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A B S T R A C T

The intention of the experiment is to investigate whether different sounds have influence on heart signal features
in the situation the observer is judging the different sounds as positive or negative. As the heart is under (para)
sympathetic control of the nervous system this experiment could give information about the processing of sound
stimuli beyond the conscious processing of the subject. As the nature of the influence on the heart signal is not
known these signals are to be analysed with AI/machine learning techniques. Heart rate variability (HRV) is a
variable derived from the R-R interval peaks of electrocardiogram which exposes the interplay between the
sympathetic and parasympathetic nervous system. In addition to its uses as a diagnostic tool and an active part in
the clinic and research domain, the HRV has been used to study the effects of sound and music on the heart
response; among others, it was observed that heart rate is higher in response to exciting music compared with
tranquilizing music while heart rate variability and its low-frequency and high-frequency power are reduced.
Nevertheless, it is still unclear which musical element is related to the observed changes. Thus, this study assesses
the effects of harmonic intervals and noise stimuli on the heart response by using machine learning. The results
show that noises and harmonic intervals change heart activity in a distinct way; e.g., the ratio between the axis of
the ellipse fitted in the Poincar�e plot increased between harmonic intervals and noise exposition. Moreover, the
frequency content of the stimuli produces different heart responses, both with noise and harmonic intervals. In the
case of harmonic intervals, it is also interesting to note how the effect of consonance quality could be found in the
heart response.
1. Introduction

The electrocardiogram is a record over time of the heart electrical
activity; this activity is registered as an analogue signal known as the
electrocardiographic signal (ECG) [1]. Because of its ambulatory character
and simplicity in comparison with other medical procedures, ECG is the
most common heart medical exam [2]. It is often used as an indicator of
the physiological condition and as a diagnostic tool of the cardiovascular
system, in particular of the heart health [3]. Among other models of ECG
analysis, heart rate variability (HRV), derived from the R-R interval peaks
of ECG, emerges to reveal relationships between autonomous neuron
system and physiological, physical or psychological variables [4]. HRV
exposes the interplay between the sympathetic and parasympathetic
u.co (E. Idrobo-�Avila).
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nervous system [5]. HRV has been applied to study cardiovascular diseases
such as acute ischemic stroke [6], cardiac autonomic dysfunction [7],
cardiopulmonary dysfunction [8], myocardial infarction [9], and cardiac
death [10]. HRV has been considered to assess panic disorder [11], mental
health resilience [12], and depressive disorder [13]. The effects of elec-
tronic cigarette [14], exercise [15, 16], and alcohol use [17] have been
also evaluated using HRV.

In the same way, HRV has also been employed to assess the effects of
sound and music on the heart [18], where research on this topic has
gained importance in the recent time since it makes it possible to un-
derstand and take advantage of the music benefits [19, 20], as the
decreasing in the heart rate and in the systolic and diastolic blood pres-
sure [21]. Thus, music has been studied from several perspectives. For
021
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instance, in the direction of multimodal music information, several tasks
have been developed, among them it is possible to find music segmen-
tation, emotion or mood recognition, synchronization of different rep-
resentations, and classification of music [22]. In like manner, some
researchers have developed systems based on deep learning to create
music [23]. In addition to fields as Computational Musicology [24] and
Interactive music [25], the use of music in health sciences has also been
examined to manage several diseases or conditions such as autism [26],
depression [27], cancer [28], and cardiovascular diseases [20].

Besides a lot of applications of the ECG and HRV in the clinical
domain and research, they have been used to analyse how music with
different emotional character affects the heart [29, 30, 31], and some of
these studies have been carried out with both musicians [32] as
non-musicians [29]. Although the effects of music on heart behaviour
have been studied, research has not established the best way of audio
stimulation [18] and because until now it is still unclear which musical
element is related to the observed changes, it is required to develop
systematic high-quality research on the effects of music on the heart [33].
In this aspect, most of the previous research has focused on the effects
produced by the tempo of music [34, 35, 36]. Literature reports a great
variation of the effects of music on HRV, avoiding the possibility to draw
substantial conclusions [18]. Previous research has classified the HRV
response to old generation romantic music with a performance of 80% of
accuracy, using artificial neural network [37]. Another research classi-
fied the response of the Autonomic Nervous Systemwith the HRV to Odia
and Tamil music [38]. The classification used the Regression Tree,
Boosted Tree and Random Forest algorithms and a performance of 85%
was achieved. From previous studies, it is observed that is required to
develop classification systems of HRV responses to sound stimuli to
improve the performance of previous studies.

Consequently, this study assesses in more detail the effects of har-
monic intervals on the heart response. Additionally, it evaluates the heart
reaction to noise stimuli. To achieve this goal, some machine learning
techniques were considered to make associations between stimuli and
heart responses and compared with the judgements of the subjects on the
valence of the sounds. These techniques were selected considering recent
experimentations that have done the data analysis throughout artificial
intelligence tools [19, 37, 39, 40]. This study hypothesizes that the
selected sound stimuli can produce different responses in the heart. It is
Table 1. Description of the used stimuli.

Type Index* Description

Harmonic intervals (HMI) 1 - 13 Minor second (2m)

2 - 14 Major second (2M)

3 - 15 Minor third (3m)

4 - 16 Major third (3M)

5 - 17 Perfect fourth (4)

6 - 18 Augmented fourth (4a

7 - 19 Perfect fifth (5)

8 - 20 Minor sixth (6m)

9 - 21 Major sixth (6M)

10 - 22 Minor seventh (7m)

11 - 23 Major seventh (7M)

12 - 24 Octave (8)

Noise 25 Grey

26 White

27 Brown

28 Pink

29 Blue

30 Violet

Total

* 1–12: lower octave; 13–24: higher octave.
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hypothesized that heart responses can be classified according to the
sound stimuli using algorithms of machine learning.

The remainder of this document is organized as follows: Section 2
presents a description of the methods where the experimental procedure
and data processing are shown; Section 3 reports the results, where the
most salient outcomes can be observed; Section 4 covers discussion of the
results; and finally, Section 5 shows the conclusions of this study.

2. Methods

2.1. Experimental procedure

2.1.1. Participants
Participants were voluntarily enlisted in the experiment, 26 healthy

subjects without vocational music training, 17 males and 9 females, with
an average age of 25.3 years old (SD ¼ 7.1), ranged from 18 to 37 years.
The participants underwent audiometry exam to ensure they could hear
well. They were asked to sleep well, not to consume either caffeine or
alcohol, not to practice sports or to consume stimulant substances 24 h
before sample collection. All procedures were carried out considering the
Declaration of Helsinki to keep the safety and confidentiality of subjects.
All procedures, including experimentation on human subjects, were
approved by The Internal Ethical Committee of Universidad del Cauca,
and the research was done according to the approved protocol.

2.1.2. Sounds
In this experiment, 30 different stimulus conditions of two different

types were used: noise, and harmonic music intervals (HMI). The noise
and HMI signals were synthesized in order to have as much control as
possible in the stimulus presentation. The noise stimuli taken into ac-
count were: blue, brown, grey, pink, purple and white noise. The HMI
type consisted of the all possible harmonic intervals in one octave,
including two different octaves: a lower since A2 to A3 and a higher
between A4 and A5. Each musical note was composed of more than one
partial frequency, i.e. complex tones; as partial frequencies increased,
their power decreased. The power spectrum and timbre of the harmonic
sounds synthesized were similar to the flute. All these intervals had the
A2 and A4 as the low notes, while the higher ones were changed. Thus,
stimuli had the intervals in two octaves, octave 2 and 4: minor second
Frequency
Class

Consonance
Class

Instances

Dissonant 5616 (234 per each stimulus)

Dissonant

Consonant

Consonant

Low: Consonant

ug) Octave 2 Dissonant

High: Consonant

Octave 4 Consonant

Consonant

Dissonant

Dissonant

Consonant

Low and High — 1404 (234 per each stimulus)

Low and High

Low

Low

High

High

7020



Table 2. Complete set of HRV features.

HRV features

Higuchi fractal dimension (k ¼ 2)

Higuchi fractal dimension (k ¼ 3)

Higuchi fractal dimension (k ¼ 4)

Hurst exponent

Katz fractal dimension

HRV detrended fluctuation analysis alpha 1

HRV detrended fluctuation analysis alpha 2

Mean of the heart rate

Mean R-R interval

Performing triangular interpolation

Triangular index from the interval histogram

Root mean square of the successive differences

Minor semi-axes of the ellipse fitted in the Poincar�e plot (SD1)

Major semi-axes of the ellipse fitted in the Poincar�e plot (SD2)

Ratio between the axis of the ellipse fitted in the Poincar�e plot (SD1/SD2)

Correlation dimension

Approximate entropy

Low-frequency components

Power of low-frequency components

Power of high-frequency components

Ratio of low and high-frequency components

High-frequency components

Very low-frequency components

Total power

Probability of intervals greater 50 ms

Interquartile range of Euclidean distance

Median of Euclidean distance

E. Idrobo-�Avila et al. Heliyon 7 (2021) e07565
(2m), major second (2M), minor third (3m), major third (3M), perfect
fourth (4), augmented fourth (4aug), perfect fifth (5), minor sixth (6m),
major sixth (6M), minor seventh (7m), major seventh (7M), octave (8).
To avoid the influence of changes in the volume and the intensity sound,
the perceived loudness was normalized in all sounds by applying
ReplayGain [41]. The responses to the used stimuli were analysed from
the following aspects as type (noise and HMI), frequency (high and low),
consonance and dissonance (HMI), and as independent stimuli (Table 1).

In addition to consonant and dissonant analysis, the sounds were
studied in three and nine classes according to the perception scores of
subjects. In three classes, a negative class was defined with scores be-
tween one and three, while the positive class took scores between seven
and nine; in addition, a neutral class was defined with scores between
four and six. Finally, in nine classes each set of scores was considered as
an independent class, i.e. one class per score, from one to nine.

2.1.3. Data collection
The procedure was made in an isolated room from external stimuli,

with an average temperature of 23 �C, sound pressure level of 40 dB, and
illumination of 100 Lux. Before the procedure, once the research and its
purposes were explained, the participants signed the consent form. The
experiment was conducted with one subject at a time, who reminded
isolated, and in a comfortable stretcher. The subjects were in a rest supine
position for 15 min and after this period they were equipped with Bose
Noise Cancelling Headphone 700 and they were also asked to close their
eyes to avoid the influence of any visual stimuli. At once, a baseline was
measured for two minutes. Following this time, 30 sounds were played in
random order; 24 sounds with harmonic intervals in the octaves 2 and 4,
and six different noise sounds. These sounds were played during ten
seconds each and were separated by a silence section of 15 s. The subjects
were instructed to score their perception about the listened sound
immediately each sound had finished; then they should have opened
their eyes, score their perception on a screen projection in front of them,
and closed their eyes again. The procedures were designed to avoid the
effort of subjects, reducing the need to speak and move. Subjects regis-
tered their perception by using a Bluetooth mouse in a user interface, on a
scale between 1 and 9, where 1 represented the worse (Negative) reac-
tion or perception related to the stimuli and 9 was the best one (Positive).
They were instructed to follow the instruction: "Please, rate your expe-
rience after each sound on a scale from 1 to 9; negative experiences will
be rate with low numbers and the positives will be with higher values".
During the complete procedure, it was measured the lead II of the ECG
signal by using the Cyton OpenBCI board [42]. All tests were made be-
tween 15.00 and 18.00 h in order to reduce the influence of the circadian
cycle in the heart function.

2.2. Data processing

The complete procedure to collect data had four different stages: pre-
processing, dataset augmentation, feature extraction, and classification;
in addition, a feature ranking stage was made. As a first step, the ECG
captured signals were pre-processed; in this procedure, the baseline was
removed by applying a third-order one-dimensional median filter and
after that it was subtracted from the original signal. Pre-processing of
ECG signals is carried out to get a clean ECG signal, by reducing the ef-
fects of adverse factors such as Gaussian noise, muscle artifacts, power-
line interference, and baseline wander, where baseline wander is a
noise source with frequency content less than 1.5 Hz [43]. R-peaks were
segmented by using the Pan-Tompkins algorithm [44]; undetected peaks
were marked manually. This segmentation is carried out to extract the
HRV signal [45] through the time difference between R-peaks, by
measuring R-distances in milliseconds [46]. Data augmentation was
implemented by applying circular shift and hyperspectral data augmen-
tation; these procedures were applied with the methodology described in
[47] and [48, 49], respectively. As results of these processes, the order of
the RR intervals is changed, and noise is introduced in the principal
3

components of the data. The dataset original had 780 instances and after
the data augmentation process was incremented to 7020. Data
augmentation is a very useful technique to generate more samples from
which algorithms can learn improving their accuracy, as well as over-
fitting can be reduced and generalization increased [50, 51].

2.2.1. Feature extraction and reduction of dimensionality
After the pre-processing and data augmentation stages, a feature

extraction process was realized from each signal segment. In the feature
extraction process, temporal, frequential and non-linear domain features
were considered from the HRV. The extracted features represent in a
compressed form the HRV data, depicting behaviours or patterns from
different domains such as time and frequency (Table 2). Details about HRV
features could be found in this reference [52]. In the analysis, indepen-
dently of their physiological interpretation, selected features are consid-
ered as descriptors of ECG signals. After the feature extraction, in order to
reduce dimensionality in the extracted features, it was done a ranking of
the best features with the scoring method Information Gain Ratio [53];
from the ranking process, the 11 best-ranked features were chosen to apply
the classification process. The number 11 was selected with respect to a
classification analysis with the best features (See below: Section 3.2.2.
Harmonic intervals - Classification with the best-ranked features: HMI
classes, 24 harmonic intervals). Reduction of dimensionality is carried out
to suppress redundant or irrelevant variables; this helps to improve pre-
diction accuracy and reduce the computational cost in training processes,
as well as allows a better understanding of data [54].

2.2.2. Classification and evaluation
This research considered two machine learning algorithms to carry out

the classification tasks: k-nearest neighbours and Random forest (Table 3).
The configuration parameters were chosen by experimentation.

The training and evaluation process of the model was done through
the cross-validation, by considering ten folds. Cross-validation was



Table 3. Configuration parameters of the classification algorithms.

Classification algorithms Configuration

k-nearest neighbours Number of neighbours: 20,
metric: Manhattan, weight: distance

Random forest Number of trees: 45

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

kNN Random forest

MCC
Accuracy
Sensitivity
Specificity
AUC

Figure 2. Classification performance of the noise classes: low, high, and low-
high band frequencies (Table 1).
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applied based on the subjects; this procedure was applied five times and
the mean of these outcomes was reported. This method reduces the
randomness from splitting the data only once, reduces the overfitting,
and increases the replicability of the outcomes [55]. Additionally, the
Matthews Correlation Coefficient (MCC), sensitivity, specificity, accu-
racy, and – AUC – area under the ROC curve (receiver operating char-
acteristics) were taken as assessing metrics. The MCC is a metric to assess
the performance of predictors or classifiers and it is very useful since it
could be used even with imbalanced data; a value of 1 means an ideal
prediction, -1 represents a total inverse prediction, and 0 is related to
random processes [56]. In this research, the link between HRV and the
administered stimuli was done throughout the classification of several
features extracted from HRV signals. In this case, considering the
experimental design, a good classifier performance, represented by high
scores in the assessing metrics, can be associated with a relation
cause-effect between the stimuli and heart response, measured by HRV
signals.

3. Results

This section presents the results of two ways of analysis. The first one
studies the response of the heart to two different stimuli, i.e., noise and
harmonic intervals; the second analysis shows a deeper view by consid-
ering the different types of noises and harmonic intervals separately.

3.1. Noise and harmonic music intervals

As a first analysis, it was performed a classification of the stimulus
types, i.e. noise, and harmonic intervals from sets of features of the HRV
signal and using four different classifiers (Figure 1). From the outcomes is
possible to see that in general, the classification algorithms are able to
differentiate between the classes of noise and HMI. The performance in
this classification was equal to or higher than 0.84 in all metrics
considered. MCC and AUC are very important in this classification since
this is carried out on an imbalanced dataset.

3.2. Noises and harmonic intervals as independent classes

Once the study with two classes ended, to take a closer observation
into the stimuli of noise and harmonic intervals, it was done an analysis
with one type of class at once, i.e. noise and harmonic intervals
separately.
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

kNN Random forest

MCC
Accuracy
Sensitivity
Specificity
AUC

Figure 1. Classification performance of the type of classes (stimuli): noise and
harmonic intervals (Table 1).
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3.2.1. Noise
The first analysis with one type of sound was done with the noise

class. It was realized with the Frequency Class of Table 1 (Figure 2) and
by classifying the six different types of noise used in this research
(Figure 3). The performance in classification tasks with noise was equal
to or higher than 0.85 in all metrics considered. In these classifications is
observed that specificity is higher than sensitivity which suggests that the
algorithms have more probability to detect true negatives than true
positives (Figures 2 and 3).

3.2.2. Harmonic intervals
After the analysis of noise, the harmonic intervals in three different as-

pectswere studied (Table 1): lowand high frequency (Figure 4), i.e. octaves
2 and 4 respectively, consonant and dissonant (Figure 5), and each interval
separately (24 classes, Figures 6 and 7). The performance in classification
taskswith harmonic intervalswas equal to or higher than 0.80 in allmetrics
considered. Unlike previous results - Figures 2 and 3 - the outcomes in
Figures 4 and 5 show similar levels in sensitivity and specificity, i.e. the
similar probability to detect true negatives than true positives. Contrary to
this, the results in Figure 6 are similar to Figures 2 and 3,where detection of
true negatives has more probability than true positives.

3.2.3. Classification with the best-ranked features: HMI classes, 24
harmonic intervals

Within the analysis of each interval separately, classification perfor-
mance according to the number of the best-ranked features is presented
(Figure 7 and Table 4); this analysis was carried out by considering the
Random forest classifier (since this was the algorithm with the best
general performance in the whole study), and two metrics, accuracy and
MCC. This analysis was carried out to observe the impact of using
different numbers of features in the classification performance and to
show what features might be more affected by the stimuli; in this case
HMI.
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

kNN Random forest

MCC
Accuracy
Sensitivity
Specificity
AUC

Figure 3. Classification performance of the noise classes: Blue, Brown, Grey,
Pink, Purple and White noise (Table 1).



0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

kNN Random forest

MCC
Accuracy
Sensitivity
Specificity
AUC

Figure 4. Classification performance of the HMI classes, octaves 2 and 4 with
harmonic intervals (Table 1).

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

kNN Random forest

MCC
Accuracy
Sensitivity
Specificity
AUC

Figure 6. Classification performance of the HMI classes, 24 harmonic in-
tervals (Table 1).
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3.3. Perception analysis

In addition to the discrimination between the different types of
sounds, the capacity to separate the sound according to the perception of
subjects was also studied. Both ignoring the class of sound when
considering the sound type (noise and HMI, Figure 8). This analysis
considered the classes listed in the section 2.1. Experimental procedure -
Sounds. Since these classification tasks were carried out on unbalanced
datasets, the performance evaluation is presented based on the Matthews
correlation coefficient (MCC) for all of the classifiers. These classifica-
tions were accomplished with 3 and 9 classes of perception, on the
different considered stimuli - Noise and HMI, Noise, and HMI indepen-
dently. The MCC for classification performance was equal to or higher
than 0.80. The best performance was achieved by the Random forest
classifier, where the highest MCC value – 0.94 - was achieved with noise
stimuli and the scale with 9 values for perception.
3.4. Descriptive statistics of the HRV features

After the classification analysis, descriptive statistics of the HRV
features were implemented in order to make observable the changes of
the HRV features according to the presented stimuli (Table 1). The
Kruskal-Wallis statistic-test was used to determine if there were signifi-
cant differences between the features [57]; a p-value less or equal to 0.05
was considered to be statistically significant (Table 5).
3.5. Results of the subjective valence judgements of the musical sounds

In parallel the subject judged the degree they felt the presented sound
was more positive or more negative (i.e. in valence). They were asked to
express this on a scale of 1 (negative) to 9 (positive).

In order to present sounds that would differ in valence we have
constructed harmonic musical intervals different in pitch distance. These
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

kNN Random forest

MCC
Accuracy
Sensitivity
Specificity
AUC

Figure 5. Classification performance of the HMI classes, consonance and
dissonance (Table 1).
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intervals have in the musical practice different degrees in consonance or
dissonance, which in theory would differ in valence. The intervals were
presented in two spectral positions: one low in the range of the male
voice and one two octaves higher. Furthermore, some noise bands that
differ in the point of gravity of their spectrumwere added. The valence of
all these stimuli can be compared with the spectrum of the familiar
sounds in human speech [58].

As the subjects did not all use the same part of the response scale their
values were normalized by subtracting the mean and dividing them by
the standard deviation of their judgements. This way we became a
judgment matrix of the sounds versus the subjects.

In Figures 9 and 10 the valence judgements are given as summed over
all the subjects after normalisation. In Figure 9, the top left subplot (a)
presents the ratings over all sounds in three sections, intervals in low
octave (index 1 to 12), intervals in high octave (index 13 to 24), and
noises (index 25 to 30); the sounds are presented in the same order of that
of Table 1. It is very clear that the intervals in the lower octave (index 1 to
12) and the noises (index 25 to 30) are rated positive, and the intervals in
the higher octave (index 13 to 24) are rated negative. The first two right
singular vectors presented in the bottom left subplot (b) of the SVD of the
judgement matrix indicate two different processes: 1. the difference in
spectral position of the harmonic intervals, and 2. the dependence on the
precise interval. In subplot of the top right (c), it is possible to see that
also in the judgements of the valence of the noise bands have a maximum
in position 26 and 27 and taper off towards low and high frequency
bands. From the first two right singular vectors (bottom right, d), which
is nearly the same as the overall judgement it is clear that there is only
one process is happening: the spectral position.

In Figure 10, the top left subplot (a) shows the judgments of the HMI
in the low octave. The indexes also represent the distance in semitones
between the two tones of the harmonic intervals. The intervals with 3, 4,
5, 7, 8, and 9 semitones are rated positive, the interval 1, 2, 10, and 11 as
negative. The tritone of 6 semitones is rated as 0. This corresponds quite
well with the theory on consonance. The machine learning classification
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2 3 4 5 6 7 8 9 101112131415161718192021222324252627
Number of features

Accuracy MCC

Figure 7. Random forest classification with ranked features: HMI classes, 24
harmonic intervals (Table 1).



Table 4. Ranking of HRV features using information gain ratio (IGR).

Ranking HRV feature IGR Ranking HRV feature IGR

1 Higuchi fractal dimension (k ¼ 4) 0.0340 14 Ratio of low and high-frequency components 0.0214

2 Performing triangular interpolation 0.0315 15 root mean square of the successive differences 0.0210

3 High-frequency components 0.0312 16 Katz fractal dimension 0.0209

4 Major semi-axes of the ellipse fitted in the Poincar�e plot (SD2) 0.0270 17 triangular index from the interval histogram 0.0207

5 Total power 0.0269 18 Interquartile range of Euclidean distance 0.0204

6 Low-frequency components 0.0262 19 Higuchi fractal dimension (k ¼ 3) 0.0194

7 Probability of intervals greater 50 ms 0.0256 20 correlation dimension 0.0192

8 Median of Euclidean distance 0.0248 21 Hurst exponent 0.0184

9 Ratio between the axis of the ellipse fitted in the Poincar�e plot (SD1/SD2) 0.0241 22 approximate entropy 0.0171

10 Higuchi fractal dimension (k ¼ 2) 0.0238 23 Mean of the heart rate 0.0135

11 Minor semi-axes of the ellipse fitted in the Poincar�e plot (SD1) 0.0222 24 mean R-R interval 0.0133

12 Power of low-frequency components 0.0214 25 HRV detrended fluctuation analysis alpha 1 0.0094

13 Power of high-frequency components 0.0214 26 very low-frequency components 0.0059

27 HRV detrended fluctuation analysis alpha 2 0.0045
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(random forest) of heart response to consonance and dissonance intervals
in the low octave agreed very well with subject perception (bottom left,
b). The top right subplot (c) reveals that the higher valence goes with
lower recognition of the consonance intervals. Only the minor third and
the fifth jump out. In the high octave, while subject perception was not
closer to the consonance theory as in the low octave, the machine
learning classification (random forest) of heart response was as similar as
the observed in the low octave, following completely this theory (bottom
left, d).

4. Discussion

This research studied the effects of the harmonic intervals in two
separate octaves and in addition to some types of noise on the activity of
the heart, HRV features. In this case, it was searched a heart response
related to specific elements of music; harmonic intervals and, noise
sounds were included as a variation in the stimuli. The outcomes showed
the heart response after ten seconds of exposition to the stimuli; this
duration of stimulus exposition was similar to the reported in the IADS-2
database [59].

In fact, there is an influence of the selected stimuli over the heart
behaviour, specifically in some features of the HRV. At this point, it is
important to mention that despite most of the HRV analyses have been
done in the long-term, some of these features in short-term recordings
[60] have also been carried out. In this study, HRV measures were
0.84
0.86
0.88
0.90
0.92
0.94
0.96

3 9 3 9 3 9

Number of
classes

Number of
classes

Number of
classes

Noise-HMI Noise HMI

kNN Random forest

Figure 8. Matthews correlation coefficient of the sound perception classifica-
tion with three and nine in relation to all stimuli (noise and HMI), noise, and
HMI (Table 1).
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extracted from ECG signals along ten seconds duration with a main
purpose to describe the signals in question. In this case, this short-term
response in HRV was related to the interpretation in the long-term;
however, it is important to clarify that it is required the validation of
this association and to study which ultra-short HRV features can be
considered as good descriptors [61]. This is an exploratory study to
determine if there is a heart response - HRV - to harmonic musical in-
tervals and coloured noise by means of two different algorithms of
classification: kNN and Random forest.

The results also showed that it is possible to discriminate with high
accuracy the heart response to two different types of stimuli: noise and
harmonic intervals. It is also possible to infer that the heart behaviour
connected to these stimuli has a complex nature, so it is necessary to take
several features in order to classify the response with MCC higher than
0.84 (Figure 1). As a consequence, this is a multidimensional task. The
results suggested the heart behaviour of the subjects was influenced in a
different way by the different types of sounds used in the experiment.
With a descriptive statistical analysis, it was possible to observe that
Higuchi fractal dimension (k ¼ 2), probability of intervals greater 50 ms,
and ratio of standard deviation 1 and standard deviation 2 of the
Poincar�e plot had higher values in the condition of noise than in the
condition of HMI (p < 0.005). It is observed that unordered sounds
(noise) produced different responses in comparison with ordered sounds
(HMI); noise incremented the fractality respect to HMI. It would be
interesting to determine in future research if this behaviour is repro-
ducible with other types of ordered and unordered sounds.

After the analysis of two classes, a deeper examination was performed
with one class of sound, i.e. the noises and the harmonic intervals were
studied individually. First, in the noise class, the response to the sound
was discriminated in relation to its frequency content (Table 2), namely
low, high, and low-high bands (all frequency bands) and regarding the
noise types. In both cases, an MCC above 0.85 was achieved (Figures 2
and 3). These results meant the heart behaviour changed with each noise
of diverse frequential content or type; i.e. different types of noise, ac-
cording to their frequency bands, produced distinct effects on the heart.

As a second part of the examination, with one class of sound, the
Harmonic music intervals (HMI) were analysed. Heart responses were
classified regarding stimulus characteristics such as frequency content –
low and high octave -, consonance – consonance and dissonance -, and as
individual sounds – 24 HMI - (Figures 4 and 5, and 6). Again, in all cases,
an MCC superior to 0.80 was achieved. The success of these classification
processes suggests the heart response was affected in a different way by
the octave of the sounds (high or low frequency), their consonant or
dissonant nature, and by each harmonic interval sound independently.

The feature ranking in the process of classification of each interval
separately revealed the extent of the contribution to this task of each



Table 5. Descriptive statistics of the HRV features according to the presented stimulus.

Feature Class p-value

Noise Harmonic intervals

Higuchi fractal dimension (k ¼ 2) Mean � SD 1.72 � 0.40 1.64 � 0.39 0.001

Median 1.68 1.61

probability of intervals greater 50 ms Mean � SD 0.38 � 0.15 0.35 � 0.14 0.004

Median 0.38 0.36

ratio between the axis of the ellipse fitted in the Poincar�e plot Mean � SD 0.97 � 0.31 0.92 � 0.32 0.001

Median 0.92 0.83

Harmonic intervals

Consonant Dissonant

Higuchi fractal dimension (k ¼ 3) Mean � SD 1.91 � 0.37 1.86 � 0.33 0.001

Median 1.87 1.76

ratio between the axis of the ellipse fitted in the Poincar�e plot Mean � SD 0.94 � 0.32 0.90 � 0.30 0.001

Median 0.85 0.78

ratio of low and high-frequency components Mean � SD 0.59 � 0.29 0.62 � 0.32 0.022

Median 0.47 0.55

Valence

Negative Positive

Higuchi fractal dimension (k ¼ 2) Mean � SD 1.60 � 0.36 1.74 � 0.43 0.001

Median 1.57 1.68

Higuchi fractal dimension (k ¼ 3) Mean � SD 1.84 � 0.36 1.98 � 0.43 0.001

Median 1.79 1.92

mean of the heart rate Mean � SD 0.93 � 0.14 0.97 � 0.11 0.001

Median 0.96 0.95
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feature in turn (Table 4). As might be expected, the very low-
frequency components made no contribution because of the duration
of the HRV record/analysis (10 s); additionally, it is important to note
how the mean of the heart rate and the mean R-R interval also each
contributed little to this classification. Bearing this in mind, it would
be possible then to say that the HMI stimuli did not produce changes
in the heart rate and the mean R-R interval. The first four or five
Figure 9. Valence judg
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features meanwhile made the biggest contribution to the classification
process, since with these it was possible to achieve metrics of accuracy
and MCC higher than 0.8. In this light, features such as Higuchi fractal
dimension (k ¼ 4), high-frequency components, and total power made
a substantial contribution to this discrimination task; it would thus be
fair to state that the HMI stimuli produced bigger changes in these
features.
ements of stimuli.



Figure 10. Valence judgements of HMIs.
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The analysis with descriptive statistics (Table 5) showed in this case
that Higuchi fractal dimension (k¼ 3) changed from 1.86 for dissonant to
1.91 for consonant intervals (p ¼ 0.001). Unlike than noise stimuli, or-
dered sounds – consonant - incremented the fractality respect to less
ordered sounds - dissonant. The ratio between the axis of the ellipse fitted
in the Poincar�e plot varied from 0.90 for dissonant to 0.94 for consonant
intervals (p ¼ 0.001). The ratio of low and high-frequency components
decreased its values from 0.62 to 0.59 for dissonant and consonant in-
tervals (p ¼ 0.022), increasing the parasympathetic dominance [45]
(assuming the validity of this ratio for short-term HRV). Finally,
regarding of heart response to valence perception, the Higuchi fractal
dimension (k¼ 2) andmean of the heart rate increased from 1.60 to 1.74,
and 0.93 to 0.97, respectively. These results might be a possible inspi-
ration for future research in such a way specific sounds such as harmonic
music intervals can be used to produced controlled changes on HRV and
heart response.

Some aspects of the performance metrics are worth being mentioned.
Regarding sensitivity and specificity, in the case of different types of
classes/stimuli, or unbalanced datasets, sensitivity was greater than
specificity (Figures 1 and 5). In the case of discrimination of classes
belonging to the same type, sensitivity was equal to or less than speci-
ficity (Figures 2, 3, 4, and 6). In the classification of 24 harmonic in-
tervals (Figure 6), due to the number of classes in this task, specificity
tends to take greater values than in problems with few classes; in this
case, due to the fact that the algorithms are dealing with a balanced
dataset, accuracy provides a better metric of performance. With respect
to AUC, this was higher in Random forest than kNN (Figures 1, 2, 3, 4, 5,
and 6). MCC was in general higher in kNN in comparison with Random
forest (Figures 1, 2, 3, and 4); MCC was higher in tasks directly related to
HMI, as it is the case of classification of "consonance and dissonance"
(Figure 5), and "24 harmonic intervals" (Figure 6).

The heart response was also analysed (Figure 8) to the sounds
regarding the perception of subjects; this procedure was done by
including all the types of sounds, i.e. noise and HMI. In this procedure,
both kNN and Random forest were able to predict the subject perception
both in a general way (with groups of three classes, that could be grouped
as postivie, neutral and negative) and, in a more specific manner (with
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groups of nine classes). In this last case, it was observed that the
perception has considerable relevance in the heart response since
MCC>¼0.8 was achieved in all classifications considering or not the type
of the stimuli. Thus, it could be possible to infer that the perception of
sound has also an important influence on the effect of the sound in the
heart behaviour, and, until a certain point, it could be independent of the
type of noise or harmonic intervals.

In respect of the experimental design, the HMI stimuli had the
same lower tones, 110 and 440 Hz, both in the lower and in the higher
octaves. This fact introduced those notes as a reference for the ear;
where a modal or even tonal perception could be introduced in the
listeners. I.e. a tonality around the root A - A2 and A4 - could be
perceived by the subjects. This general condition could have intro-
duced a bias in the outcomes into the heart response to these HMI. For
this reason, it is important to include HMI with different lower notes
in future studies. It would be also interesting to determine if the
observed heart responses are also observed in HMI stimuli in different
octaves than those included in our experimental design, i.e. lower and
higher than 2 and 4.

The judgements of the subjects confirmed the relation between
valence and consonance (Figure 10). The intervals in the higher octave
were judged as less positive indicating the relation with the range of the
human voice. The analysis of the heart signals revealed that aspects
such as type of sound, frequency content, consonance condition (for
HMI), and subjective perception had influence in the heart response to
the sound stimuli. Each type of noise and harmonic interval itself
originated a distinguishable reaction in the heart. It was possible to
recognise the valence judgements by the heart response. While the
classification of consonant/dissonant HMI matched with subject judg-
ments, consonant related to positive and dissonant associated with
negative.

The subjective perception of subjects agreed closely with the
"actual" consonance/dissonance quality of the HMI stimuli in the lower
and higher octaves (Figure 10), i.e. subjective perception did indeed
have an influence on heart activity. However, it is important to remark
that heart activity (HRV/ANS) was also affected not by subjective
perception but by physical features of sound, specifically consonance
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and dissonance characteristics. In this case, there was no direct inter-
action between physical features of sound and the subjective perception
of sound, in other words the heart reacted to consonant sounds similarly
to the way in which it might react to other consonant sounds, inde-
pendent of whether these were subjectively perceived as positive or
pleasant. Despite the fact that these findings remain to be confirmed
and expanded in future research, they anticipate a promissory tool with
which to influence heart activity objectively, so that on determined
occasions the subjective perception of listeners might well be dis-
counted in order to standardize procedures or protocols concerned with
affecting the heart with sound.

With this research was learned that considered sound had an influ-
ence on heart behaviour. Heart responses agreed with the subject
judgements; this was very observable in the low octave of HMI sounds.
Positive judgments were associated with heart response to consonant
sounds and negative judgments to dissonant. An association of heart
response with the frequency content of stimuli was observed. In addition
to the better agreement between subject judgments and consonance/
dissonance quality in the lower octave, algorithms found distinguishable
heart responses between low and high HMI. Heart responses were also
distinguishable by the algorithms between low, high, and low-high band
frequencies of the noise stimuli. Since the heart might be influence by the
consonant quality of HMI, and this response agrees with subject
perception (valence), this research supports the theory related to the
biological influence in the perception of HMI as consonant or dissonant
[58]. It is important to note the fact that the noise stimuli were judged in
the same range as the stimuli in the low octave. This represents a strong
argument for the biological basis of valence.

From the outcomes, it is possible to observe that heart response to
sound stimuli was affected by several elements implied. First, the type or
nature of the sound produced different responses in the heart (Figure 1).
Second, the frequency content of the sounds generated distinct heart
reactions (Figures 2 and 4). Here there is an interesting element to study
in future works, where it is important to determine if the heart response
to frequency content depends or not of the sound type. Third, each sound
in itself was able to produce particular reactions on the heart (Figures 3
and 6), where a better distinction in such reactions was noted with the
noise sounds (Figure 3). Fourth, in the particular case of harmonic music
intervals, their grade of consonance/dissonance contributed to the
changes in the heart (Figure 5). Sixth, the experimented perception of
subjects also contributed to heart reactions (Figure 8). Thus, heart
response to sound stimuli was influenced by these six factors; a great
capability of affectation and sensibility of heart to stimulus characteris-
tics and perception of subjects was observed. Bearing this outcome in
mind, in future research it is interesting to discover new factors that
might influence the heart reaction to sound stimuli.

5. Conclusions

In this research, it was possible to establish differences between the
heart response to sound noises and harmonic intervals by using tools of
machine learning. With these tools was possible to determine that HRV
features had the ability to represent the heart response to the selected
stimuli. Aspects such as type of sound, frequency content, consonance
condition (for HMI), and subjective perception had influence in the heart
response to the sound stimuli. Thus, each type of noise and harmonic
interval itself originated a distinguishable reaction in the heart. In the
particular case of the harmonic intervals, it is interesting to note how the
effect of consonance quality could be also found in the heart response.
This study found support for a heart response to harmonic music intervals
and coloured noise beyond the conscious processing of the subject. This
fact involves a biological basis of valence and the perception of HMI as
consonant or dissonant. This study represents a substantial basis for
music therapy and suggests the development of new studies to establish a
new solid basis in regards to the effects that elemental parts of music
could produce on the human body.
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