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	   Abstract: Background: Even after decades of research, cancer, by and large, remains a challenge and is 
one of the major causes of death worldwide. For a very long time, it was believed that cancer is simply an 
outcome of changes at the genetic level but today, it has become a well-established fact that both genetics 
and epigenetics work together resulting in the transformation of normal cells to cancerous cells.  
Objective: In the present scenario, researchers are focusing on targeting epigenetic machinery. The 
main advantage of targeting epigenetic mechanisms is their reversibility. Thus, cells can be repro-
grammed to their normal state. Graph theory is a powerful gift of mathematics which allows us to un-
derstand complex networks.  
Methodology: In this study, graph theory was utilized for quantitative analysis of the epigenetic net-
work of hepato-cellular carcinoma (HCC) and subsequently finding out the important vertices in the 
network thus obtained. Secondly, this network was utilized to locate novel targets for hepato-cellular 
carcinoma epigenetic therapy. 
Results: The vertices represent the genes involved in the epigenetic mechanism of HCC. Topological 
parameters like clustering coefficient, eccentricity, degree, etc. have been evaluated for the assessment 
of the essentiality of the node in the epigenetic network.  
Conclusion: The top ten novel epigenetic target genes involved in HCC reported in this study are 
cdk6, cdk4, cdkn2a, smad7, smad3, ccnd1, e2f1, sf3b1, ctnnb1, and tgfb1. 
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1. INTRODUCTION 

 C.H. Waddington's [1] definition of epigenetics illustrat-
ing it as the ‘study of interactions between genes and the 
products thereof leading to the formation and existence of 
phenotype’ was initially concerned with the role of epigenet-
ics in fetal development. However, the definition of epige-
netics has evolved over time as it is implicated in a wide 
variety of biological processes. The contemporary definition 
of epigenetics is ‘the study of heritable and reversible chang-
es in gene expression that occur independently of changes in 
the primary DNA sequence’ i.e. somatic changes. Most of 
these heritable changes are established during differentiation 
and are stably maintained through multiple cycles of cell 
division, enabling cells to have distinct identities, while con-
taining the same genetic information. This heritability of 
gene expression patterns is mediated by epigenetic modifica-
tions, which include methylation of CpG regions in DNA, 
post translational Histone modification, nucleosome posi-
tioning along with the DNA and micro-RNA modification.  
 Epigenome is an assembly of chemical entities that allo-
cates and guides the genome to perform the intended func-
tion. DNA constitutes the human genome, whereas the 
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chemical compounds and proteins constitute the epigenome. 
These compounds and proteins attach to the DNA and per-
form functions like turning genes on or off as well as con-
trolling the rate of production of proteins. Cancers are caused 
as a cumulative effect of the genome and epigenome [2, 3]. 

 For a very long time, it was assumed that genetics and 
epigenetics are two independent mechanisms [3, 4]. Muta-
tions in genetic and epigenetic mechanisms lead to cancer 
development and promote cancer progression [5]. DNA 
methylation, histone modification and micro-RNA changes 
are found to be the important biomarkers of the initial stages 
in many forms of cancer [6]. The fact that epigenetic aberra-
tions, unlike genetic mutations, are potentially reversible and 
can be reprogrammed to their normal state by epigenetic 
therapy makes such initiatives promising and therapeutically 
relevant [7]. 

 The three most studied epigenetic mechanisms include 
(a) DNA methylation, (b) histone modifications (both cova-
lent and non-covalent) and (c) micro RNA or miRNA. The 
process of addition of methyl (CH3) groups to the DNA mol-
ecule is known as DNA methylation. It can change DNA 
activity without altering the sequence. Hence, it is a crucial 
factor in epigenetics [8]. At normal levels, DNA methylation 
is required for normal development and inactivation of vari-
ous processes like X- chromosome inactivation. When a 
CpG cluster region at the promoter site of a gene is methyl-
ated, expression of the gene is turned off. 
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 Post-translational histone modifications are observed in 
many human cancers [9]. These modifications can be of 
many types. Some of the common Histone modifications 
include Acetylation, Methylation, Phosphorylation, Ubiq-
uitylation and Sumoylation. miRNAs play very important 
cellular functions like regulation of mRNA activity [10]. 
They have proved to be early markers of cancers [11]. miR-
NA control the rate of expression of various enzymes in-
volved in epigenetics. Though the mechanism is not fully 
understood, the role of miRNA is an established fact. 
 In spite of its potential of early biomarker detection, epi-
genetic drug discovery poses a number of challenges (Fig. 1) 
like less number of biological and chemical tools and assays 
for probing and screening of chemical compounds [12]. This 
needs to be addressed before epigenetic drugs make their 
way to the patients.  
 

 
Fig. (1). Challenges in drug discovery of epigenetic drugs. It 
includes the lack of biological reference compounds for assay de-
velopment. Currently, there is a lack of knowledge about both the 
short term as well as the long term repercussions of the epigenetic 
therapies (toxicology). The need of the hour is new models and 
longer duration to study tumor biology in vivo. Presently, limited 
epigenetic proteins and antibodies of high quality (target selection) 
are available. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

 The mathematical discipline concerned with the study of 
complex networks is graph theory. A graph consists of points 
called vertices which are connected to each other via edges. 
This can be used to model many practical problems like bio-
logical systems [13]. Shifting from mainstream mathematics, 
it is now actively being used in fields like genomics, biologi-
cal network analysis, electrical engineering, etc. The infinite 
scope of the combinatorial methods of graph theory leading 
to significant results in mathematics and other applications 
has been well-documented [14, 15]. In the systems biological 
approach, the analysis of the interaction between various 
components is very important as it provides a deeper insight 

into the overall working of pathway. A centrality measure 
quantifies the importance of vertices by allotting ranks [16]. 
Various centrality measures are there like closeness centrali-
ty, degree centrality, motif-based centralities, etc. Depending 
upon the type of network, the type of centrality measure is 
chosen. Network analysis provides a powerful tool in order 
to understand the structure, function and the evolutionary 
patterns involved in the biological process [17]. 
 Almost 90% of liver cancers result from Hepatocellular 
carcinoma (HCC) [18]. Approximately, 7.5 Lakhs of new 
cases of HCC per year occurs globally which makes it the 5th 
common cause of cancers affecting human [18]. According 
to the report published by the International Agency of Re-
search on Cancer (WHO), the male: female ratio for HCC in 
India is 4:1.  
 In this paper, we have merged the network of differen-
tially expressed genes with the pathways most frequently 
affected in HCC to form an integrated network. This network 
was further validated, and topological parameters were cal-
culated to quantify each node (Fig. 2). 
 

 
Fig. (2). The methodology implemented to identify novel targets.  

2. METHODOLOGY 

2.1. Data Mining 

 The initial data for epigenetic network construction was 
incorporated from two resources. 

2.1.1. GEO Datasets 

 Expression profiles of GSE18081 [19], GSE37988 [20], 
GSE44970 [21], GSE54503 [22] and GSE57956 [23] were 
obtained from the GEO database [24]. GPL570 platform was 
used for the analysis. GSE18081 data represents CpG site 
methylation of HCV-cirrhotic, HCV-HCC and normal liver 
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tissues. GSE37988 represents the profile of methylation in 
Taiwanese HCC tumor and adjacent tissues. GSE44970 
comprises genome-wide DNA methylation profiles of human 
hepatocellular carcinoma. GSE54503 consists of genome-
wide DNA methylation profiles altered in hepatocellular 
carcinoma using Infinium Human Methylation 450 Bead 
Chips. GSE57956 is the methylation profile of hepatocellular 
carcinoma. All the datasets were checked for median cen-
tricity to see if the datasets chosen are comparable or not. 
 These datasets were basically micro-array data of Homo 
sapiens. The cutoff value of adjusted p-value <0.05 and |log 
FC| value > 1.5 was chosen as the benchmark. The DEGs 
were then used for the construction of PPI network from 
STRING [25]. 

2.1.2. Literature Search 

 There are various epigenetic markers involved in cancer 
epigenetics. One of the most critical is DNA methylation. It 
could be both hypomethylation and hypermethylation. We 
searched for various pathways that are most frequently af-
fected by HCC, incorporated genes and merged it with the 
DEG network. Some of the pathways are Wnt-beta catenin, 
p53, hedgehog, etc. The PPI network of the differentially 
expressed genes was obtained from the STRING database 
[25]. 

2.2. Formation of an Integrated Protein-protein Interac-
tion (PPI) Network 

 Both the PPI network constructed from DEGs and the 
pathways searched from literature, were imported in Cyto-
scape 3.5.1 [26]. These networks were merged using the 
merge tool implemented in Cytoscape 3.5.1 using the union 
operation.  

2.3. Network Validation 

 Epigenomic network was validated by comparing it to 
random network and examining if it followed the power-law 
degree distribution. A comparison with random network was 
done using the Network Randomizer 1.1.2 [27] plugin in 
Cytoscape 3.5.1. A modular approach was followed so that it 
was easy to add additional random network models. The 
random networks may either be created by randomizing real 
networks implementing the edge shuffling algorithm or by 
generating new random networks by using the available 
models (we used the Barabasi-Albert model [28] as the net-
works generated by using this model are scale-free i.e. they 
follow power-law degree distribution).  

2.4. Network Topology Analysis 

 The topology of the network was analyzed using Net-
workAnalyzer 3.3.1 [29] and CentiScape 1.2.1 [30] plugin 
fully implemented in Cytoscape 3.5.1. Various topological 
features calculated were: 
• Degree: Number of connections emerging from a node. It 

is one of the most elementary characteristics of a node. It 
is expressed as: 
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Where, Di is the degree of node D and Xij is the adjacency 
matrix whose value is 1, if there exists an edge between the 
nodes i and j. If there is no edge between the two nodes then 
its value is zero. In our study, we have used this parameter to 
identify hubs and bottlenecks.  
• Diameter [31] is the measure of the distance between the 

two most distant nodes. It is indicative of compactness of 
the network. A high value of diameter would suggest that 
the graph is not compact with respect to the nodes being 
considered. So, the value of diameter is a function of the 
two nodes that are chosen for distance calculation. There-
fore, we see that a high value of diameter is not so much 
reliable as compared to a low value of diameter because 
such a value suggests that the graph is compact.  

• Density: It has been observed that biological networks 
are mostly sparse thus preserving robustness. The proper-
ty used to calculate how dense or sparse a network is 
called network density.  

• Clustering Coefficient, (C) [31] is the measure of the 
cluster formation tendency of the graph. A cluster can be 
visualized as a subset of the vertices of the entire graph 
having a large number of edges of a node having ‘m’ 
neighbors is calculated by the formula: 
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• Neighborhood Connectivity [31] of a node is the average 
connectivity of all the neighbors where the connectivity 
of a single node is given by the number of neighbors of 
that node. 

• Hub is a highly connected node and has a critical func-
tion in the network. Hubs are the nodes that have func-
tional significance. 

• Hub Bottlenecks are nodes having high degree and be-
tweenness centrality values and are significant in scale-
free biological networks. Therefore, these nodes are 
termed as Hub-Bottlenecks (HBNs) [32]. These nodes 
are likely to be essential to the system and often coincide 
with high degree hub nodes [33]. 

• Closeness Centrality is the reciprocal of the summation 
of shortest distances between a vertex and every other 
vertex present in the network [34]. 

It is calculated as, 

!!! =
1
! !, !!

 

Where, d (i, j) is the shortest distance between node i and j. 
• Stress Centrality: For a node ‘a’, the stress centrality is 

the number of shortest paths passing through ‘a’. Higher 
the value of stress centrality the greater is the importance 
of a node in holding various communicating nodes to-
gether. It can thus help us identify connecting proteins. A 
node with a high-stress centrality value can potentially be 
a good target. 

• Topological Coefficient is a relative measure of the ten-
dency of the nodes to share neighbors with other nodes. 

• Eccentricity is the minimum distance between a node, 
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say b, and all other nodes. It is an index of the centrality 
of the node. In biological networks, nodes with a higher 
value of eccentricity are functionally accessible by other 
nodes of the network, and hence the changes in the con-
centration of the molecules are reflected readily. A protein 
having an eccentricity greater than the average eccentrici-
ty of the network has the capacity to influence other pro-
teins. 

2.5. Functional Annotation and Disease Gene Identifica-
tion 

 KOBAS 3.0 [35] webserver was employed to ascertain 
the overexpressed genes and disease pathways in the net-
work. In order to identify the statistically relevant hits, hy-
pergeometric test was applied and p-value cut of ≤ 0.05 was 
kept as the threshold. KOBAS 3.0 is a web server for func-
tional annotation of proteins or genes along with their func-
tional enrichment. It integrates information from 9 gene set 
enrichment (GSE) methods. These methods can either be 
net-based or set-based. More than 4000 species and multiple 
pathways databases are supported by KOBAS 3.0. It sup-
ports both microarray and RNA-Seq data. 

 The results from KOBAS 3.0 helped in identifying the 
overexpressed pathways and genes. These pathways were 
superimposed on the integrated network. This helped in vis-
ualizing the genes involved in the pathogenesis of cancer 
both directly as well as indirectly.  

2.6. Selection of the Novel Drug Targets from the Net-
work 

 The approved drug targets in case of cancer epigenetics 
were searched and their interactions, as well as other topo-
logical characteristics in our network, were analyzed. The 
cytoHubba [36] plugin was utilized to rank the nodes and 
identify which nodes are capable of being classified as hubs. 
This plugin uses 11 topological methods among which we 
selected maximal clique centrality (MCC) owing to its better 
performance in terms of results and evaluation. The MCC of 
approved drug targets and rest of the network proteins were 
compared to identify potential drug targets. 
For any node a, the MCC of a is defined as: 
MCC (a) =∑C∈S (a) (|C|−1)! 
Where, 
S (a) is the collection of maximal cliques which contain v, 
and (|C|-1)! is the product of all positive integers less than 
|C|. If there is no edge between the neighbors of the node a, 
then MCC (a) is the same as the degree [37]. 

3. RESULTS AND DISCUSSION 

3.1. Cancer Epigenetics Network Structure 

 In order to develop and study HCC epigenetic pathway, a 
network consisting of all the DEG was developed. These 
DEGs were acquired from publicly available microarray 
study data of normal versus cancerous subjects. 250 DEGs 
were selected from each of the datasets i.e. GSE18081 [19], 
GSE37988 [20], GSE44970 [21], GSE54503 [22] and 

GSE57956 [23] expression profile using the cutoff of p-
value < 0.05 and |log FC| value >1.5. Furthermore, these 
DEGs were integrated with pathways involved in regulation 
of HCC. PPI network of DEGs and those searched from lit-
erature was constructed using STRING database [25]. Both 
the PPI networks were merged using the merge tool of Cyto-
scape 3.5.1 to develop the final epigenetics network consist-
ing of 1423 nodes and 5282 edges (Fig. 3). 

3.2. Network Validation 

 The network validation was conducted with the help of 
Network Randomizer plugin of Cytoscape 3.5.1. As com-
pared to random network, cancer epigenetic networks have a 
higher value of average clustering coefficient depicting its 
modular nature. In our case, the average clustering coeffi-
cients for the random and epigenetic networks were 0.004 
and 0.609 respectively. Besides, a higher value of average 
clustering coefficient also indicates redundancy and cohe-
siveness of the neighbors in the network. Random graphs 
have a small value of average clustering coefficient. Since 
proteins do not work in isolation, therefore, high cluster 
forming tendency of epigenetic network nodes indicates the 
biological significance of interactions between nodes. Sec-
ondly, the epigenetic network followed Power Law (Fig. 4) 
with a degree exponent ‘γ’ value of -0.778 and R2 value of 
0.817. Small 'γ' value denotes essentiality of highly connect-
ed nodes in the network and R2 value closer to 1, indicating 
strong correlation between network nodes [38]. 

3.3. Topological Characteristics of the Network 

 Network characteristics as calculated from Network Ana-
lyzer 3.1.1 and Centiscape 2.2 are given in Table 1. 
 CytoHubba [36] plugin of Cytoscape 3.5.1, aided in iden-
tifying the central element of the cancer epigenetic network. 
Hubs are those proteins that interact with many partners and 
occupy the central region of a PPI network. HBNs are im-
portant linkers as they connect the sub-networks and have a 
high value of betweenness centrality. In our network, 25 and 
13 nodes were identified as hubs and HBNs, respectively. 
Furthermore, the shortest path length distribution of the epi-
genetics network (Fig. 5A) also showed that the network is 
scale-free. This metric is widely used for analysis of disease-
associated genes as functionally related genes tend to remain 
closer to each other. Similarly, the shared neighbor distribu-
tion (Fig. 5B) showed that the nodes in the network do not 
show the tendency of forming shared clusters rather every 
cluster is attached with each other by means of a single gene. 
These connecting genes are very important in the context of 
being considered as novel targets as these are crucial links 
between various pathways which eventually lead to epigenet-
ic alterations [39]. 

3.4. Overrepresented Pathways in the Epigenetic Network 

 With corrected p-value <=0.05, thirty-five signaling 
pathways were found to be over-represented in our epigenet-
ic network. These included PI3K-Akt signaling pathway, 
Thyroid signaling pathway, Wnt signaling pathway, p53 
signaling pathway, FoXO signaling pathway, ErbB signaling 
pathway, Hippo signaling pathway, estrogen signaling,



Deciphering the Novel Target Genes Current Genomics, 2019, Vol. 20, No. 8    549 

 
Fig. (3). The Epigenetic Network consisting of 1423 nodes and 5282 edges as obtained in Cytoscape. The vertices are the genes connect-
ed via edges. The variation in color of the nodes shows its essentiality with red being the most crucial followed by orange and yellow. (A 
higher resolution / colour version of this figure is available in the electronic copy of the article). 

AGE-RAGE signaling pathway, Ras signaling pathway, 
TGF-beta signaling pathway, mTOR signaling pathway, 
Neutrophil signaling pathway, Rap1 signaling pathway, 
HIF1 signaling pathway, Hedgehog signaling pathway, 
Notch signaling pathway, GnRH signaling pathway, T cell 
receptor signaling pathway, prolactin signaling pathway, 
MAPK signaling pathway, VEGF signaling pathway, Insulin 
signaling pathway, adipocytokine signaling, B-cell receptor 
signaling, JAK STAT signaling pathway, TNF signaling, 
NOD like receptor signaling, Oxytocin signaling pathway, 
Fc epsilon signaling, sphingolipid signaling pathway, phos-
pholipase D signaling pathway, RIG-I like receptor signaling 
pathway, PPAR signaling pathway, NF-kappa B signaling 
pathway.  
 Among these overrepresented pathways, 32 pathways 
have already been reported for their role in HCC epigenetics. 

The novel ones identified are NOD like receptor signaling 
pathway, Fc epsilon signaling pathway and Hippo signaling 
pathway. 

3.5. Identification of Potential Drug Targets for Cancer 
Epigenetics 

 The identification of potential drug targets was done on 
the basis of MCC. Therefore, the network nodes were ranked 
from the top 700 nodes which were selected based on their 
MCC score. From the list of 700 genes, we performed a rig-
orous literature survey to find out which of these genes have 
not yet been reported for their role in cancer epigenetics. We 
finally narrowed down our list to 10 genes based on their 
topological properties (Table 2, Fig. 6) which play a major 
role in HCC epigenetics and thus prove to be potential for 
epigenetic therapy. Furthermore, we also searched targets for 
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investigational drugs at various stages of clinical trials used 
for cancer treatment and calculated their MCC values (Ta-
bles 3 and 4) [40]. 
 
Table 1. Cancer epigenetics network characteristics. 

Parameters  Value 

Average clustering coefficient 0.614 

Network diameter 12 

Network radius 7 

Shortest paths 2012142 (100%) 

Network centralization 0.104 

Network density 0.005 

Characteristic path length 4.988 

 
 The comparison between MCC values of approved and 
potential drug targets revealed that the novel targets cdk6, 
cdk4, cdkn2a, smad3, smad7, ccnd1, e2f1, sf3b1, ctnnb1 and 
tgfb1 have MCC score greater than the approved drug tar-
gets. Comparison of Tables 2 and 3 showed that our poten-
tial drug targets had features similar to that of approved drug 
targets. The value of eccentricity, which measures the easi-
ness of a protein to influence the activities of several other 
proteins was greater than 1 for both approved and potential 
drug targets. Furthermore, both approved and potential drug 
targets had almost similar degree except cdkn2a that had a 

degree of 21. Similarly, the clustering coefficient and radiali-
ty of both approved and potential drug targets were close to 
1. The radiality value is a measure of functional relevance of 
a protein for several other proteins but with the possibility of 
functionally irrelevant for few other proteins. The value of 
topological coefficient that describe the tendency of a node 
to have shared neighbors was close to 1 for approved drug 
targets, while our potential drug targets had much smaller 
values for topological coefficient.  
The present clinical significance of the genes reported here 
are: 
• cdk6 activates cell proliferation. Overexpression of cdk6 

is associated with resistance to hormone therapy in breast 
cancer. Upregulation of cdk6 has been observed in almost 
one-third of medulloblastoma cases. Changes in cdk6 can 
effect various hallmarks of cancer like induction of angi-
ogenesis and evasion of growth suppressors etc. 

• cdk4 encodes a protein which is a member of the Ser/Thr 
protein kinase family. Mutations in this gene along with 
some closely related proteins have shown association 
with the tumorigenesis in variety of cancers. Multiple 
polyadenylation sites of this gene have been reported. 
Cyclin D regulates its functioning. 

• cdkn2a provides instructions for synthesis of crucial pro-
teins like p16(INK4A) and p14(ARF) which play an im-
portant role in tumor suppression. In older cells, these 
help in stopping cell division and p14 helps stop the 
breakdown of p53. 

 
Fig. (4). Cancer epigenetics network follows Power Law with degree exponent ‘γ’ value of -0.778 and R2 value of 0.817. The line shows 
power law fitting. Both the axes are logarithmic with base 10. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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(A) 

 

 
(B) 

Fig. (5). (A) Analysis of the distribution of various path lengths of the integrated epigenetic network (left). The shortest path length distribu-
tion depicts that it is a small world network. (B) Distribution of shared neighbors. Both x and y axis are in logarithmic scale. (A higher resolu-
tion / colour version of this figure is available in the electronic copy of the article). 

• smad7 exerts an inhibitory effect on the EGF signaling 
pathway which is involved in breast cancer and ovarian 
cancer invasion and metastasis. A mutation located in 
smad7 gene is a cause of susceptibility to colorectal cancer 
(CRC) type 3. It is also overexpressed in pancreatic cancer. 

• smad3 plays an important role in the regulation of genes 
involved in growth differentiation and death implying that 
an alteration in its activity or repressing  its activity can 
lead to the formation or development of cancer. It has an 
important role in colorectal, breast and pancreatic cancer. 

• ccnd1 codes for the protein cyclin D1. The overexpres-
sion of this protein is strongly correlated to ER+ breast 
cancer and deregulation of cyclin D1 is associated with 
hormone therapy resistance in breast cancer.  

• e2f1encodes protein that play a crucial role in the controlling 
cell cycle and tumor suppressor protein. Elevated expression 
of E2F1 protein in breast cancer cell lines and head and 
neck carcinoma cell lines, and overexpression of E2F1 in 
invasive ductal breast cancer and non-small cell lung cancer. 

• sf3b1 gene mutations have been recurrently seen in cases 
of advanced chronic lymphocytic leukemia, myelodysplas-
tic syndromes and breast cancer. sf3b1 is one of several 
genes involved in RNA splicing that has been identified as 
recurrently mutated in MDS and other malignancies. 

• ctnnb1 gene encodes for the protein β-catenin. This protein 
has dual function of managing transcription and intercellu-
lar adhesion. Mutations and overexpression of this protein 
has been found to be associated with many cancers like 
endometrial cancer, ovarian cancer and colorectal cancer. 
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Fig. (6) contd…. 



Deciphering the Novel Target Genes Current Genomics, 2019, Vol. 20, No. 8    553 

 
(D) 

 
Fig. (6). Characteristics of potential drug targets (A) Clustering coefficient. It is clear that cdk6 and tgfb1 show the highest value of clus-
tering coefficients. This is a very important topological property as it provides information about the cluster forming tendency of a node.  
(B) Eccentricity. sf3b1 exhibits the maximum eccentricity indicating its accessibility to other nodes and cdk6 has the minimum eccentricity 
value indicating its marginal functional role. (C) Degree. (D) MCC. (A higher resolution / colour version of this figure is available in the electron-
ic copy of the article). 

 
Table 2. Novel targets for cancer epigenetic therapy involved in methylation. 

S. No. Gene Degree Radiality Clustering Coefficient Eccentricity Topological Coefficient MCC Value 

1. cdk6 10 0.79 1.0 7 0.22 3628800 

2. cdk4 14 0.73 0.5 9 0.27 3628805 

3. cdkn2a 21 3.21 0.560 0.21 0.00 41045760 

4. smad7 9 0.76 0.88 8 0.18 40446 

5. smad3 10 0.72 0.91 9 0.29 856800 

6. ccnd1 10 0.72 0.95 8 0.44 403200 

7. e2f1 10 0.72 0.91 9 0.29 85680 

8. sf3b1 10 0.63 0.95 10 0.69 403200 

9. ctnnb1 9 0.70 0.97 9 0.33 80640 

10. tgfb1 9 0.72 1.0 8 0.44 362880 

 
Table 3. MCC values of approved drug targets for HCC. 

S. No. Drug Targets Degree Radiality  Clustering Coefficient Eccentricity Topological Coefficient MCC Value 

1. HDAC1 10 1 0.89 1 0.86 21840 

2. HDAC3 10 1 0.75 1 0.78 11550 

3. HDAC6 10 1 0.77 1 0.8 6480 

4. MET 10 1 0.822 1 0.84 130 

5. VEGFR 10 1 0.26 1 0.36 31 
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• tgfb1 gene encodes for multifunctional peptide set TGF-
β. It acts negative autocrine growth factor and controls 
the immune system response. Besides, it performs func-
tions like cell growth, differentiation and apoptosis. 

 
Table 4. List of HCC investigational drugs with their targets. 

Drug Target Status 

Resminostat HDAC1, HDAC3 and HDAC6 Phase II 

Tivantinib  MET/Tubulin Phase III 

Axitinib  VEGFR Phase II 

Apatinib  VEGFR Phase III 

CONCLUSION 

 Graph theory has proven to be a promising tool in under-
standing various biological networks in the past. In the cur-
rent work, this powerful tool implemented by means of Cy-
toscape 3.5.1 was analyzed to understand HCC epigenetic 
pathways. The network approach provides a deeper insight 
into the interactions taking place. 
 Epigenetic therapy is still in its infancy with only a few 
epigenetic drugs available. The novel targets reported here 
have the potential for opening new avenues in HCC therapy. 
Some of the reported targets are not directly involved in the 
pathways yet they play an indispensable role. One of the 
major reasons for interest in developing drugs based on epi-
genetics (epidrugs) is the reversible nature of epigenetic 
changes. 
 The major challenges epigenetic drug research is facing 
today and likely in the future prominently include interpret-
ing the relevance of pharmacodynamics and somatic muta-
tion level in the patient to hone the response to these agents. 
 Epigenetic alterations can lead to various other diseases 
like cardiovascular disorders, metabolic disorders, and neu-
rological disorders. Since epigenetic changes are reversible, 
a better understanding of these mechanisms can be utilized 
to regulate the genetic switch and bring back the cell to the 
normal state.  
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