
sensors

Letter

Design and Implementation of Fast Fault Detection in
Cloud Infrastructure for Containerized IoT Services

Hyunsik Yang and Younghan Kim *

School of Electronic Engineering, Soongsil University, Seoul 06978, Korea; yangun@dcn.ssu.ac.kr
* Correspondence: younghak@ssu.ac.kr; Tel.: +82-02-820-0841

Received: 3 July 2020; Accepted: 14 August 2020; Published: 16 August 2020
����������
�������

Abstract: The container-based cloud is used in various service infrastructures as it is lighter and more
portable than a virtual machine (VM)-based infrastructure and is configurable in both bare-metal and
VM environments. The Internet-of-Things (IoT) cloud-computing infrastructure is also evolving from
a VM-based to a container-based infrastructure. In IoT clouds, the service availability of the cloud
infrastructure is more important for mission-critical IoT services, such as real-time health monitoring,
vehicle-to-vehicle (V2V) communication, and industrial IoT, than for general computing services.
However, in the container environment that runs on a VM, the current fault detection method only
considers the container’s infra, thus limiting the level of availability necessary for the performance of
mission-critical IoT cloud services. Therefore, in a container environment running on a VM, fault
detection and recovery methods that consider both the VM and container levels are necessary. In this
study, we analyze the fault-detection architecture in a container environment and designed and
implemented a Fast Fault Detection Manager (FFDM) architecture using OpenStack and Kubernetes
for realizing fast fault detection. Through performance measurements, we verified that the FFDM
can improve the fault detection time by more than three times over the existing method.

Keywords: fault detection; container; Internet-of-Things (IoT) cloud; edge cloud

1. Introduction

Container-based clouds are used in various service infrastructures because they are lighter
and more portable than a virtual machine (VM)-based infrastructure and are configurable in both
bare-metal and VM environments [1]. The internet-of-things (IoT) cloud-computing infrastructure is
also evolving from a VM-based to a container-based infrastructure [2–5]. In IoT clouds, the service
availability of the cloud infrastructure is more important for mission-critical IoT services, such as
real-time health monitoring, vehicle-to-vehicle (V2V) communication, and industrial IoT, than it is for
general computing services [6–11]. Service availability can usually be improved by using various fault
detection and recovery methods. Fast fault detection is essential for quick recovery from faults [12–16].
These research works were conducted to improve fault detection and availability based on VM-based
infrastructure, but with the industry shift to a container-based cloud environment, research has started
towards improving fault detection and availability in container environments.

The container-based cloud infrastructure can be deployed on the VM or bare metal server directly,
and it is usually managed by Kubernetes, which is a container orchestrator. Hence, it is necessary
to appropriately set the Kubernetes parameters related to fault detection and recovery to meet the
requirements of mission-critical IoT services [17]. To study fault recovery in container infrastructure,
References [18,19] measured and analyzed the fault detection and recovery performance under various
conditions in the Kubernetes environment. First, in Reference [18], the fault detection and recovery
function were tested using the basic Kubernetes function when the case of node failure and application
fault occurred. However, the authors of Reference [18] measured and presented only fault detection

Sensors 2020, 20, 4592; doi:10.3390/s20164592 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5359-4653
http://www.mdpi.com/1424-8220/20/16/4592?type=check_update&version=1
http://dx.doi.org/10.3390/s20164592
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 4592 2 of 13

and recovery based on default parameters. In addition, since the focus is only on functional tests
for failure recovery at the application level, the improvement of the node’s fault detection method is
not considered.

In Reference [19], based on the result of Reference [18], when a node fault occurs, the fault detection
time and the fault recovery time were measured. However, in the case of node fault, the performance
was measured considering only the fault detection time (reaction time) at the application level, such as
load balancer. In addition, although some parameters related to fault detection in Kubernetes have
been modified, a method for improving the fault detection method has not been considered.

Abdollahi et al. [20] proposed a method of ensuring availability based on appropriate storage
management. The service was configured as a redundancy model, and the architecture was proposed
to share data via Persistent Volume (PV). A state controller was proposed on the existing architecture to
configure two pods as an active and standby model and shared one PV to share the data was designed.
As a perspective of availability, the proposal in Reference [20] is also considered, but further research is
needed on how to guarantee availability starting from node fault to reduce the service outage, due to
node fault.

These studies considered only the performance measurement in the existing environment and the
recovery of faults at the service level. Therefore, in order to reduce the fault detection time of a node, a
method for quickly detecting a node fault is required. Especially, container environments running on
VMs require a method of the fault detection and recovery that considers both VM and container levels.
Through this, it is possible to optimize fault detection time to ensure the level of availability required
by a mission-critical IoT cloud. However, these studies do not describe how faults can be detected
quickly enough for mission-critical IoT services running on the VM.

In this study, we analyze the fault-detection architecture in a container environment and design
and implement an integrated fault-management architecture for realizing fast fault detection. We
consider the addition of a fault detection system at the VM level and its integration with the container
fault detection system, as necessary, to plug the gap in swift detection of faults occurring, due to
failures in the container environment infrastructure running on the VM. We design and implement
Fast Fault Detection Manager (FFDM) using OpenStack and Kubernetes. FFDM is a component for
interworking the functions of the VM orchestrator and Container orchestrator, and it provides an
automated monitoring function for quick fault detection and recovery and the requisite function to
deliver VM fault information to the container orchestrator directly. Further, we show that the proposed
architecture can improve both the fault-detection speed and fault-recovery time using measurements
from the implementation. In summary, the contributions of this study are as follows:

(a) We analyze the fault-detection architecture in a container environment and highlight its limitations
(b) We design and implement Fast Fault Detection Manager (FFDM) using OpenStack and Kubernetes;

an integrated architecture which provides an automated monitoring function for quick fault
detection and recovery.

(c) Design and implementation of an architecture for fault information delivery according to the
monitoring results.

(d) We evaluate the performance of our proposed architecture against the current state of the art
approaches and show that it can improve both the fault-detection speed and fault-recovery time.

The rest of this study is organized as follows. In Section 2, the fault-detection procedure of the
container infrastructure is analyzed. In Section 3, the fast-fault-detection architecture is described; and
subsequently, in Section 4, we present an analysis of the experimental results. Section 5 concludes the
study and offers directions for possible future works.

2. State of the Art: Fault Detection and Recovery Mechanisms in Container Infrastructure

We present common fault-management methods for container environments [17] in Table 1.

Sensors 2020, 20, 4592 3 of 13

Table 1. Fault management methods in Kubernetes.

Level. Fault Type Manager Fault Detection Method Fault Recovery Method

Application Application
(service)

Health Check Daemon TCP/HTTP/CMD Restart
External monitoring function External monitoring matrix External tool function

Infrastructure

Container Kubelet (cAdvisor) Process list Restart
Pod Kubelet (cAdvisor) Process list Respawn

Node
Node controller Message (Node to Kubelet) Notification

External monitoring function External monitoring matrix External tool function

Kubernetes supports three probe methods for checking the status of applications, namely, TCP,
HTTP, and command. The probes can be divided into two categories, depending on whether they
check for liveness or readiness. Liveness probes provide the ability to periodically check the current
application status. When a problem is confirmed, the application is restarted by the Kubelet. Readiness
probes are used to check the status of the pod after migrating, restarting, or reconfiguring the pod. If
the pod is not ready to perform normal service, Kubernetes removes the IP address of the pod from
all the services to prevent faults in the service. In addition to these probes, Kubernetes uses external
monitoring tools, such as Prometheus, to compensate for faults that may be missed [21].

Containers run in pods that are deployed on nodes (physical or logical servers). The node status
is periodically updated by the Kubelet running on the worker nodes to the Kubernetes master node.
There are four parameters related to this process, as listed in Table 2.

Table 2. Parameters related to the fault-detection process.

Parameter Meaning

Tu The node-status-update-frequency (duration: seconds)
Tm The node-monitor-period (seconds)
Tg The node-monitor-grace-period (seconds)
Te The pod-eviction-timeout (seconds)
T f The time interval between the fault occurrence point and the grace period endpoint (seconds)

As shown in Figures 1 and 2, the node-status-update-frequency parameter is used to set the
frequency at which the Kubelet sends the status of the node to the Kubernetes master node. The
node-monitor-period parameter sets the monitoring time interval for the Kubernetes master node to
check the status of the nodes updated by the Kubelet. The third parameter, node-monitor-grace-period,
controls the length of time that the master node defers its decision to change the state of a node if its
updated information does not confirm a normal node status. The pod-eviction-timeout is the duration
of time to wait before removing a node that has been determined to be defective. The default duration
is 5 min, after which the pod migration begins.

Adjusting the values of these parameters can reduce the fault detection and recovery time. Several
studies have been conducted on the fault detection and repair processes in Kubernetes.

Sensors 2020, 20, 4592 4 of 13Sensors 2020, 20, x FOR PEER REVIEW 4 of 13

Kubernetes Controller

Fault

NodeLifeCycle
Monitor

NodeCondition
Status

Kubernetes Worker
(Kubelet)

Checking Node Status

Fault Recovery Process Start
(a) Worst case.

Kubernetes Controller

Fault

NodeLifeCycle
Monitor

NodeCondition
Status

Kubernetes Worker
(Kubelet)

Checking Node Status

Fault Recovery Process Start
(b) Best case.

Figure 1. Timing diagrams of the fault detection process.

Physical Server
(Compute Node)

Physical Server
(Compute Node)

NOVA

PodPod

VM

K8S Worker

Kube
Proxy

Kubelet

IoT
app

IoT
app

PodPod

VM

K8S Worker

Kube
Proxy

Kubelet

IoT
app

IoT
app

Physical Server
(Compute Node)

Physical Server
(Control Node)

Neutron

Keystone

Glance

Horizon

Notification Bus

Ceilometer

Tacker

Aodh

Alarm
Alarm

Evaluator

Alarm
Notifier

Inspector
Failure
Policy

Notification Bus

OpenStack Service

VM

ETCD
K8S Master

Scheduler
Controller-Manager

API-Server
Kube
Proxy

Fault

PodPod

VM

K8S Worker

Kube
Proxy

Kubelet

IoT
app

IoT
appNotification Daemon

Auto
Configuration

&
Registration

Fast Fault Detection Manager

Figure 2. Proposed cloud architecture for fast fault detection.

Figure 1. Timing diagrams of the fault detection process.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 13

Kubernetes Controller

Fault

NodeLifeCycle
Monitor

NodeCondition
Status

Kubernetes Worker
(Kubelet)

Checking Node Status

Fault Recovery Process Start
(a) Worst case.

Kubernetes Controller

Fault

NodeLifeCycle
Monitor

NodeCondition
Status

Kubernetes Worker
(Kubelet)

Checking Node Status

Fault Recovery Process Start
(b) Best case.

Figure 1. Timing diagrams of the fault detection process.

Physical Server
(Compute Node)

Physical Server
(Compute Node)

NOVA

PodPod

VM

K8S Worker

Kube
Proxy

Kubelet

IoT
app

IoT
app

PodPod

VM

K8S Worker

Kube
Proxy

Kubelet

IoT
app

IoT
app

Physical Server
(Compute Node)

Physical Server
(Control Node)

Neutron

Keystone

Glance

Horizon

Notification Bus

Ceilometer

Tacker

Aodh

Alarm
Alarm

Evaluator

Alarm
Notifier

Inspector
Failure
Policy

Notification Bus

OpenStack Service

VM

ETCD
K8S Master

Scheduler
Controller-Manager

API-Server
Kube
Proxy

Fault

PodPod

VM

K8S Worker

Kube
Proxy

Kubelet

IoT
app

IoT
appNotification Daemon

Auto
Configuration

&
Registration

Fast Fault Detection Manager

Figure 2. Proposed cloud architecture for fast fault detection.
Figure 2. Proposed cloud architecture for fast fault detection.

Sensors 2020, 20, 4592 5 of 13

The authors of Reference [18] tested the basic fault detection and recovery capabilities of Kubernetes.
However, they only used the default parameter values in their measurements. Based on the same
architecture as [18], the optimization of failure detection and recovery was studied in Reference [19],
but only pod- or container-level processes were considered except for node-level fault detection.

In Reference [20], a method was proposed to improve the availability of stateful services through
common storage for the active and standby pods, but node-level fault handling was not considered.

In this study, we first analyzed the Kubernetes fault detection times when node failures occurred
using the parameters defined in Table 2. To do that, we added a new parameter ‘T f ’ to express the
time interval between the fault occurrence point and the grace period endpoint. All the numerical
parameters in Kubernetes are presented in s. The methodology for setting the parameters is as follows.
The node-monitor-grace-period ‘T′g was set to a multiple of Tu, i.e., Tg = M × Tu, M ≥ 1, with the
default value of 4 for M. This means that Kubernetes provides a grace time of 4 Kubelet cycles for
fault determination. Tm should be set to a smaller value than Tu. If Tm is larger than Tu, node status
reporting messages from the Kubelet will not be checked by the node monitor over the Tm period,
which will increase the fault detection time. The default value of Tu was set as twice of Tm.

Figure 1 presents the worst- and best-case scenarios for fault detection. In this figure, we assumed
that Tu is twice the value of Tm, and Tu and Tg have the same value. The worst case for fault detection
is when a fault occurs at the node shortly after the Kubelet has reported that the node is healthy. In this
case, we obtain the worst-case fault-detection time of

Tworst
f d-kube = Tg + T f (1)

The best case for fault detection is when the node fails just before the Kubelet reports the node
status. In this case, the timer of duration Tg started at the previous checkpoint has just expired, and as
a result, it is determined that some node defects have occurred. Consequently, the fault detection time
becomes shorter than Tg and is given by

TBest
f d-kube = Tg − T f ,

(
0 < T f < Tm

)
(2)

From Equations (1) and (2), the range of the fault-detection time is

Tg − T f ≤ T f d-kube ≤ Tg + T f
(
0 < T f < Tm

)
(3)

As shown in Figure 1, the existing method has a difference in detection time, depending on when
the fault occurred. In addition, due to the correlation of parameters described above, and then the
procedure necessary to determine the fault, there is a limit to improve the fault detection time in the
existing architecture. The above-mentioned papers also presented the performance measurement
results of the existing fault detection method in the VM-based container structure, but the improvement
of the fault detection time in the container environment deployed in the VM was not considered. To
improve this, a way to quickly detect fault from a node and forward it directly to the Kubernetes
Controller should be considered.

3. Proposed Architecture

In this section, we describe the proposed fault-detection architecture for containers deployed
on VMs. Instead of detecting VM faults at the container level, we use VM-level fault detection and
notify the container level of the detected faults directly. To this end, we designed a fast fault detection
manager (FFDM) that automatically registers information for VM failure monitoring and forwards the
failure information delivered to the VM orchestrator to Kubernetes [17,22].

As depicted in Figure 2, VMs are orchestrated by the OpenStack control node and operate as
nodes in a container cluster. The cluster is managed by Kubernetes and consists of a master node in
charge of controlling the containers and worker nodes on which the containers are deployed. As shown

Sensors 2020, 20, 4592 6 of 13

in Figure 3, the fast-fault-detection technology defined in the OPNFV project [23] is applied to this
IoT cloud. For fast detection of VM faults, the FFDM registers fault alert policies, such as maximum
resource utilization and VM down, with the VM-level fault monitoring and reporting components,
such as Ceilometer and Aodh [24,25]. The ceilometer periodically collects events generated by the
hypervisor to check the VM status, and when a fault occurs, an alarm is generated through Aodh.
The polling cycle of ceilometer, which gets the information from the hypervisor that manages virtual
resources, is 300 ms; and when an alarm occurs, a message is sent to the VM management function
immediately. In this paper, the notification daemon checks the fault information and is designed to
transmit the node status change message to the Kubernetes Master. When sending fault information to
Kubernetes Master, it converts the information according to the Kubernetes format and sends it to the
Kubernetes master through REST API, and this process is only necessary for fault nodes.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 13

to this IoT cloud. For fast detection of VM faults, the FFDM registers fault alert policies, such as
maximum resource utilization and VM down, with the VM-level fault monitoring and reporting
components, such as Ceilometer and Aodh [24,25]. The ceilometer periodically collects events
generated by the hypervisor to check the VM status, and when a fault occurs, an alarm is generated
through Aodh. The polling cycle of ceilometer, which gets the information from the hypervisor that
manages virtual resources, is 300 ms; and when an alarm occurs, a message is sent to the VM
management function immediately. In this paper, the notification daemon checks the fault
information and is designed to transmit the node status change message to the Kubernetes Master.
When sending fault information to Kubernetes Master, it converts the information according to the
Kubernetes format and sends it to the Kubernetes master through REST API, and this process is only
necessary for fault nodes.

4) Change Node
Status

 Fast Fault Detection Manager
Worker1 :unknown

3) Node Status
Change request

PodPod

Virtual Machine

K8S Worker

Kube
Proxy

Kubelet

PodPod

Virtual Machine

ETCD
K8S Master

Scheduler

Controller-Manager

API-Server Kube
Proxy

Node Status
worker1 active

worker2 unknown

worker3 active

Openstack
Ceilometer

Fault

1) Hypervisor Event Polling

2)Node fault MessageNotification
Daemon

Aodh
Failure
Policy

Inspector

Evaluator

Notifier

Figure 3. Fast-fault-detection manager.

Figure 4 shows the fault detection and recovery procedures. When Aodh sends an alarm to the
notification daemon, the alarm is delivered to the API server of the Kubernetes master and the API
server forwards the alarm to the node controller to update the status of the faulty node from “Ready”
to “Unknown.” This indicates that the node is not healthy and triggers the recovery process. The
fault-detection time 𝑇 in this procedure can be obtained as 𝑇 = 𝑇 + 𝑇 + 𝑇 (4)

where 𝑇 is the polling interval for checking the node status at the ceilometer, 𝑇 is the processing
delay of the fault monitors, and 𝑇 is the processing delay of the notification daemon. The default
value of 𝑇 is 300 ms, and 𝑇 and 𝑇 are the time it takes to transmit fault information to the
Kubernetes master through REST API. After receiving the information from the ceilomter, it is
converted based on the Kubernetes format and transmitted to the Kubernetes master through REST
API. Format conversion and REST API processing are necessary only for faulty nodes. Comparing
this fault-detection time with the previous one, we can see that delay is reduced by using direct fault
detection at the VM level.

Figure 3. Fast-fault-detection manager.

Figure 4 shows the fault detection and recovery procedures. When Aodh sends an alarm to the
notification daemon, the alarm is delivered to the API server of the Kubernetes master and the API
server forwards the alarm to the node controller to update the status of the faulty node from “Ready”
to “Unknown.” This indicates that the node is not healthy and triggers the recovery process. The
fault-detection time T f d-proposed in this procedure can be obtained as

T f d-proposed = Th + Tn + Tc (4)

where Th is the polling interval for checking the node status at the ceilometer, Tn is the processing delay
of the fault monitors, and Tc is the processing delay of the notification daemon. The default value of Th
is 300 ms, and Tn and Tc are the time it takes to transmit fault information to the Kubernetes master
through REST API. After receiving the information from the ceilomter, it is converted based on the
Kubernetes format and transmitted to the Kubernetes master through REST API. Format conversion
and REST API processing are necessary only for faulty nodes. Comparing this fault-detection time
with the previous one, we can see that delay is reduced by using direct fault detection at the VM level.

Sensors 2020, 20, 4592 7 of 13
Sensors 2020, 20, x FOR PEER REVIEW 7 of 13

Fast Fault Detection ManagerVM2
Kubernetes Node
(Worker Node1)

Notification
deamon

Fault Notification()

Fault Monitor
(Ceilometer/Aodh)

VM3
Kubernetes Node
(Worker Node2)

Fault info
Processing()

VM1
Kubernetes Node

(Master)

VM Created

Resource Monitoring
 Event Monitoring

Resource / Event

Resource / Event

Pod Management

Register
Alarm

Alarm Created

Deploy Kubernetes cluster

Pod Eviction

Fault Notification (Fault Info) to Master
Node-Status=k8s-worker1-unknown

Loop

Fault

Fault Recovery Process Start

Figure 4. Fault detection and recovery procedures in the proposed architecture.

4. System Validation

4.1. Implementation Environment and Methodology

For evaluation, a test environment was built using an OpenStack control node and two
OpenStack compute nodes, as shown in Table 3. A Kubernetes cluster, consisting of 1 master node
and 20 worker nodes, was deployed.

Table 3. Implementation specifications.

Entity Condition Version

Physical Server (3)

Controller Node (1)~~~
Intel® Xeon® processor D-1557, Single-socket FCBGA 1667; 12-

core, 24 threads~~~
RAM: 64 GB~~~

Disk space: 1TB~~~
Compute Node (2)~~~

Intel® Xeon® processor D-1557, Single-socket FCBGA 1667; 12-
core, 24 threads,~~~

RAM: 64 GB~~~
Disk space: 1TB

Cloud OS OpenStack stable Stein
Container

infrastructure Kubernetes (Master Node: 1EA/Worker Node: 20EA) 1.17.1

Figure 4. Fault detection and recovery procedures in the proposed architecture.

4. System Validation

4.1. Implementation Environment and Methodology

For evaluation, a test environment was built using an OpenStack control node and two OpenStack
compute nodes, as shown in Table 3. A Kubernetes cluster, consisting of 1 master node and 20 worker
nodes, was deployed.

Table 3. Implementation specifications.

Entity Condition Version

Physical Server (3)

Controller Node (1)
Intel® Xeon® processor D-1557, Single-socket FCBGA

1667; 12-core, 24 threads
RAM: 64 GB

Disk space: 1TB
Compute Node (2)

Intel® Xeon® processor D-1557, Single-socket FCBGA
1667; 12-core, 24 threads,

RAM: 64 GB
Disk space: 1TB

Cloud OS OpenStack stable Stein
Container infrastructure Kubernetes (Master Node: 1EA/Worker Node: 20EA) 1.17.1

Sensors 2020, 20, 4592 8 of 13

The proposed architecture was constructed, as shown in Figures 2 and 3, and the existing
architecture was constructed using Kubernetes’ optimized parameters. In this paper, we verify
and analyze the performance of the existing Kubernetes fault-detection method and the proposed
fault-detection method via experiments. First, the optimized parameters in the Kubernetes environment
are confirmed, and then the performance of the optimized Kubernetes fault-detection method and that
of the proposed method are compared with each other. Subsequently, we experimented with how the
performance varies depending on the change in resource usage (CPU and network bandwidth). All
experiments were conducted five times per scenario.

4.2. Evaluation

To verify the optimized Kubernetes parameters, VM fault-detection tests were conducted with
various parameter sets, and the results are summarized in Table 4. In Table 4, we list the fault-detection
times according to the parameter changes in the Kubernetes environment. According to the correlation
between parameters, the experiment was conducted while changing the variables that affect the
fault-detection time. Scenario 1 is the default value used in Kubernetes, and Scenario 2 is a parameter
set with the minimum values. Scenarios 3 and 4 are the results of experiments with increasing Tg

values from those in Scenario 2.

Table 4. Experimental results for Kubernetes parameter optimization.

Scenario

Parameter
Tu Tg Tm Fault-Detection Time (FDT)

Scenario 1 10 s 40 s 5 s MIN = 40 s
Scenario 2 1 s 1 s 1 s Error
Scenario 3 1 s 2 s 1 s Error
Scenario 4 1 s 3 s 1 s MIN = 3 s

In Table 4, we list the fault-detection times according to the parameter changes in the Kubernetes
environment. According to the correlation between parameters, the experiment was conducted, while
changing the variables that affect the fault-detection time. Scenario 1 is the default value used in
Kubernetes, and Scenario 2 is a parameter set with the minimum values. Scenarios 3 and 4 are the
results of experiments with increasing Tg values from those in Scenario 2.

In Scenario 1, the default parameters defined in Kubernetes were used. It presents the worst
results because the VM faults were only detected at a container level. In Scenario 2 and Scenario 3, Tu

and Tm were set too short for the node update procedure to be completed within time Tg. In addition,
if Tm is not delivered within time Tu, it can be misjudged as a failure even if no failure occurred. Hence,
it was difficult to correctly determine the VM defect. In Scenarios 4, the fault-detection time increased
with Tg because Kubernetes determined the fault after time Tg.

We compared these results with the results obtained using the proposed architecture. Fault
detection time is the time taken from the time the fault occurs to the time when the master node receives
the fault information. In the proposed architecture, it took an average of 0.84 seconds to detect the
failure node. The fault detection time is composed of parameters of Equation 4. As shown in Table 4,
the proposed architecture can detect faults about three times faster compared to using the optimized
Kubernetes parameters (Scenario 4).

We also checked the fault-detection time when the number of worker nodes was increased.
Figure 5 shows that for the default Kubernetes, as the number of nodes increases, the time is taken
to detect faults also increases because of the increased time required to check the node statuses. In
contrast, the overall fault-detection time does not increase significantly for the proposed architecture,
despite the increased time taken to poll the node states.

Sensors 2020, 20, 4592 9 of 13Sensors 2020, 20, x FOR PEER REVIEW 9 of 13

Figure 5. Comparison of the fault-detection time with increasing worker nodes.

Figures 6 and 7 present the results when the fault-detection time was measured, while the CPU
usage of the VM used for the Kubernetes master node and the traffic across the network between the
master and worker nodes were increased, respectively. To increase the CPU usage of the master node,
we generated additional workload using the stress-ng tool over the Kubernetes default process [26].
We experimented by generating a certain level of the workload on all CPUs assigned to the Master
Node, while increasing the CPU usage until 100%. The CPU usage of the control node was also
increased in the proposed architecture. From this experiment, we found that the fault-detection
process was delayed as the CPU usage increased, but the delay was significantly lower for the
proposed architecture compared to the usual architecture, as shown in Figure 6.

Figure 6. Comparison of fault-detection times with increasing CPU load.

To investigate the effect of the background network traffic between the master and worker
nodes, we used the Iperf3 tool to generate background traffic [27]. The measurement was performed
by increasing the bandwidth by up to 100% for each section, and the results are depicted in Figure 7.
The increase in the background network traffic on Kubernetes delayed the checking and updating of
the node-status information for fault diagnosis, and hence, increased the time for the entire fault-
detection process. In contrast, because the proposed architecture does not update the node status

Figure 5. Comparison of the fault-detection time with increasing worker nodes.

Figures 6 and 7 present the results when the fault-detection time was measured, while the CPU
usage of the VM used for the Kubernetes master node and the traffic across the network between the
master and worker nodes were increased, respectively. To increase the CPU usage of the master node,
we generated additional workload using the stress-ng tool over the Kubernetes default process [26]. We
experimented by generating a certain level of the workload on all CPUs assigned to the Master Node,
while increasing the CPU usage until 100%. The CPU usage of the control node was also increased
in the proposed architecture. From this experiment, we found that the fault-detection process was
delayed as the CPU usage increased, but the delay was significantly lower for the proposed architecture
compared to the usual architecture, as shown in Figure 6.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 13

Figure 5. Comparison of the fault-detection time with increasing worker nodes.

Figures 6 and 7 present the results when the fault-detection time was measured, while the CPU
usage of the VM used for the Kubernetes master node and the traffic across the network between the
master and worker nodes were increased, respectively. To increase the CPU usage of the master node,
we generated additional workload using the stress-ng tool over the Kubernetes default process [26].
We experimented by generating a certain level of the workload on all CPUs assigned to the Master
Node, while increasing the CPU usage until 100%. The CPU usage of the control node was also
increased in the proposed architecture. From this experiment, we found that the fault-detection
process was delayed as the CPU usage increased, but the delay was significantly lower for the
proposed architecture compared to the usual architecture, as shown in Figure 6.

Figure 6. Comparison of fault-detection times with increasing CPU load.

To investigate the effect of the background network traffic between the master and worker
nodes, we used the Iperf3 tool to generate background traffic [27]. The measurement was performed
by increasing the bandwidth by up to 100% for each section, and the results are depicted in Figure 7.
The increase in the background network traffic on Kubernetes delayed the checking and updating of
the node-status information for fault diagnosis, and hence, increased the time for the entire fault-
detection process. In contrast, because the proposed architecture does not update the node status

Figure 6. Comparison of fault-detection times with increasing CPU load.

Sensors 2020, 20, 4592 10 of 13

Sensors 2020, 20, x FOR PEER REVIEW 10 of 13

continuously, but only when a fault occurs, the information is immediately transmitted to the master
node without additional steps. Hence, the background network traffic does not significantly affect
the performance, as shown in Figure 7.

Figure 7. Comparison of fault-detection times with background network traffic.

All the above experiments confirm that the proposed architecture can detect faults faster than
the existing method even when the size or overall resource usage in the Kubernetes cluster is
increased. The proposed architecture can thus be used for IoT services requiring high infrastructure
availability.

Discussion: In this paper, we proposed and implemented architecture to improve the fault
detection performance of the infrastructure to improve the availability of container-based IoT
services running on VMs. To do that, we analyzed the existing fault detection function based on
Kubernetes, a representative container orchestrator. By analyzing the fault detection function, we
confirmed the parameter setting for the optimized fault detection in the existing method. Although
the optimized Kubernetes detected faults faster than the default settings, we found that the optimized
settings increased the frequency of status updates and resulted in increased network and CPU
resource usage. Further, the node faults were occasionally misjudged. After that, we designed an
architecture for the integrated and automated fault management of VM and container manager.

Through experimentation, in the VM environment, fault information is checked from the
hypervisor every 300 ms, and when a failure occurs, it is delivered to the function responsible for
managing the fault immediately, so that failure can be detected faster than in the existing container
environment. On the other hand, it is confirmed that fault detection in a container environment needs
additional time to check and update fault information. Even in the proposed architecture, format
change and transmission process are required when transmitting fault information, but this is a
process required only for the node in which the failure occurred, and It was confirmed that the time
of process did not significantly affect the overall performance.

In addition, we confirmed that the proposed architecture can detect faults faster than the
optimized Kubernetes without significant changes in the performance and resource usage even when
the number of nodes was increased. Through the experimental results and structural features (event-
driven message delivery), it was confirmed that the proposed architecture has higher scalability
compared with the existing architecture. However, similarities exist in limitations between our
architecture and the existing one regarding the use of one controller, and in order to use multiple
controllers, necessitates discussion of a new architecture.

Further experiments to investigate the relationship between the resource usage of background
IoT applications and fault-detection performance revealed that the performance of Kubernetes fault
detection methods declined as the resource usage increased. Although the overall performance of the

Figure 7. Comparison of fault-detection times with background network traffic.

To investigate the effect of the background network traffic between the master and worker nodes,
we used the Iperf3 tool to generate background traffic [27]. The measurement was performed by
increasing the bandwidth by up to 100% for each section, and the results are depicted in Figure 7. The
increase in the background network traffic on Kubernetes delayed the checking and updating of the
node-status information for fault diagnosis, and hence, increased the time for the entire fault-detection
process. In contrast, because the proposed architecture does not update the node status continuously,
but only when a fault occurs, the information is immediately transmitted to the master node without
additional steps. Hence, the background network traffic does not significantly affect the performance,
as shown in Figure 7.

All the above experiments confirm that the proposed architecture can detect faults faster than the
existing method even when the size or overall resource usage in the Kubernetes cluster is increased.
The proposed architecture can thus be used for IoT services requiring high infrastructure availability.

Discussion: In this paper, we proposed and implemented architecture to improve the fault
detection performance of the infrastructure to improve the availability of container-based IoT services
running on VMs. To do that, we analyzed the existing fault detection function based on Kubernetes,
a representative container orchestrator. By analyzing the fault detection function, we confirmed the
parameter setting for the optimized fault detection in the existing method. Although the optimized
Kubernetes detected faults faster than the default settings, we found that the optimized settings
increased the frequency of status updates and resulted in increased network and CPU resource usage.
Further, the node faults were occasionally misjudged. After that, we designed an architecture for the
integrated and automated fault management of VM and container manager.

Through experimentation, in the VM environment, fault information is checked from the hypervisor
every 300 ms, and when a failure occurs, it is delivered to the function responsible for managing the
fault immediately, so that failure can be detected faster than in the existing container environment.
On the other hand, it is confirmed that fault detection in a container environment needs additional
time to check and update fault information. Even in the proposed architecture, format change and
transmission process are required when transmitting fault information, but this is a process required
only for the node in which the failure occurred, and It was confirmed that the time of process did not
significantly affect the overall performance.

In addition, we confirmed that the proposed architecture can detect faults faster than the optimized
Kubernetes without significant changes in the performance and resource usage even when the number
of nodes was increased. Through the experimental results and structural features (event-driven
message delivery), it was confirmed that the proposed architecture has higher scalability compared
with the existing architecture. However, similarities exist in limitations between our architecture and

Sensors 2020, 20, 4592 11 of 13

the existing one regarding the use of one controller, and in order to use multiple controllers, necessitates
discussion of a new architecture.

Further experiments to investigate the relationship between the resource usage of background
IoT applications and fault-detection performance revealed that the performance of Kubernetes fault
detection methods declined as the resource usage increased. Although the overall performance of the
proposed architecture also decreased, faults could still be detected up to three times faster than in the
case of the optimized Kubernetes parameter settings. In the same way, performance measurements
were performed while increasing the RAM resource usage of the background application, but the
increase in RAM usage affected the CPU usage, and it was confirmed that the results were similar.

Through the experimental results, it was confirmed that the performance of the proposed
architecture was not significantly affected by resource usage. The most influential factor of fault
tolerance in the proposed system is resource usage, so it was confirmed that the proposed architecture
offers better fault tolerance.

Our first contribution point is automation: When configuring a node, it provides a function to
automatically register a fault alarm, and if a problem occurs during operation, the fault information is
sent directly to the manager. Through this, each manager can get the notification immediately when
the node fails. The second contribution is VM and container manager integration. In the existing
method, the fault is judged by receiving data from the agent of each node. However, as shown in
Table 4, there is a limitation in improving the fault detection time because of limitations in parameter
settings. However, in the proposed architecture, the failure detection time is improved by passing the
node’s failure information directly to the container manager. Through the proposed architecture, the
performance of the fault detection has been improved threefold. In addition, we also confirmed that
the proposed architecture is suitable for environments where resource usage is constantly changing,
i.e., dynamic, such as a cloud environment.

However, we observed that for the proposed architecture, the performance gradually decreased
as the number of nodes increased or resource usage changed. In other words, it is expected that further
research is needed to mitigate the performance degradation. Likewise, for a multi-cluster environment,
it is necessary to additionally consider a “collecting the node status” method and a communication
method between the multi-container managers. The existing architecture is where multiple sites are
managed by a single controller, but if multiple controllers are to be used, it is expected that additional
research on the distribution of management functions by site and appropriate data collection methods
will be required.

5. Conclusions

In this study, we analyzed the fault-detection function of the container infrastructure used as the
infrastructure of an IoT cloud and proposed an integrated infrastructure management architecture to
realize fast fault detection. Based on the proposed architecture, we implemented a fast-fault-detection
function that can provide high availability for mission-critical services, such as V2V communication
and real-time services.

The proposed architecture can detect faults faster than the state of the art even when the IoT cloud
size or background application resource usage increases. Moreover, it can improve the management
function for container clusters currently running on various cloud provider’s infrastructures. By
applying the proposed architecture, it is possible to detect fault using fault information of the
infrastructure of VMs in which various IoT services operate, which will be useful in terms of
service management.

Future research will study the optimization of recovery methods for IoT applications in a
multi-cloud environment. Accordingly, it is necessary to study the distributed cloud management
architecture and how to apply the monitoring and information delivery functions proposed in this
paper. In addition, additional monitoring methods should be considered for precise monitoring in a

Sensors 2020, 20, 4592 12 of 13

distributed cloud environment. It is expected that this will enable efficient management of IoT services
deployed in distributed clouds, such as Edge Cloud.

Author Contributions: All the authors contributed to the research and wrote the article. H.Y. proposed the idea,
designed, and performed the evaluation. Y.K. suggested directions for the detailed designs and evaluation, as
well as coordinating the research. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the Institute of Information & communications Technology Planning
& Evaluation (IITP) grant funded by the Government of Korea (MSIT) (No.2020-0-00946, Development of Fast and
Automatic Service recovery and Transition software in Hybrid Cloud Environment) and under the Information
Technology Research Center support program (IITP-2020-2017-0-01633) supervised by IITP.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bolivar, L.T.; Tselios, C.; Mellado Area, D.; Tsolis, G. On the deployment of an open-source, 5g-aware
evaluation testbed. In Proceedings of the 2018 6th IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering (MobileCloud), Bamberg, Germany, 26 March 2018; pp. 51–58.

2. Salah, T.; Zemerly, M.J.; Yeun, C.Y.; Al-Qutayri, M.; Al-Hammadi, Y. Performance comparison between
container-based and VM-based services. In Proceedings of the 2017 20th Conference on Innovations in
Clouds, Internet and Networks (ICIN), Paris, France, 26–29 March 2017; pp. 185–190.

3. Li, Z.; Kihl, M.; Lu, Q.; Andersson, J.A. Performance overhead comparison between hypervisor and container
based virtualization. In Proceedings of the 2017 IEEE 31st International Conference on Advanced Information
Networking and Applications (AINA), Taipei, Taiwan, 27–29 March 2017; pp. 955–962.

4. Kaur, K.; Dhand, T.; Kumar, N.; Zeadally, S. Container-as-a-Service at the edge: Trade-off between energy
efficiency and service availability at fog nano data centers. IEEE Wireless Commun. 2017, 24, 48–56. [CrossRef]

5. Xiong, Y.; Sun, Y.; Xing, L.; Huang, Y. Extend cloud to edge with KubeEdge. In Proceedings of the 2018
IEEE/ACM Symposium on Edge Computing (SEC), Seattle, WA, USA, 25 October 2018; pp. 373–377.

6. Fu, J.; Liu, Y.; Chao, H.; Bhargava, B.K.; Zhang, J. Secure data storage and searching for industrial IoR by
integrating fog computing and cloud computing. IEEE Trans. Ind. Informat. 2018, 14, 4519–4528. [CrossRef]

7. Whaiduzzaman, M.; Sookhak, M.; Gani, A.; Buyya, R. A survey on vehicular cloud computing. J. Netw.
Comput. Appl. 2014, 40, 325–344. [CrossRef]

8. Tian, G.; Jiang, M.; Ouyang, W.; Ji, G.; Xie, H.; Rahmanim, A.M.; Liljebe, P. IoT-based remote pain monitoring
system: From device to cloud platform. IEEE J. Biomed. Health 2018, 22, 1711–1719.

9. Botta, A.; de Donato, W.; Persico, V.; Pescape, A. Integration of cloud computing and Internet of Things: A
survey. Future Gener. Comput. Syst. 2016, 56, 684–700. [CrossRef]

10. Palattella, M.R.; Mischa, D.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of Things in the 5G
era: Enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 2016, 24, 510–527. [CrossRef]

11. Dinh, N.T.; Kim, Y. An energy efficient integration model for sensor cloud systems. IEEE Access 2019, 7,
3018–3030. [CrossRef]

12. Jhawar, R.; Piuri, V. Fault tolerance and resilience in cloud computing environments. In Computer and
Information Security Handbook, 3nd ed.; John, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 125–141.

13. Jung, G.; Rahimzadeh, P.; Liu, Z.; Ha, S.; Joshi, K.; Hiltunen, M. Virtual redundancy for active-standby cloud
applications. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications,
Honolulu, HI, USA, 15–19 April 2018; pp. 1916–1924.

14. Xu, Y.; Helal, A. Scalable cloud-sensor architecture for the Internet of Things. IEEE Internet Things J. 2016, 3,
285–298. [CrossRef]

15. Alcaraz, C.J.M.; Aguado, J.G. MonPaaS: An adaptive monitoring platform as a service for cloud computing
infrastructures and services. IEEE Trans. Serv. Comput. 2015, 8, 65–78. [CrossRef]

16. Yang, H.; Kim, Y. Design and implementation of high-availability architecture for IoT-cloud services. Sensors
2019, 19, 3276. [CrossRef] [PubMed]

17. Kubernetes. Available online: https://kubernetes.io/docs/home/ (accessed on 3 January 2020).
18. Abdollahi Vayghan, L.; Saied, M.A.; Toeroe, M.; Khendek, F. Deploying microservice based applications

with Kubernetes: Experiments and lessons learned. In Proceedings of the 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 2–7 July 2018; pp. 970–973.

http://dx.doi.org/10.1109/MWC.2017.1600427
http://dx.doi.org/10.1109/TII.2018.2793350
http://dx.doi.org/10.1016/j.jnca.2013.08.004
http://dx.doi.org/10.1016/j.future.2015.09.021
http://dx.doi.org/10.1109/JSAC.2016.2525418
http://dx.doi.org/10.1109/ACCESS.2018.2886806
http://dx.doi.org/10.1109/JIOT.2015.2455555
http://dx.doi.org/10.1109/TSC.2014.2302810
http://dx.doi.org/10.3390/s19153276
http://www.ncbi.nlm.nih.gov/pubmed/31349629
https://kubernetes.io/docs/home/

Sensors 2020, 20, 4592 13 of 13

19. Vayghan, L.A.; Saied, M.A.; Toeroe, M.; Khendek, F. Kubernetes as an availability manager for microservice
applications. arXiv 2019, arXiv:1901.04946.

20. Abdollahi Vayghan, L.; Saied, M.A.; Toeroe, M.; Khendek, F. Microservice based architecture: Towards
high-availability for stateful applications with Kubernetes. In Proceedings of the 2019 IEEE 19th International
Conference on Software Quality, Reliability and Security (QRS), Sofia, Bulgaria, 22–26 July 2019; pp. 176–185.

21. Prometheus. Available online: https://prometheus.io/ (accessed on 3 January 2020).
22. OpenStack Tacker. Available online: https://wiki.openstack.org/wiki/Tacker (accessed on 3 January 2020).
23. OPNFV Doctor. Available online: https://wiki.opnfv.org/display/doctor/Doctor+Home (accessed on

5 January 2020).
24. Openstack Ceilometer. Available online: https://docs.openstack.org/ceilometer/latest/ (accessed on

5 January 2020).
25. Openstack Aodh. Available online: https://docs.openstack.org/aodh/latest/ (accessed on 5 January 2020).
26. Stress-ng. Available online: http://kernel.ubuntu.com/~{}cking/stress-ng/ (accessed on 5 January 2020).
27. Iperf3. Available online: https://iperf.fr/ (accessed on 5 January 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://prometheus.io/
https://wiki.openstack.org/wiki/Tacker
https://wiki.opnfv.org/display/doctor/Doctor+Home
https://docs.openstack.org/ceilometer/latest/
https://docs.openstack.org/aodh/latest/
http://kernel.ubuntu.com/~{}cking/stress-ng/
https://iperf.fr/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State of the Art: Fault Detection and Recovery Mechanisms in Container Infrastructure
	Proposed Architecture
	System Validation
	Implementation Environment and Methodology
	Evaluation

	Conclusions
	References

