoma, which may have similar functional consequences to AKT1, although this has not been
functionally verified [30].

Genetic amplification of AKT isoforms is a relatively uncommon event in cancer. AKT1 is occasionally ampli-
fied in human malignancies, including glioblastoma and a single case of human gastric adenocarcinoma [31,32].
AKT2 is amplified in cancers such as ovarian (12.2%), breast (2.8%) and pancreatic cancers (10%) and its expres-
sion is elevated in pancreatic ductal adenocarcinomas and colorectal cancers [33-37]. AKT3 is the most amplified
isoform in a range of cancers including glioblastoma, melanoma, endometrial and breast cancers [38]. Up-regulation
of AKT3 mRNA and protein expression levels occurs in oestrogen receptor-negative breast cancers and androgen
receptor-independent prostate cancer cells, and phosphorylated AKT3Ser473 expression is increased in metastatic
melanomas [39,40].

Hyperactivation of the PI3K/AKT pathway frequently results from dysregulation of the upstream regulatory pro-
teins, rather than alterations in AKT itself. PDK1 phosphorylates the Thr308 residue of AKT as well as other members
of the AGC kinase family and is amplified in human breast cancers [41,42]. Phosphorylation of Thr308 by PDK1
primes AKT for phosphorylation of its Ser473 residue by mTORC2, which is a protein complex made up of the
scaffolding protein mLST8, the catalytic subunit mTOR and regulatory proteins including DEP domain-containing
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Table 1 Divergent functions of AKT isoforms in mouse models of cancer

AKT isoform
expression AKT1 AKT2 AKT3 References

Global knockout ↓ 1 Reduced body weight Diabetic-like phenotype Impaired brain
development

[10-12,15]

Tumour latency ↑ 2 Reduces (mammary) No effect (mammary) Not reported [64,65]

↑ 3 Reduces (melanoma) Not reported Not reported [79]

↓ 1 Increases (lung) Reduces (lung) Minimal effect (lung) [63]

↓ 4 Reduces (hepatic) [66]

Tumour incidence ↑ 3 No effect (glioma) Increases (glioma) Increases (glioma) [38]

↓ 1 No effect (lung) Increase (lung) Minimal effect (lung) [63]

Tumour metastasis ↑ 2 Reduces (mammary) Increases (mammary) Not reported [64,65]

↑ 3 Increases (melanoma) Not reported Not reported [79]

1Global knockout. 2Tissue-specific transgene. 3RCAS-TVA system. 4Hepatic Akt1−/− and global Akt2−/−.

mTOR-interacting protein (DEPTOR), Tti1/Tel2, RICTOR and mSin1 [43]. Overexpression of Rictor frequently oc-
curs in human cancers, and RICTOR amplification has been identified in breast cancer, residual triple negative breast
cancers following neoadjuvant therapy and lung adenocarcinomas with mTORC1/2-inhibitor susceptibility [44-46].
In addition, a D412G mutation in the PH domain of the mSin1 inhibitory subunit of mTORC2 was identified in
ovarian cancer, which promotes constitutive mTORC2 activation [47].

More recently, additional protein kinases have been identified that hyperphosphorylate AKT at the Ser473/Thr308

residues and promote AKT kinase activity in cancer. DNA-PK phosphorylates nuclear AKT at the Ser473 region
in response to DNA-damage in platinum-resistant ovarian cancer cells where it mediates chemoresistance [17].
In 3T3-L1-GLUT4myc adipocytes, PI3K (p110β/p85α) directly phosphorylates AKT1 at Ser473/Thr308 and AKT2
residues at Ser474 under insulin-stimulated conditions [18]. ILK in complex with RICTOR phosphorylates the Ser473

residue of AKT in MDA-MB-231 and MDA-MB-468 breast cancer cells and PC3 prostate cancer cells, where it pro-
motes cell survival and invasion independent of mTORC2 [19,20]. However, expression of murine Ilk with point
mutations in the putative kinase domain reveals the in vivo kinase activity of ILK is dispensable for its function in
normal mouse renal development, suggesting it instead serves as an adaptor protein rather than a direct AKT ki-
nase [48]. Phosphorylation of the extreme C-terminal region (Ser477/Thr479) of AKT1 by CDK2/Cyclin A2 complex
primes and promotes AKT1 Ser473 phosphorylation, resulting in increased AKT-driven tumour growth in vivo [49].
In addition, post-translational modifications of AKT isoforms such as sumoylation or O-GlcNAcylation of AKT1,
and ubiquitination of AKT1/2 are known to regulate AKT activation and may affect its function in cancer [50-52].

PI3K/AKT signalling may also be increased and sustained in some human cancers due to dysregulation of the pro-
tein and lipid phosphatases that modulate the PI3K/AKT signalling pathway (Figure 2). Protein phosphatase 2 (PP2A)
complex and PH domain and leucine-rich repeat protein phosphatases 1 and 2 (PHLPP1/2) directly dephosphorylate
AKT, thus opposing its phosphorylation-dependent activation (reviewed in [53,54]). PHLPP2 specifically dephos-
phorylates the hydrophobic Ser473/472 motif of AKT1 and AKT3, whereas PHLPP1 dephosphorylates the Ser474/472

motif of AKT2 and AKT3 [55,56]. PHLPP1/2 expression is frequently decreased in human cancers such as colon,
breast, ovarian, prostate and hepatocellular carcinoma (HCC) [54]. Loss of heterozygosity (LOH) of the chromoso-
mal region (18q21.33) to which PHLPP1 maps occurs in colon cancers, and LOH of the PHLPP2 locus (16q22.3)
is observed in HCCs, Wilms’ tumours and breast, ovarian and prostate cancers [57-62]. The subunits of PP2A (e.g.
PR65/A, B56) also show decreased expression in cancers such as melanoma, acute myeloid leukaemia (AML), breast
cancer and colorectal cancer [53]. In addition, the spatio-temporal regulation of PtdIns(3,4,5)P3 and PtdIns(3,4)P2
is essential for recruiting AKT to the plasma membrane to be phosphorylated by protein kinases. The phosphoinosi-
tide phosphatases such as PTEN, PIPP and INPP4B dynamically regulate PtdIns(3,4,5)P3 and PtdIns(3,4)P2 levels,
and play prominent roles in human cancers and their function will be further discussed below. Thus, the PI3K/AKT
pathway is a complex network of proteins and phosphoinositides that can be altered at many different points leading
to dysregulation of the signalling axis.

Divergent functions of AKT isoforms in cancer
AKT is considered a bona fide oncogene in human cancers, yet disruption of individual AKT isoforms reveals dis-
tinct and opposing roles in tumorigenesis (Table 1). Akt1 or Akt2 knockout in a viral oncogene-induced mouse model
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Figure 2. Dysregulation of the PI3K/AKT signalling pathway promotes AKT hyperactivation and tumorigenesis

Hyperactivation of PI3K/AKT signalling commonly occurs following dysregulation of the PI3K pathway regulatory proteins including PI3K,

AKT, mTORC2, PDK1, PTEN, PIPP, INPP4B, PHLPP and PP2A. Aberration in the function of these proteins can result from mutations, gene

amplification, promoter methylation, hyperphosphorylation, LOH, down-regulation by miRNAs or changes in protein and mRNA expression.

This leads to disruption of downstream pathway effectors that regulate cell growth, proliferation, migration and survival.

of lung cancer demonstrated that Akt1-ablation inhibited, whereas Akt2-ablation enhanced lung tumour initiation,
highlighting their functionally diverse roles [63]. In a similar manner, transgenic expression of AKT1 accelerates the
tumour incidence of PyMT mammary tumour mice, while AKT2 transgenic expression had no effect on tumour
latency [64]. However, transgenic mammary expression of AKT1 or AKT2 alone in wild-type mice is insufficient to
promote de novo tumour formation [64,65]. In contrast, hepatic Akt1 knockout in an Akt2-null murine model trig-
gers a FOXO-dependent inflammatory response leading to spontaneous HCC, which was not observed with hepatic
knockout of Akt1 or Akt2 alone, suggesting a novel co-operative and potentially tumour-suppressive effect of AKT1/2
in hepatic tissue [66]. In triple negative breast cancers, increased AKT3 expression is prevalent and may be driven by
gene amplification [67,68]. shRNA-mediated knockdown of AKT1, AKT2 or AKT3 in triple negative breast cancer
cells revealed that AKT3 is preferentially required for 3D tumour spheroid growth and in vivo xenograft tumour
growth through regulation of the cell-cycle inhibitor p27, whereas knockdown of AKT1 and AKT2 had little effect
on tumour growth [67]. Furthermore, AKT3 depletion sensitizes triple negative breast cancer cells to the pan-AKT
inhibitor GSK690693 [67]. Similarly, AKT3 is up-regulated in T47D luminal breast cancer cells in response to the
AKT inhibitor MK2206 that confers resistance to MK2206, and AKT3 depletion in these cells selectively increases
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sensitivity to MK2206 treatment whereas AKT1 or AKT2 depletion has no effect [69]. AKT3 mRNA and protein
expression is also increased in prostate tumours, and overexpression of AKT3 promotes cell proliferation in a range
of prostate cancer cell lines [70].

The phenotype of Akt3 knockout mice indicates that AKT3 function is critical in brain tissue, thus, perhaps
not surprisingly, AKT3 plays a significant role in human gliomas. In primary murine astrocytes with mutant
PTEN/p53/EGFR alleles, Akt3-ablation specifically inhibited anchorage-independent cell growth while Akt1- or
Akt2-ablation had no effect [71]. Similarly in a PDGFB-driven mouse model of low-grade glioma, transgenic ex-
pression of AKT2 or AKT3 but not AKT1 greatly accelerated tumour formation [38]. Strikingly, RNA microarray
analysis revealed that transgenic AKT3 expression enriches expression of genes associated with DNA damage re-
sponse, which mediates DNA repair and resistance to radiotherapy and chemotherapy treatments suggesting that
increased AKT3 expression may promote malignancy [38]. However, in a separate study, AKT3 overexpression re-
duced cell-cycle progression and cell survival in human glioblastoma cell lines, and increased the tumour survival of
mice with orthotopic injection of glioblastoma cells [72]. Furthermore, increased AKT3 mRNA levels were associ-
ated with increased patient survival and lower grade glioblastomas suggesting a more favourable outcome for these
patients, whereas AKT1 and AKT2 expression was increased in higher grade tumours [72].

In addition to their divergent functions in tumour growth and maintenance, AKT isoforms have distinct functions
in regulating cell migration and cancer metastasis that are highly context and cell-type specific. Transgenic overex-
pression of constitutively active AKT1 and AKT2 in oncogene-driven mouse models of breast cancer have revealed
their opposing effects on cell migration and tumour metastasis, whereby AKT1 inhibits but AKT2 promotes the es-
tablishment of metastatic lesions [64,65,73]. In vitro studies in breast cancer cell lines suggest that AKT1-mediated
degradation of the pro-invasion transcription factor NFAT and the tumour-suppressor tuberous sclerosis complex
2 (TSC2) decreases, whereas AKT2-mediated up-regulation of pro-invasive β1-integrin promotes cell migration
[22,23,74]. In addition, the actin-bundling protein palladin is specifically phosphorylated at Ser507 and activated by
AKT1 leading to an inhibition of cell migration mediated via cytoskeletal remodelling [75]. In contrast, AKT2 pro-
motes palladin stability and mRNA up-regulation via unknown mechanisms [76]. Phosphorylation of Rho-GTPase
by AKT1 in inflammatory breast cancer cells is critical for promoting caveolin-1-mediated migration suggesting that
AKT1 conversely promotes migration in this cellular context [77].

In PC-3 prostate cancer cells, siRNA-mediated knockdown of AKT1 inhibited cell migration and cell adhesion,
whereas AKT2 knockdown promoted cell migration suggesting that AKT1 has a pro- and AKT2 has an antimigratory
role in prostate cancer, in contrast with their functions in breast cancer [78]. Similarly, transgenic expression of con-
stitutively active AKT1 in BRAFV600E/Cdkn2aNull non-metastatic melanoma model mice induces metastatic lesions
in the brain and lung [79]. In MDA-MB-231 and MCF-7-Ras breast cancer cells, which have more stem-like proper-
ties, AKT1 inhibition has a more prominent effect than AKT2 inhibition in reducing the cancer cell stem phenotype,
as reflected by reduced mesenchymal-epithelial transition (MET) and expression of epithelial-like markers [80]. As
epithelial–mesenchymal transition (EMT) is a critical process in metastatic invasion, AKT1 induction of stem proper-
ties may confer an increase in invasive and metastatic potential of stem-like tumour cells. Interestingly, Akt3-ablation
in mutant PTEN/p53/EGFR murine astrocytes inhibited cell migration whereas Akt1 and Akt2 ablation had no ef-
fect [71]. However, in vascular tumour cells AKT3 depletion increases whereas AKT1 depletion decreases sprouting
angiogenesis and wound healing capacity, suggesting that AKT3 conversely inhibits vascular tumour growth and
migration [81].

AKT displays a range of isoform-specific functions in different tissues, yet the explanation for such a divergence in
functions is poorly understood. These distinct functions are likely to be highly context-specific and affected in part by
expression levels, subcellular localization and/or the unique interactome of the different isoforms. Other kinase fam-
ilies such as the protein kinase C (PKC) isozymes have overlapping and opposing functions in human cancers similar
to AKT, suggesting that divergent kinase functions are likely to mediate a homoeostatic balance of cellular pathways
that are often exploited in human malignancies [82]. As clinical trials with pan-AKT inhibitors have shown limited
success in cancer treatment this far, perhaps a greater understanding of the isoform-specific effects of AKT may assist
in the development of more targeted AKT isoform therapeutic strategies. Moreover, increasing our understanding
of AKT regulatory enzymes, particularly the phosphoinositide phosphatases, may elucidate additional contributing
factors for isoform-specific signalling. The inositol polyphosphate phosphatases including PTEN, PIPP and INPP4B
regulate PtdIns(3,4,5)P3 and PtdIns(3,4)P2 levels and thus modulate AKT activation. These lipid phosphatases were
initially predicted to be tumour suppressors whereby loss of expression would increase PI3K/AKT signalling and tu-
mour growth and progression thereby leading to a worse prognosis. However, this review will discuss their roles in
regulating isoform-specific AKT functions, and their potential to play highly dynamic and complex roles in cancer
biology beyond a conventional tumour suppressor function.
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Regulation of PtdIns(3,4,5)P3 signalling by phosphoinositide
phosphatases
PTEN
PTEN is a well-established tumour suppressor and its function is lost in a wide spectrum of human cancers via mul-
tiple mechanisms including sporadic mutations, deletions, transcriptional silencing, protein instability or subcellular
mislocalization (reviewed in [83,84]). PTEN is one of the most frequently mutated and down-regulated tumour sup-
pressive genes in human cancer [83]. Single germ line mutations in PTENare sufficient to predispose individuals
to PTEN hamartoma tumour syndromes (PHTS) that result in tumour-like lesions throughout the body and an in-
creased risk of developing malignant tumours [85]. Pten−/− mice die embryonically, but Pten haploinsufficient mice
in part recapitulate PTEN-deficient human cancers, and exhibit widespread neoplasia and hyperplasia in multiple tis-
sues [86-88]. Functionally, PTEN is a dual specificity protein phosphatase that dephosphorylates p-tyrosine, -serine
and -threonine residues as well as a lipid phosphatase that hydrolyses the D3-position phosphate from the inosi-
tol head group of PtdIns(3,4,5)P3. PTEN’s tumour suppressor function was first characterized via its phosphoinosi-
tide phosphatase activity, whereby hydrolysis of PtdIns(3,4,5)P3 by PTEN directly opposes PI3K signalling activity
[89-91]. Thus, PTEN loss drives PI3K/AKT hyperactivation. The phosphoprotein phosphatase function of PTEN has
been linked to cancer signalling via dephosphorylation of protein targets such as focal adhesion kinase (FAK), insulin
receptor substrate 1 (IRS-1), c-SRC or PTEN itself, all of which regulate tumorigenesis [92-95]. However, studies in
vitro and in vivo have confirmed that PTEN phosphoinositide phosphatase activity plays a more predominant tu-
mour suppressor role than the phosphoprotein activity [96,97]. For example, mice with single allele knockin of either
the catalytically inactive (C124S) mutant lacking both protein and lipid phosphatase activity or a lipid phosphatase
inactive (G129E) PTEN mutant, display similar tumour spectra to each other, but show accelerated tumorigenesis
compared with Pten+/− mice [97]. PTEN mutant proteins heterodimerize with wild-type PTEN protein thereby dis-
rupting PTEN function in a dominant negative manner [97]. Critically, AKT hyperactivation resulting from loss of
PTEN lipid phosphatase function is the prominent oncogenic driving force in PTEN-deficient cancers.

The molecular mechanisms by which specific AKT isoforms mediate tumorigenesis downstream of PTEN-loss
have not been well characterized. Initial reports suggested a prominent role for AKT1 in PTEN-deficient cancers.
Strikingly, Akt1 ablation in Pten+/- mice prevented the onset of neoplasia in endometrial, prostate and thyroid tissues,
and reduced the incidence of intestinal polyps and high-grade neoplastic lesions in the adrenal medulla (Table 2) [98].
Conversely, knockout of Akt2 in Pten+/− mice had no significant effects on neoplastic growth in most tissues except
the thyroid gland, where the inhibition of neoplastic incidence was comparable to Akt1−/−;Pten+/− mice (Table 2)
[99]. Examination of the relative expression of AKT1and AKT2in these murine tissues revealed that the thyroid gland
was the only tissue where AKT2 expression was higher than that of AKT1, suggesting a model whereby the onset of
PTEN-deficient cancer is preferentially driven by AKT1, except in tissues where AKT2-enrichment is sufficient to
co-operatively drive neoplasia.

However, other findings challenge the dispensability of AKT2 in the progression of PTEN-deficient solid tumours
including prostate and breast cancer and glioblastoma [100]. Inducible shRNA knockdown of AKT1 or AKT2 in
PTEN-deficient prostate cancer cells inhibited the formation of 3D spheroids, suggesting that both AKT isoforms
may be required for initial tumour growth. In contrast, induction of AKT2 but not AKT1 silencing after 1 week
caused widespread apoptosis and compromised cell morphology leading to complete disruption of spheroid archi-
tecture, which was recapitulated upon treatment of spheroids with an AKT2-specific inhibitor, suggesting that AKT2
plays a dominant role in 3D tumour survival and progression (Table 2) [100]. AKT2 silencing had a similar effect
on PTEN-deficient breast cancer and glioblastoma cell models, whereby AKT2 knockdown caused regression of 3D
spheroid growth comparable to prostate cancer models (Table 2) [100]. Importantly, induction of AKT1 knockdown
slowed xenograft tumour growth, whereas AKT2 knockdown resulted in a striking regression of tumour size suggest-
ing decreased tumour survival capacity [100]. The co-operativity between AKT2 and PTEN-deficiency was further
demonstrated in colon cancer, where loss of PTEN function was required for enhanced liver metastasis of intraspleni-
cally injected colorectal cancer cells overexpressing AKT2 (Table 2) [101]. These studies highlight the differential yet
indispensable roles of AKT1 and AKT2 in PTEN-deficient cancer development, suggesting that AKT1 may drive the
initial establishment of solid tumours whereas AKT2 may be intrinsic to tumour maintenance and survival.

PIPP
PIPP (INPP5J, Pib5pa, PtdIns(4,5)P2 5-phosphatase A) has recently been demonstrated to act as a putative tumour
suppressor in breast cancer and also as a regulator of AKT1-dependent breast cancer metastasis. PIPP is one of the ten
mammalian inositol polyphosphate 5-phosphatases that hydrolyses the D5-position phosphate from the inositol ring
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Table 2 PI3K signalling effector regulation following dysregulation of PTEN, PIPP or INPP4B in melanoma, breast, prostate,
thyroid and colorectal cancers

Cancer type PTEN PIPP
INPP4B (tumour

suppressor function)
INPP4B (oncogenic

function)

Breast cancer AKT2 AKT1 AKT SGK3

Knockdown of AKT2 in
PTEN-deficient breast cancer

cells reduces 3D spheroid
growth [100].

Knockdown of AKT1 rescues
cell migration defect in

PIPP-deficient breast cancer
cells [105].

INPP4B knockdown promotes
AKT-mediated breast cancer cell

growth and proliferation
[121,129].

INPP4B knockdown reduces
SGK3-mediated cell growth and

proliferation [144].

Melanoma AKT AKT AKT SGK3

PTEN knockdown in
melanocytes enhances

AKT-mediated cell growth [107].

PIPP overexpression in
melanoma cells reduces

AKT-mediated cell proliferation
and survival [107].

INPP4B knockdown promotes
AKT-mediated melanoma cell
growth and proliferation [133].

INPP4B overexpression promotes
SGK3-mediated cell growth and

proliferation [143].

Prostate cancer AKT1/AKT2 Not reported. AKT Not reported.

Akt1 ablation prevents prostate
tumour onset in Pten+/− mice

[98].

INPP4B knockdown promotes
AKT-mediated prostate cancer

cell growth and proliferation
[130].

Knockdown of AKT2 in
PTEN-deficient prostate cancer

cells reduces 3D spheroid
growth [100].

Thyroid cancer AKT1/AKT2 Not reported. AKT2 Not reported.

Akt1 or Akt2 ablation prevents
thyroid tumour onset in Pten+/−

mice [98].

Inpp4b ablation in Pten+/− mice
promotes AKT2-dependent
thyroid tumour growth [126].

Colorectal cancer AKT2 Not reported. Not reported. AKT/SGK3

PTEN loss is required for
metastasis of colorectal cancer

cells overexpressing AKT2 [101].

INPP4B overexpression promotes
AKT- and SGK3-mediated cell
growth and proliferation [128].

of PtdIns(4,5)P2, PtdIns(3,4,5)P3, inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol-1,3,4,5-tetrakisphosphate
(Ins(1,3,4,5)P4) [102,103]. In addition to the conserved 5-phosphatase domain, PIPP also contains N- and C-terminal
proline-rich domains containing six RSXSXP 14–3-3 ζ-binding motifs and a SKICH domain C-terminal to the
5-phosphatase domain, which mediates its constitutive localization to the plasma membrane in quiescent and epider-
mal growth factor (EGF)-stimulated cells [104]. Although both PtdIns(3,4,5)P3 and PtdIns(3,4)P2 are required for
maximal AKT activation, a number of studies have revealed that PIPP regulates AKT activation and consequently the
phosphorylation of downstream effectors including GSK3β, PRAS40, 4E-BP1 and p70 S6 kinase [105-107]. Murine
knockout of Pipp in all tissues results in no overt phenotype at 4 months of age and does not lead to de novo tumour
formation [105]. However, Pipp ablation in an MMTV-PyMT mouse model of breast cancer promotes mammary
tumour initiation and growth resulting in larger tumours compared with mice expressing Pipp. PyMT;Pipp−/− mice
also exhibit increased AKTSer473 phosphorylation in both hyperplastic foci and primary mammary tumours sug-
gesting that Pipp loss enhances oncogene-driven breast cancer initiation and progression via regulating PI3K/AKT
signalling.

Paradoxically, despite promoting the formation of larger mammary tumours, Pipp ablation in the PyMT mouse
model resulted in reduced numbers of lung metastases [105]. Moreover, Pipp-deficient mammary cancer cells exhib-
ited reduced cell migration and invasion in vitro, a defect rescued by the shRNA-mediated knockdown of Akt1 but
not Akt2 (Table 1) [105]. This is consistent with the established role for AKT1 in inhibiting and AKT2 in promot-
ing breast cancer cell migration and metastasis [22,108]. There is no evidence that loss of Pipp results in differen-
tial AKT isoform activation [105]. AKT1 mRNA is the major isoform expressed in murine mammary tumour cells.
However, AKT1 and AKT2 are equally expressed in a number of ER-negative human breast cancer cell lines including
MDA-MB-231 cells in which PIPP shRNA knockdown also reduced cell migration and expression of AKT1 down-
stream targets suggesting that the impaired migration is not simply due to differences in AKT isoform levels [105,109].
Alternatively, PIPP regulation of AKT1-dependent cell migration may reflect differences in AKT isoform subcellular
localization. AKT1 localizes to the cytoplasm in a number of human breast cancer cell lines, whereas AKT2 is present
in mitochondria and the cytoplasm and AKT3 exhibits a nuclear and nuclear membrane distribution [109]. Fur-
ther studies are required to fully elucidate the complex molecular mechanisms by which phosphoinositide signalling
regulates AKT isoform-specific cell migration and metastasis.
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PIPP is reported to be one of the ten highest ranked genes for predicting outcomes in human breast cancer and
therefore understanding its exact role in regulating mammary tumorigenesis and metastasis is of particular impor-
tance [110]. The INPP5J gene is located on chromosome 22q12 and allelic loss of this region occurs in ∼30% of breast
cancers [111-113]. Furthermore, reduced PIPP copy number has been reported in 15–20% of primary melanomas
and melanoma cell lines, and PIPP expression is epigenetically suppressed by HDAC2 and -3-mediated histone hy-
poacetylation in melanoma cell lines [107]. Higher PIPP expression in breast cancer correlates with a better prognosis,
defined as no development of distant metastases within 5 years of diagnosis, whereas lower PIPP mRNA expression
predicts for reduced relapse-free and overall survival [105,114]. However, this decrease in survival does not appear
to be consistent with the observation that Pipp ablation reduces mammary carcinoma metastasis in MMTV-PyMT
mice [105]. There are several possible explanations for this apparent paradox. Firstly, although Pipp loss significantly
reduces mammary carcinoma metastasis, all mice still develop lung metastases in this particular oncogene-driven
murine model [105]. As Pipp ablation promotes cell proliferation, metastatic PIPP-deficient cells may have a prolif-
erative advantage and facilitate secondary tumour establishment and growth at distant sites. Secondly, PIPP regulates
cell migration in an AKT1-dependent manner. Expression of both PIPP and AKT1 was reduced in a subset of human
breast cancers and it is interesting to speculate that hyperactivated AKT2 in these tumours may promote metastasis
leading to a poorer outcome [105] although this has yet to be shown.

Studies in melanoma cell lines and xenografts have revealed that PIPP also acts as a potential tumour sup-
pressor in melanoma. Transient overexpression of PIPP resulted in decreased proliferation, survival and AKT ac-
tivation in melanoma cell lines (Table 2) [107]. Additionally, overexpression of PIPP in the ME1007 melanoma
cell line resulted in reduced xenograft tumour growth [107]. Accordingly, shRNA knockdown of PIPP promoted
anchorage-independent cell growth of cultured melanocytes [107], similar to the results observed with PIPP shRNA
in breast cancer cell lines [105]. However, overexpression of PIPP in the MEL-FH melanoma cell line decreased cell
migration [115 ]. Interestingly, expression of constitutively active AKT1 promoted metastasis in a murine melanoma
model [79] in contrast with the reduced metastasis observed in murine mammary cancer models [64,65,73]. Al-
though the effects of PIPP loss on melanoma cell migration and metastasis have not been reported, it is interesting
to speculate that this may lead to increased cell migration and metastasis via AKT1 activation.

AKT1 exhibits a cell type-specific role in regulating cell migration in different cancer cells. Knockdown of AKT1
decreases cell migration in lung and ovarian cancer cells [116,117] but increases cell migration in endometrial and
breast cancer cells [105,118]. Conversely, expression of constitutively active AKT1 impairs breast cancer cell migra-
tion [22,23,75] but promotes invasion of pancreatic carcinoma and fibrosarcoma cells [119,120]. Therefore, it will be
interesting to explore the effects of PIPP loss on tumour cell invasion and metastasis in other cancers.

Interestingly, PIPP expression positively correlates with PTEN expression in primary human melanomas, with
∼35% of PTEN-null melanomas exhibiting PIPP deficiency [107]. Co-expression of exogenous PIPP and PTEN in a
melanoma cell line further decreased pAKTSer473 compared with either phosphatase alone [107]. Conversely, knock-
down of both PIPP and PTEN resulted in increased AKT phosphorylation compared with knockdown of either phos-
phatase alone suggesting that combined loss of PIPP and PTEN may additively hyperactivate PI3K/AKT signalling
in melanoma cells [107], consistent with the contention that PIPP and PTEN play non-redundant roles in regulating
PtdIns(3,4,5)P3-dependent signalling. However, knockdown of both PIPP and PTEN may trigger senescence in cul-
tured melanocytes under anchorage-independent conditions, although a proportion of double knockdown cells may
evade senescence and form significantly larger colonies [107]. A similar phenotype was observed in human mam-
mary epithelial cells with shRNA knockdown of both PTEN and the inositol polyphosphate 4-phosphatase INPP4B
[121].

INPP4B
INPP4B together with INPP4A are members of the mammalian inositol polyphosphate 4-phosphatase family.
INPP4A and INPP4B share 37% sequence homology and contain an N-terminal C2 domain(s), a PEST sequence
and an N-terminal dual specificity 4-phosphatase domain [122,123]. INPPB preferentially displays catalytic activity
towards PtdIns(3,4)P2, but hydrolyses several other lipid species in vitro including PtdIns(4,5)P2, PtdIns(3,4,5)P3,
inositol-1,3,4-trisphosphate (Ins(1,3,4)P3) and Ins(3,4)P2 [121,124-126]. Additionally, INPP4B displays intrinsic
p-tyrosine, -serine and -threonine phosphatase activity [127,128]. INPP4B was characterized as an inositol polyphos-
phate 4-phosphatase that preferentially dephosphorylates plasma membrane-bound PtdIns(3,4)P2 at the D4-position
of the inositol ring to form PtdIns3P [121,124,125]. As both PtdIns(3,4)P2 and PtdIns(3,4,5)P3 are required for AKT
recruitment to the plasma membrane and maximal AKT activation, INPP4B was predicted to act as a tumour suppres-
sor by inhibiting PI3K/AKT signalling. Indeed, INPP4B tumour suppressor function was initially identified in breast
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cancer. INPP4B mRNA expression is lost in a cohort of basal-like breast cancers and its reduced expression is associ-
ated with higher tumour grade and worse survival [121,129]. LOH of the gene region of INPP4B(4q31.21) occurs in
basal-like breast tumours (55.6%), ovarian cancers (39.8%) and melanomas (21.6%) [121]. INPP4B shRNA knock-
down in breast cancer cell lines increased cell proliferation, motility, anchorage-independent cell growth, xenograft
tumour growth and disrupted mammary acini morphology in an AKT-dependent manner (Table 2) [121,129]. In-
terestingly, INPP4B protein expression is frequently lost in primary human PTEN-null breast tumours [129], and
PTEN depletion in mammary epithelial cells phenocopies the changes in cell proliferation, motility and AKT ac-
tivation following INPP4B depletion [121]. However concomitant shRNA-mediated knockdown of INPP4B and
PTEN decreased cell proliferation and anchorage-independent cell growth compared with control cells, and in-
creased cellular senescence which was rescued upon shRNA knockdown of p53 [121]. Colonies that formed un-
der anchorage-independent cell growth conditions in INPP4B/PTEN knockdown cells were larger than INPP4B or
PTEN single knockdown colonies, suggesting that depletion of both INPP4B and PTEN can enhance cell growth in
rare events in a manner similar to dual PTEN/PIPP knockdown in melanoma cell lines [107,121].

In addition, examination of INPP4B function in prostate cancer has supported its role as a tumour suppressor.
Loss of INPP4B expression in prostate cancers is associated with reduced time for biochemical recurrence and
poorer outcomes [130,131]. INPP4B shRNA knockdown in LNCaP prostate cancer cell lines increased cell pro-
liferation and AKT activation, whereas its ectopic expression in PC-3 prostate cancer cells decreased in vivo stro-
mal invasion in chick–embryo models (Table 2) [130,132]. Similarly, INPP4B protein expression is progressively
lost in more advanced stages of human melanocytic tumours, and its shRNA-mediated knockdown in melanoma
cell lines enhanced AKTSer473 phosphorylation, proliferation, migration and in vivo tumour growth [133]. Collec-
tively, these findings support a model whereby INPP4B functions as a tumour suppressor by negatively regulating
PtdIns(3,4)P2-dependent AKT signalling.

In vivo depletion of Inpp4b in mice is not sufficient to drive spontaneous tumorigenesis per se as Inpp4b−/−

mice are viable with a normal lifespan and no evidence of tumour development up to 2 years of age, although mice
exhibit decreased bone mass and osteoporosis from 8 weeks of age [125,126,134]. This is in contrast with Pten+/−

mice that develop hyperplasia and in turn cancer in multiple organs from an early age [86, 87, 88]. Expression of
both INPP4B and PTEN is frequently lost in thyroid and endometrial cancers, suggesting a co-operative tumour
suppressor function for both enzymes. Consequently, Inpp4b−/− mice were crossed with Pten+/− mice to exam-
ine the co-operative tumour suppressor function of INPP4B in the context of PTEN haploinsufficiency. Strik-
ingly, Inpp4b−/−;Pten+/− mice developed aggressive thyroid tumours resembling human follicular variant papil-
lary thyroid carcinoma (FV-PTC), which was not observed in Pten+/− mice, leading to reduced survival. Further-
more, Akt2−/−;Inpp4b−/−;Pten+/− mice exhibited no overt FV-PTC phenotype and showed an improved lifespan,
whereas Akt1−/−;Inpp4b−/−;Pten+/− were comparable to Inpp4b−/−;Pten+/− mice, suggesting that AKT2 drives
Inpp4b/Pten-deficient thyroid tumorigenicity (Table 2) [126]. Indeed, this suggests that INPP4B, like PTEN, prefer-
entially regulates AKT2 activation in thyroid tissue in an isoform-dependent signalling model. INPP4B but not PTEN
co-localizes with AKT2 and PIK3C2α on early endosomes of thyroid cancer cells where INPP4B negatively regulates
PIK3C2α-mediated AKT2 signalling through PtdIns(3,4)P2 hydrolysis [134]. An independent report showed that
PTEN binds to PtdIns3P-positive endocytic vesicles along microtubules where it prevents AKT activation through
its action on vesicular PtdIns(3,4,5)P3 hydrolysis [135]. INPP4B together with VPS34 was postulated to dynami-
cally regulate PtdIns3P on endocytic vesicles to mediate PTEN recruitment and although this has not been shown
experimentally, it suggests an endosomal function for INPP4B signalling. INPP4B can also directly dephosphory-
late PtdIns(3,4,5)P3 in Pten-null thyroid tissue and concomitant loss of Inpp4b and Pten promoted a striking in-
crease in PtdIns(3,4,5)P3 levels [126]. This analysis suggests in some contexts that INPP4B is a direct regulator of
PtdIns(3,4,5)P3, which is predicted to act as the last line of defence against deleterious PtdIns(3,4,5)P3 accumulation
in PTEN-deficient thyroid cancer cells.

INPP4B can directly degrade PtdIns(3,4)P2 signals by dephosphorylating the inositol head group, yet recent stud-
ies suggest that INPP4B may in other contexts increase PtdIns(3,4,5)P3 levels [128, 136]. TAPP1/2 proteins bind to
PtdIns(3,4)P2 and drive a negative feedback loop that recruits inhibitory PI3K-signalling proteins such as PTPL-1
to decrease PtdIns(3,4,5)P3 production [136,137]. Degradation of PtdIns(3,4)P2 by INPP4B was postulated to re-
duce this TAPP1/2-mediated feedback and thus conversely promote PtdIns(3,4,5)P3 accumulation [136]. INPP4B
has also been shown to indirectly up-regulate PtdIns(3,4,5)P3 through PTEN destabilization. In colon cancer cell
lines, INPP4B binds and dephosphorylates the C-terminal tail region of PTEN leading to PTEN degradation and
thereby an increase in PtdIns(3,4,5)P3 and subsequently PI3K signalling activation [128]. However, this apparent
inhibition of PTEN function is in contrast with previous findings, which suggests that non-phosphorylated PTEN
displays increased lipid phosphatase activity [138,139]. Thus, the consequences of post-translational modifications
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by INPP4B on PTEN catalytic activity require further examination. Nonetheless, INPP4B overexpression promoted
anchorage-independent cell growth in FHC colon epithelial cells, cell proliferation in SW620 and HT-29 colon cancer
cells, and INPP4B shRNA knockdown in HTC116 colon cancer cells reduced murine xenograft tumour size [128].
Therefore, despite INPP4B tumour suppressor function being reported in vivo and in vitro in various cancers, there
is emerging evidence that INPP4B also plays a paradoxical oncogenic role in certain other cancer contexts.

The recent emergence of serum and glucocorticoid-regulated kinase (SGK3) as an oncogenic effector in
PIK3CA-mutant breast cancer cells independent of AKT [140] has led to the examination of INPP4B as a medi-
ator of PI3K/SGK3 signalling. SGK3 is phosphorylated and activated upon binding of its PX domain to endoso-
mal PtdIns3P [141]. Treatment of U20S cells with class I PI3K inhibitors (GDC-0941 or BKM120) reduced SGK3
phosphorylation up to 40% in a dose-dependent manner, suggesting that SGK3 is regulated downstream of class
I PI3Ks [142]. In colon cancer cells, INPP4B-mediated degradation of PTEN promoted tumour growth, prolifer-
ation and co-operatively enhanced AKT and SGK3 activation downstream of PI3K (Table 2) [128]. However, as
INPP4B generates a membrane-bound pool of PtdIns3P, INPP4B was predicted to trigger SGK3 activation through
hydrolysis of plasma membrane-bound PtdIns(3,4)P2. Indeed, high INPP4B protein expression in fresh melanoma
isolates and melanoma cell lines was associated with high pSGK3T320 levels [143]. INPP4B shRNA knockdown at-
tenuated melanoma cell proliferation and xenograft tumour growth, whereas INPP4B overexpression enhanced cell
proliferation and promoted melanocyte anchorage-independent cell growth, driven by INPP4B-mediated activa-
tion of SGK3 in an AKT-independent manner (Table 2) [143]. In breast cancer cells, increased SGK3 phosphory-
lation was associated with increased INPP4B expression, as well as PIK3CA and PTEN mutations [144 ]. shRNA
knockdown of INPP4B in MCF-7 and ZR-75-1 breast cancer cells, which express high levels of SGK3, reduced
anchorage-independent cell growth, cell migration, 3D colony formation and mouse xenograft tumour growth as
well as inhibiting IGF-1-stimulated SGK3 phosphorylation (Table 2) [144]. Thus in cell lines with high SGK3 ex-
pression, INPP4B may provide a molecular gateway to the PI3K/SGK3 signalling axis that diverges from the canon-
ical PI3K/AKT signalling pathway. SGK3 co-localizes with EEA1 at early endosomes and does not exhibit a plasma
membrane distribution [142 ]. Given that INPP4B localises to early endosomes in thyroid cancer cells, these findings
provide further evidence of a potential endosomal function for INPP4B in particular cancers.

The complexity of INPP4B function is also highlighted in AML. Several studies have demonstrated increased
INPP4B expression, which leads to chemotherapeutic resistance and poor patient outcomes [145-147]. Increased
INPP4B expression was observed in a subset of AML cases associated with reduced therapeutic response, shorter event
free and overall survival and was an independent biomarker of patient prognosis [145,146]. Induction of INPP4B in
AML cells promoted cell proliferation, survival and desensitization to chemotherapeutic treatment in vivo and in
vitro [145,146]. Conversely, siRNA knockdown of INPP4Bsensitized AML cells to chemotherapeutic treatment, by
inhibiting the activation of several DNA repair proteins including ATM and BRCA1 [147]. However, ectopic expres-
sion of a catalytically inactive INPP4B mutant yielded contrasting effects on the therapeutic response. Dzneladze
et al. [146] identified a phosphatase-dependent function for INPP4B in mediating drug response, whereby loss of
phosphatase activity ablated the reduced sensitivity to daunorubicin observed with wild-type INPP4B expression.
In contrast, Rijal et al. [145] reported that catalytically inactive-INPP4B expression recapitulated the chemoresis-
tant phenotype, suggesting a phosphatase-independent function of INPP4B in cancer. INPP4B expression was not
associated with changes in AKT phosphorylation in primary AML samples or in cell lines, further suggesting an
AKT-independent function for INPP4B. INPP4B may have more diverse molecular functions beyond its role as a
lipid and protein phosphatase, and examination of potential protein–protein interactions may further elucidate its
complex and dynamic role in cancer signalling.

INPP4B expression is altered in human cancers and the phosphatase appears to play both oncogenic and tumour
suppressor roles depending on whether expression is increased or decreased. These studies suggest a thorough exam-
ination of the molecular functions of the inositol polyphosphate phosphatases in different cancers may reveal novel
roles beyond their canonical tumour suppressor roles as negative regulators of PI3K/AKT signalling.

Regulation of phosphoinositide phosphatases by miRNAs
Reduced expression of PI3K pathway enzymes such as PTEN, PIPP and INPP4B is frequently observed in hu-
man cancers, which may be due to loss of chromosomal regions, mRNA or protein expression. Small non-coding
miRNAs are critical regulators of gene expression including many PI3K pathway members and are frequently dys-
regulated in human cancers. miRNAs down-regulate mRNA transcripts by binding to the 3′-UTR and promoting
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degradation of the target mRNA and regulate the majority of the transcriptome. Down-regulation of protein phos-
phatases PP2A and PHLPP is mediated by miRNAs. miR222 targets the PPP2R2Asubunit of PP2A in HCC to dis-
rupt cell motility and miR-190 inhibits PHLPP expression and promotes carcinogenic transformation of bronchial
cells suggesting that the AKT pathway is a prominent target of miRNA activity [148,149]. In addition, expression
of phosphoinositide phosphatases such as PTEN, PIPP and INPP4B is modulated by miRNAs. In human cancers,
PTENis frequently targeted by miRNAs such as miR21, miR22, miRN214 and miR221 [150]. miR21 promotes
PTEN-transcript degradation and enhances tumour growth, and is frequently up-regulated in colorectal, ovarian
and triple negative breast cancers [151-153]. On the other hand, genomic loss of miR-494 or miR-599 promotes
increased INPP4B expression in melanoma cells, and introduction of antisense-miRNA oligonucleotides targeted
to miR494 or miR599 promotes melanoma cell proliferation through up-regulation of INPP4B [143]. However,
miRNA-mediated down-regulation of multiple phosphoinositide phosphatases such as PIPP and PTEN may be char-
acteristic of some cancer cells. Expression of miR-3127 and miR-508 is frequently increased in some human can-
cers suppressing expression of PIPP as well as other PI3K/AKT signalling pathway components including PTEN,
INPP4A and PHLPP1/2 [154,155]. Exogenous expression of miR-508 increased and inhibition decreased cell pro-
liferation, colony formation and anchorage-independent cell growth of oesophageal squamous cell carcinoma (ESCC)
cells [155]. Similarly, up-regulation of miR-3127 resulted in increased anchorage-independent cell growth in HCC
cells [154]. The ability of single miRNAs to regulate the expression of multiple phosphoinositide phosphatases may
have cumulative effects on PI3K/AKT signalling, and given miRNA-targeted therapies are emerging in clinical de-
velopment it may also provide a more robust treatment strategy with the ability to alter expression of multiple phos-
phatases simultaneously.

Conclusions
The inositol polyphosphate phosphatases are dysregulated in many human cancers, and although they were originally
predicted to be negative regulators of canonical PI3K/AKT signalling, recent studies suggest they may play more com-
plex roles in tumorigenesis [128, 143, 144, 145, 146]. The spatio-temporal regulation of phosphoinositide pools by
the phosphatases creates dynamic signalling gradients that are critical for the maintenance of signalling homoeostasis
and when disrupted may lead to cellular transformation. Ablation of these phosphatases can drive oncogenic PI3K
signalling through distinct AKT isoform-dominant effectors, leading to diverse phenotypic outcomes. The relative
expression levels of AKT1 compared with AKT2 may mediate this distinction, where AKT1 is the primary effector in
response to phosphatase ablation except in tissues such as the thyroid where AKT2 is more highly expressed. However,
AKT2-addicted phenotypes observed in PTEN-depleted cancer cells suggest that alternate regulatory mechanisms
may be at play. AKT isoforms have distinct subcellular localizations and thus it is conceivable that compartmental-
ization of the lipid phosphatases with enriched pools of distinct AKT isoforms may contribute to their downstream
function. The activation states of AKT isoforms may also contribute to this divergence, and the activity of the var-
ious AKT kinases and phosphatases together with the phosphoinositide phosphatases may affect the activation and
function of the AKT isoforms.

Further investigation of phosphatase-independent functions and the cumulative effects of multiple phosphatase
dysregulation within the same cancers may also help define the highly dynamic and complex roles these phosphatases
play in tumorigenesis and enable determination of whether PI3K and/or AKT inhibitor treatments, or alternative
approaches will be effective therapeutic cancer strategies. The PI3Kδ-inhibitor idelalisib is approved for patient use
in chronic lymphocytic leukaemia, small lymphocytic lymphoma and follicular lymphoma, and several other PI3K
inhibitors are undergoing phase II–III trials [156]. However, clinical trials with AKT inhibitors have shown limited
clinical success, and miltefosine is currently the only approved therapy as a topical treatment for cutaneous breast
cancer [157]. AKT remains a problematic therapeutic target given the sequence homology among isoforms especially
in the kinase domain, but also its structural similarity to other kinase families such as the AGC kinases. Additionally,
given the opposing functions of AKT isoforms in some cancers, inhibition of pan-AKT has the potential for undesired
physiological consequences on tumour growth and metastasis in cancers such as glioma, breast cancer and vascular
tumours. It is therefore possible that AKT isoform-specific inhibitors, perhaps targeted to the more unique regulatory
or PH domains, may prove a more viable therapeutic strategy especially in patients with phosphatase dysregulation.
Given the distinct functional roles of the inositol polyphosphate phosphatases on AKT isoform signalling and the
potential oncogenic effects of phosphatases such as INPP4B, examination of the lipid phosphatase signalling networks
dysregulated in specific cancers may identify novel drug targets or therapeutic approaches.
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