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Differential regulated microRNA by wild type and
mutant p53 in induced pluripotent stem cells

Francesca Grespi', Vivien Landré?, Alina Molchadsky®, Nicola Di Daniele®, Luigi Tonino Marsella®, Gerry Melino*?* and Varda Rotter**

The tumour suppressor p53 plays an important role in somatic cell reprogramming. While wild-type p53 reduces reprogramming
efficiency, mutant p53 exerts a gain of function activity that leads to increased reprogramming efficiency. Furthermore,
induced pluripotent stem cells expressing mutant p53 lose their pluripotency in vivo and form malignant tumours when
injected in mice. It is therefore of great interest to identify targets of p53 (wild type and mutant) that are responsible for this
phenotype during reprogramming, as these could be exploited for therapeutic use, that is, formation of induced pluripotent
stem cells with high reprogramming efficiency, but no oncogenic potential. Here we studied the transcriptional changes
of microRNA in a series of mouse embryonic fibroblasts that have undergone transition to induced pluripotent stem cells
with wild type, knock out or mutant p53 status in order to identify microRNAs whose expression during reprogramming is
dependent on p53. We identified a number of microRNAs, with known functions in differentiation and carcinogenesis, the
expression of which was dependent on the p53 status of the cells. Furthermore, we detected several uncharacterised microRNAs
that were regulated differentially in the different p53 backgrounds, suggesting a novel role of these microRNAs in reprogramming

and pluripotency.
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The tumour suppressor p53 is the most frequently mutated or
deregulated gene in human cancers.'™ Often referred to as
the guardian of the genome, its role in protecting the cell from
accumulation of DNA damage by inducing DNA repair or cell
death is well-studied.®'> However, p53 has also been
implicated in a vast variety of other cell pathways, including
metabolism,'® autophagy,*'® mitochondrial function'®~'® and
also cell differentiation and pluripotency.'®2° Interestingly, p53
mutations, in addition to disrupting the protein's wild-type
function, result in additional activities that lead to increased
tumour malignancy, usually referred to as gain of function
(GOF).21'22

Recently, p53 is emerging as a key regulator in the
process of reprogramming from somatic to induced pluri-
potent stem (iPS) cells as well as being involved in stem
cell maintenance.?>%° Stem cells are characterised by high
genomic stability, which is crucial to minimise tumorigenesis
following stem cell expansion.®'~33 p53 is an important factor
that protects this genomic integrity and has the ability to
counteract somatic reprogramming by inducing cell cycle
arrest and apoptosis.?32526:34-3¢ |5 contrast to somatic cells,
p53 does not induce apoptosis in embryonic stem cells
(ESCs) following DNA damage, but promotes differentiation of
ESC by several mechanisms including transcriptional repres-
sion of the pluripotency factors Nanog and Oct4.%”7° After
differentiation p53 activates the expression of genes that lead
to cell death or senescence by classical p53 pathways. Thus,
p53 plays an important role in maintaining a pool of stem cells

with an intact genome and moreover prevents of reprogram-
ming cells with faulty genome.?”

We have previously studied the reprogramming efficiency of
a series of MEFs with different p53 status, that is, p53 wt, p53
knock out (KO) and mutant p53R172H cells.?” p53R172H
(R175H in human) is a conformational mutant that results in
a misfolded p53 protein. This study showed that p53 depletion
or the expression mutant p53 increases reprogramming
efficiency.?” However, cells expressing p53R172H in addition
to their augmented pluripotency in vitro exhibited carcinogenic
potential in vivo. When injected into nude mice, p53R172H
expressing iPS cells lost their differentiation capacity and
gave rise to aggressive sarcomas, while p53 KO iPS cells
maintained pluripotency and led to the formation of benign
teratomas, thus displaying a novel GOF for mutant p53.%”

It is of great interest to generate iPS cells with a high
reprogramming efficiency, but low tumorigenic potential for
therapeutic use. As p53 was shown to be important in both
reprogramming and maintaining genomic integrity of iPS cell, it
provides an interesting target for manipulation of the reprogram-
ming pathway. It is thus of interest to dissect the mechanisms
and players regulated by p53 in these pathways. In addition to
controlling the expression of protein coding genes, p53 was
shown to control the transcription of a number of microRNAs
(miRNAs). Expression of miRNAs is altered in many patholo-
gical conditions including cancer, where different miRNAs
exhibit oncogenic and tumour suppressive properties. More-
over, miRNAs are key regulators of development; for example,
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Figure 1 A number of miRNAs involved in differentiation are up/downregulated during the MEF to iPS cell transition independent of the cell's p53 status. MiRNAs levels were
examined upon transition from MEFs to iPS cell using microarray analysis. Selected miRNAs that were induced (a) or decreased (b) in all genetic backgrounds, that is, p53 wt,

p53R172H and p53 KO (NRQ = normalised relative quantities)

miR-34a is fundamental for neuronal and muscle differen-
tiation,*’~*3 but also influence reprogramming of stem cells and
the maintenance of an undifferentiated cellular stage.***°

In this study, we set out to examine miRNAs that are
differentially regulated in cells during reprogramming depend-
ing on their p53 status, aiming to identify miRNAs that play a
role in this process and that could be directly targeted to help
optimise iPS cells. This would allow the generation of cells that
have intact p53, which protects their genomic integrity, but at the
same time exhibit high reprogramming efficiency. To this end,
we performed a microarray screening of miRNA expression
before and after three factors driven reprogramming of wt, KO
and mutant p53 cells and identified several miRNAs whose
expression is dependent on the p53 status of the cell.

Results
Identification of microRNAs that are modulated during

the MEF to iPS cell transition depending on cell's p53
status. To identify miRNAs that are targeted by either wt or
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mutant p53 during reprogramming, we performed micro-
array analysis on a series of iPS cells and their
parental MEFs with different p53 (wt, p53, KO and
p53R172H). The MEFs were reprogrammed by introduction
of Oct4, Sox2, KlIf4 as described in our previous study by
Sarig et al.?”

All Cq values above 32 were considered noise background
and excluded from the analysis. The results for a given sample
were normalised by the geometric mean of the relative
quantities of all targets expressed in the same sample (global
mean procedure). Targets that were up- or downregulated
more than twofold were considered to be changed in the
analysis.

In a first step we looked at the miRNAs that were up- or
downregulated in all three conditions during reprogramming
(Figure 1). A high number of the detected miRNAs are
known to play a role in stemness and differentiation, that is,
let7 family, miR-125b, miR-126, miR-136, miR-143, miR-145,
miR-152, suggesting that we indeed identified miRNAs
that are important in reprogramming using our experimental
set up.
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Figure 2 Several miRNAs are regulated exclusively in p53 wt cells. MiRNAs levels were examined upon transition from MEFs to iPS cells using microarray analysis. Selected
miRNAs that were induced exclusively in p53 wt cells (a), only detected in p53 wt cells (b) and downregulated in p53 wt cells (c) are shown

Next, to study the role of p53, both wt and mutant, during
reprogramming, we were interested in miRNAs that were
specifically regulated depending on the cell's p53 status (see
Supplementary Table S1 for summary of relevant miRNAs
identified). Figure 2a shows those that were upregulated
specifically by wt p53 in iPS cells, while not significantly
changed in the other conditions. Of these, miR-200c was
previously shown to be a transcriptional target of p53.464”
Furthermore, several of these miRNAs have been implicated
in both stemness and cancer (Supplementary Table S1).
MiR-182, for example, is an important factor in the develop-
ment of the inner ear and retina, T-cell development and
osteogenesis and has also been implicated in cancer
development and metastasis,*® while miR-497 is a tumour
suppressor that has been shown to induce quiescence in
skeletal muscle stem cells.*®~"

Additionally, we identified a number of small non-coding
RNAs that were only detectable in iPS cells bearing functional

p53 (Figure 2b), most of which have not yet been
characterised. Furthermore, we identified two mMiRNAs,
miR-27a, see also refs 52-54, and miR-33 that were down-
regulated following reprogramming exclusively in p53 wt cells
(Figure 2c).

Both p53 KO and p53 mutant cells displayed increased
reprogramming efficiency compared with wt p53, notably p53
mutant cells underwent reprogramming more effectively than
p53 KO cells. We were thus interested in hits that were
regulated in these conditions and found several miRNA that
are downregulated (Figure 3a) or upregulated (Figure 3b) in
p53 KO and mutant cells, but not changed in p53 wt cells. For
example, we found that p53 KO and p53 mutant iPS cells
induced the expression of miR-186. Furthermore, a high
number of miRNAs that were downregulated in p53 compro-
mised iPS cells convey tumour suppressive functions, that is,
miR-30a-5p,>° miR-31,%6%" miR-335,°® miR-382°° and
miR-503.5°¢

Cell Death and Disease
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Figure 3 Levels of some miRNAs change solely in p53R172H and p53 KO cells during the MEF to iPS cell transition. Analysis of miRNAs levels upon transition from MEFs to
iPS cells highlighted miRNAs that were regulated differentially depending on the cell's p53 status. Here miRNAs that were induced (a) or decreased (b) in p53R172H and p53 KO

cells, while unchanged in a p53 wt background are shown

Mutant p53 regulates a specific pool of microRNAs
during reprogramming that might be linked to its GOF
activity. In previous studies we demonstrated a GOF activity
of mutant p53 in reprogramming, manifested not only by
more efficient process, but also by acquiring in cells with
tumorigenic properties.?” We were therefore particularly
interested to identify miRNA that are specifically modulated
in p53R172H cells during MEF to iPS cell transition. We
identified several miRNAs that are strongly upregulated
(Figure 4a) or downregulated (Figure 4b) upon reprogram-
ming in p53R172H cells, while unchanged or less strongly
regulated in the other samples. As mutant p53 cells have a
high reprogramming efficiency, these miRNAs could facilitate
the reprograming process and it would be interesting to study
their role in more detail. Indeed several of the miRNA
regulated by mutant p53 during transition from MEF to iPS
cells have been implicated with stemness as well as
carcinogenesis (Supplementary Table S1). For example,
miR-194 and miR-206 were previously found to be involved in
osteoblast®® and muscle differentiation,®® respectively, while
miR-101, whose expression was decreased in p53R172H
iPS cells, is a well-characterised tumour suppressor that
inhibits tumour growth and metastasis.®*~58

Reversely regulated microRNAs in p53 wt and p53
mutant cells. Interestingly, we identified several miRNAs
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whose expression was opposite in p53 wt and p53 mutant
cells, that is, increased expression during reprogramming in
wt cells, yet decreased in mutant cells or vice versa
(Figures 4c and d). This suggests that these miRNAs are
regulated by p53 during reprogramming by complex mechan-
isms. An example is miR-10a that on the one hand is known
to promote the differentiation of human mesenchymal
stem cells®® and on the other contributes to cancer
development.”®”" This miR is downregulated during repro-
gramming of p53 wt cells, but upregulated in cells expressing
mutant p53. Mir-199b shows upregulation in p53R172H iPS.
The same is true for miR-218, an miRNA that seems to acts
as a tumour suppressor’>’® and promotes stem cell
differentiation.”*"® The tumour suppressive miR-708 and
miR-126 on the other hand are upregulated during repro-
gramming in p53 wt cells and reduced in p53R172H cells.

MicroRNAs specifically upregulated in WT p53 iPS cell
encode for a p53 responsive element. To further char-
acterise the miRNA that we identified as upregulated solely in
p53 wt cells, we decided to screen for predicted responsive
elements in the promoter region of those miRNAs that were
induced upon reprogramming in the presence of wt p53
(Figure 2). We identified four miRNAs that encode a p53
responsive element with high matrix similarity in their
promoter region (Supplementary Table S2). Of all the targets
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Figure 4 Complex regulation of miRNAs during the induced transition from MEF to iPS cells depending on p53. Analysis of miRNAs levels upon transition from MEFs to iPS
cell revealed a group of miRNAs that was upregulated (a) or downregulated (b) only in p53R172H iPS cell, while unchanged in the other groups, and miRNAs whose expression
was induced in p53 wt while reduced in KO or p53 mutant cells (c) or vice versa (d)
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that were specifically upregulated during reprogramming of
wt cells, only miR-142-3p lacked a predicted p53 responsive
element in its promoter altogether.

Next, we investigated whether any of the miRNAs upregu-
lated specifically in p53 wt cells are predicted to target genes
known to be important for reprogramming and pluripotency.
While we did not identify any of the key regulators of
reprogramming, such as Nanog, Sox2, Oct4/3, ERK2 or
B-catenin/Ctnnb1 as predicted targets, our predictive analysis
highlighted factors, for example, N-Myc, Akt1/2/3 and Smad
2/2, involved in iPS cell generation and pluripotency that
encode a responsive element in their 3'UTR for one or several
of the miRNAs that we identified in our screen (Supplementary
Table S3).

Discussion

In this study we used our previously published iPS cell model?”

to investigate miRNAs that are under control of p53, wild type
or mutant during reprogramming. The fact that p53 mutant
cells exhibit an increased reprogramming efficiency, while p53
wt iPS cells have high genomic stability and thereby low
carcinogenic potential, makes this transcription factor and its
targets of great interest in the aim to optimise pluripotent stem
cell formation.

Using a microarray approach we were able to identify
several miRNAs that are specifically regulated by p53 during
the process of reprogramming. Interestingly, we did not only
find miRNAs upregulated by wt p53, but also specifically by
p53R172H. We have previously shown that this p53 mutant
exhibits a GOF activity during reprogramming®’ and it would
be very interesting to further investigate whether these
miRNAs are responsible for this phenotype. Among the
miRNAs that are regulated by p53R172H during the MEF to
iPS cell transition, several have known functions in stemness
and differentiation, for example miR-186, miR-194 and
miR-206. Additionally, several miRNAs that are known to
exhibit tumour suppressive functions, like miR-30a-5p, miR-
-31, miR-335, miR-382 and miR-503, were downregulated in
the p53R172H cells upon reprograming to iPS cells. This is in
line with our earlier study that showed occurrence of malignant
tumours after injection of iPS cells with p53R172H in mice.?”
On the other hand, we also identified tumour suppressive
miRNAs, like miR-218 that are upregulated in p53 mutant
cells, and in the case of miR-218 downregulated in p53 wt
cells. The roles of these miRs in the reprogrammed cells
remains to be studied.

Interestingly, miR-15b that was markedly induced exclu-
sively by mutant p53 during reprogramming. Mir-15b promotes
osteoblast differentiation”” whilst it reduces invasion and
metastasis’®’® and its deletion was shown to promote B-cell
malignancies;®° these distinct effects suggests a possible
complex context-dependent function. Furthermore, we
detected a decrease of miR-155 in both p53 KO and mutant
cells during reprogramming, while its levels remained high in
p53 wt cells, which is at variance with previous studies.?'-82

Notably, we also identified miRNAs that are induced in p53
KO and p53 mutant iPS cells, but not in p53 wt iPS cells,
suggesting that wt p53 inhibits their up-regulation during
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reprogramming. It remains to be investigated how these
miRNAs effect differentiation and/or oncogenesis in vivo.

We identified several miRNAs that are increased specifically
in p53 wt cells during reprogramming from MEF to iPS cells.
These miRNAs could be involved in ensuring high genome
stability of reprogrammed cells. MiR-709,%2 for example, is
upregulated specifically in the transition from p53 wt MEFs to
iPS cells, while it is downregulated when p53 is not functional.
Another interesting hit that is strongly upregulated in p53 wt
iPS cells, but very low expressed in p53 KO and mutant iPS
cells is miR-142-3p.8*#5 We were unable to identify whether a
p53 responsive element is its promoter, suggesting that p53
regulates the expression of this miRNA by an indirect
mechanism.

Of note, our microarray screening did not highlight miR-34a
as upregulated during reprogramming, as previously
reported.®5-8 We think this could be due to the fact that in
the previous work, iPS cells were generated with four
reprogramming factors (Oct4, Sox2, Klif4 and c-Myc), while
in this study the iPS cells were generated using only three
reprogramming factors (Oct4, Sox2 and Kif4) since c-Myc has
been correlated with carcinogenesis of iPS cells in vivo.®°

In conclusion, our study highlighted a group of miRNAs driven
by wt and mutant p53 that might be important for reprogram-
ming, tumorigenesis and loss of genomic integrity. While a high
number of miRNAs identified in our screen have already been
associated with cancer development or differentiation and
stemness (Supplementary Table S1), others are less well
characterised and provide interesting targets to study in more
details. It would be of particular interest to dissect their role
during reprogramming and how this is controlled by p53 in either
its wild type or mutant form. Thus, further studies will be
necessary to further validate these results and pinpoint the exact
functions of these miRNAs during the formation of iPS cells.

Materials and Methods

Cell culture and iPS cell generation. Primary MEFs were prepared from
wt, p53 mutant or p53 KO E13.5 embryos as reported previously.?” Briefly, MEFs
were prepared from 13.5 days postcoitum embryos and maintained in DME,
supplemented with 10% FCS, 1 mM sodium pyruvate, 2 mM L-glutamine, 0.1 mM
nonessential amino acids, 0.1 mM p-mercaptoethanol and antibiotics. Reprogram-
ming was induced using the three factor protocol (Oct4, Sox2, Kif4) as described
previously.2”

RNA extraction and microarray analysis. RNA was extracted using
Trizol (Invitrogen, USA), following manufacturer’s instruction.

Microarray analysis was performed by Biogazelle (Gent, Belgium). All Cq values
above 32 were excluded as noise background. The results for a given sample were
normalised by the geometric mean of the relative quantities of all targets that are
expressed in that sample (global mean normalisation procedure). Three biological
samples (n= 3) were collected and pooled together for technical reasons; these were
analysed with three technical replicates, obtaining always a mean error lower than 5%
of the measure. Because this variation derives from a technical measure, and not
from a biological replicate, it has not been reported on the histograms. Therefore, we
did not show any statistics on these qualitative results.

Predictive analysis. P53 responsive element in microRNAs promoters were
predicted using the programme Matlnspector that allows identification of
transcription factors binding sites in nucleotide sequences using a large library of
weight matrices (Genomatix, Germany).

MicroRNAs targets were predicted by using the miRanda Software (microrna.org).
Only target sites of conserved miRNAs and with good mirSVR score were taken into
consideration.
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