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Abstract

Psychiatric disorders are highly genetically correlated, but little research has been conducted on 

the genetic differences between disorders. We developed a new method (CC-GWAS) to test for 

differences in allele frequency among cases of two disorders using summary statistics from the 

respective case-control GWAS, transcending current methods that require individual-level data. 

Simulations and analytical computations confirm that CC-GWAS is well-powered with effective 

control of type I error. We applied CC-GWAS to publicly available summary statistics for 

schizophrenia, bipolar disorder, major depressive disorder, and five other psychiatric disorders. 

CC-GWAS identified 196 independent case-case loci, including 72 CC-GWAS-specific loci that 

were not genome-wide significant in the input case-control summary statistics; two of the CC-

GWAS-specific loci implicate the genes KLF6 and KLF16 (from the Kruppel-like family of 

transcription factors), which have been linked to neurite outgrowth and axon regeneration. CC-

GWAS loci replicated convincingly in applications to data sets with independent replication data.

Introduction

Psychiatric disorders are highly genetically correlated, and many studies have focused on 

their shared genetic components, including genetic correlation estimates of up to 0.71–3 and 

recent identification of 109 pleotropic loci across a broad set of eight psychiatric disorders3. 

However, much less research has been conducted on the genetic differences between 

psychiatric disorders, and biological differences between psychiatric disorders are poorly 

understood. Currently, differential diagnosis between disorders is often challenging and 
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treatments are often non-disorder-specific, highlighting the importance of studying genetic 

differences between psychiatric disorders.

A recent study4 progressed the research on genetic differences between disorders by 

comparing individual-level data of 24k schizophrenia (SCZ) cases vs. 15k bipolar disorder 

(BIP) cases, yielding two significantly associated loci. However, ~25% of the cases were 

discarded compared to the respective case-control data (owing to non-matching ancestry and 

genotyping platform). Methods that analyse case-control summary statistics may be 

advantageous, because they make use of all genotyped samples and because summary 

statistics are often broadly publicly available5. Indeed, several methods have been developed 

to analyse genome-wide association study (GWAS) summary statistics of two complex 

traits3,6–14, but none of these methods can be used to conduct a case-case comparison of 

allele frequencies among cases (see Discussion). Currently, case-case comparisons of allele 

frequencies among cases of two disorders require individual-level data from cases of both 

disorders.

In this study, we propose a new method (CC-GWAS) to compare cases of two disorders 

based on the respective case-control GWAS summary statistics (while modelling sample 

overlap6). CC-GWAS relies on a new genetic distance measure (FST,causal) quantifying the 

genetic distances between cases and controls of different disorders. We first apply CC-

GWAS to publicly available GWAS summary statistics of the mood and psychotic 

disorders3, SCZ15,16, BIP17 and major depressive disorder (MDD)18. Subsequently, we 

analyse all comparisons of eight psychiatric disorders by additionally analysing attention 

deficit/hyperactivity disorder (ADHD)19, anorexia nervosa (AN)20, autism spectrum 

disorder (ASD)21, obsessive–compulsive disorder (OCD)22, Tourette’s Syndrome and Other 

Tic Disorders (TS)23. Finally, we replicate CC-GWAS results in applications to data sets for 

which independent replication data were available.

Results

Overview of methods

CC-GWAS detects differences in allele frequencies among cases of two different disorders A 

and B by analysing case-control GWAS summary statistics for each disorder. CC-GWAS 

relies on the analytical variances and covariances of genetic effects of causal variants 

distinguishing caseA vs. controlA (A1A0), caseB vs. controlB (B1B0), and caseA vs. caseB 

(A1B1).

CC-GWAS weights the effect sizes from the respective case-control GWAS using weights 

that minimize the expected squared difference between estimated and true A1B1 effect 

sizes; we refer to these as CC-GWAS ordinary least squares (CC-GWASOLS) weights (see 

Methods). The CC-GWASOLS weights are designed to optimize power to detect A1B1, and 

depend on sample size, sample overlap, and the expected variances and covariances of effect 

sizes. The CC-GWASOLS weights may be susceptible to type I error for SNPs with nonzero 

A1A0 and B1B0 effect sizes but zero A1B1 effect size, which we refer to as “stress test” 

SNPs. To mitigate this, CC-GWAS also computes sample size independent weights based on 

infinite sample size; we refer to these as CC-GWAS Exact (CC-GWASExact) weights (see 
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Methods). CC-GWAS reports a SNP as statistically significant if it achieves P<5×10−8 using 

CC-GWASOLS weights and P<10−4 using CC-GWASExact weights: the CC-GWASOLS 

weights optimizes power and protect against type I error at null-null SNPs (with no impact 

on either disorder), while using the CC-GWASExact weights protects against type I error at 

stress test SNPs. For statistically significant SNPs, CC-GWAS outputs CC-GWASOLS effect 

sizes reflecting direction and magnitude of effect. Importantly, CC-GWAS identifies and 

discards false positive associations that can arise due to differential tagging of a causal stress 

test SNP, e.g. due to subtle differences in ancestry between the input case-control studies 

(see Methods). When there is substantial uncertainty in population prevalence, a range of 

possible disorder prevalences can be specified. We further note that sample overlap of 

controls increases the power of CC-GWAS, by providing a more direct comparison of caseA 

vs. caseB. Further details of the CC-GWAS method are provided in the Methods section; we 

have released open-source software implementing the method (see Code availability 

section).

The CC-GWASOLS weights depend on a population-level quantity that we refer to as 

FST,causal, the average normalized squared difference in allele frequencies of causal variants. 

FST,causal is derived based on the SNP-based heritabilities (ℎl, A
2  and ℎl, B

2 ), lifetime 

population prevalences (KA and KB), genetic correlation (rg), and number of independent 

causal variants (m). FST,causal allows for a direct comparison of cases and controls using 

m * FST , causal as a genetic distance measure, where the square root facilitates 2-

dimensional visualization (Figure 1 and Methods).

Main simulations

We assessed the power and type I error of CC-GWAS using both simulations with 

individual-level data and analytical computations (see Methods). We compared four 

methods: CC-GWAS; the CC-GWASOLS component of CC-GWAS; the CC-GWASExact 

component of CC-GWAS; and a simple method that uses weight +1 for A1A0 and −1 for 

B1B0 (Delta method; mentioned in ref.6). We assessed (i) power to detect causal SNPs with 

case-control effect sizes for both disorders drawn from a bivariate normal distribution (allele 

frequencies A0≠A1, B0≠B1, A1≠B1); (ii) type I error for “null-null” SNPs, defined as SNPs 

with no effect on either disorder (A0=A1, B0=B1, A1=B1); and (iii) type I error for “stress 

test” SNPs, defined as SNPs with A0≠A1, B0≠B1, A1=B1 (see above). Default parameter 

settings were loosely based on the genetic architectures of SCZ and MDD with liability-

scale h2=0.2, prevalence K=0.01, and sample size 100,000 cases + 100,000 controls for 

disorder A; liability-scale h2=0.1, prevalence K=0.15, and sample size 100,000 cases + 

100,000 controls for disorder B; genetic correlation rg=0.5 between disorders; and m=5,000 

causal SNPs affecting both disorders with causal effect sizes following a bivariate normal 

distribution. For these parameter settings, the weights are 0.86 for A1A0 and –0.55 for B1B0 

for the CC-GWASOLS component, and 0.99 and –0.85 respectively for the CC-GWASExact 

component. The CC-GWASOLS component assigns relatively more weight to A1A0 

(0.86/0.55=1.56) than the CC-GWASExact component (0.99/0.85=1.16), because of the 

larger heritability and lower prevalence of A1A0 (implying higher signal to noise ratio at the 

same case-control sample size24,25). Each stress test SNP was specified to explain 0.10% of 

liability-scale variance in A and 0.29% of liability-scale variance in B (resulting in allele 

Peyrot and Price Page 3

Nat Genet. Author manuscript; available in PMC 2021 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



frequency A1=B1); we focused on large-effect stress test SNPs to provide a maximally 

stringent assessment of the robustness of CC-GWAS to stress test SNPs. Other parameter 

settings were also explored.

Results of analytical computations are reported in Figure 2 and Supplementary Table 1; 

simulations with individual-level data produced identical results (Supplementary Table 2), 

thus we focus primarily on results of analytical computations. We reached three main 

conclusions. First, CC-GWAS attains similar power as the CC-GWASOLS component by 

itself, higher power than the CC-GWASExact component by itself, and much higher power 

than the Delta method (Figure 2A); we note that this is a best-case scenario for CC-GWAS, 

as the simulated bivariate genetic architecture follows the CC-GWAS assumptions. As 

expected, power increases with increasing sample size and decreases with increasing genetic 

correlation. The power of CC-GWAS to detect case-case differences lies in between the 

power of the input A1A0 and B1B0 summary statistics to detect case-control differences 

(Supplementary Figure 1). Second, all methods perfectly control type I error at null-null 

SNPs, with a per-SNP type I error rate < 5×10−8 (Figure 2B). Third, although the CC-

GWASOLS component has a severe type I error problem at stress test SNPs (particularly 

when the genetic correlation is large), CC-GWAS (incorporating the CC-GWASExact 

component) attains effective control of type I error at stress test SNPs (per-SNP type I error 

rate < 10−4; Figure 2C), an extreme category of SNPs that is not likely to occur often in 

empirical data. Notably, with increasing sample size the CC-GWASOLS weights converge 

towards the CC-GWASExact weights (Supplementary Figure 2). In conclusion, CC-GWAS 

balances the high power of the CC-GWASOLS component with effective control of type I 

error of the CC-GWASExact component. We discuss secondary simulation results in the 

Supplementary Note, Supplementary Tables 3–5 and Supplementary Figures 3–12.

Assessing the robustness of CC-GWAS

We performed two sets of analyses to further assess the robustness of CC-GWAS. First, we 

assessed the robustness of CC-GWAS to false positive associations due to differential 

tagging of a causal stress test SNP (Figure 3A). CC-GWAS screens the region around every 

genome-wide significant candidate CC-GWAS SNP for evidence of a differentially linked 

stress test SNP, and conservatively filters the candidate CC-GWAS SNP when suggestive 

evidence of a differentially linked stress test SNP is detected (see Methods and 

Supplementary Table 6). We simulated GWAS results of loci with a causal stress test SNP 

using real LD patterns in two distinct European populations (see Methods). We compared 

four methods/scenarios: CC-GWAS (with filtering) in the scenario where the causal stress 

test SNP is genotyped/imputed; CC-GWAS (with filtering) in the scenario where the causal 

stress test SNP is not genotyped/imputed; CC-GWAS with no filtering (for which it is 

irrelevant whether the causal stress test SNP is genotyped/imputed); and direct case-case 

GWAS (with no filtering). We report the per-locus type I error rate: the number of loci with 

at least one genome-wide significant tagging SNP divided by the number of loci tested. The 

parameter settings were identical to those of the stress test SNPs in Figure 2C.

Results are reported in Figure 3B and Supplementary Table 7. We reached four main 

conclusions. First, CC-GWAS (with filtering) attained effective control of type I error, with 
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per-locus type I error rate <5×10−8 in the scenario where the causal stress test SNP is 

genotyped/imputed. Second, CC-GWAS (with filtering) also attained effective control of 

type I error, with per-locus type I error rate <10−4, in the scenario where the causal stress 

test SNP is not genotyped/imputed. Analogous to our main simulations above, we note that 

stress test SNPS form an extreme category of SNPs that is not likely to occur often in 

empirical data. Third, CC-GWAS with no filtering suffered a per-locus type I error rate of up 

to 0.07, underscoring the necessity of applying the filter in CC-GWAS. Fourth, the direct 

case-case GWAS suffered a per-locus type I error rate of up to 0.09. Thus, the robustness of 

CC-GWAS (with filtering) to differential tagging represents a major improvement over 

direct case-case GWAS (with no filtering). We discuss secondary simulation results in the 

Supplementary Note and Supplementary Tables 7–8.

Second, we applied CC-GWAS to two sets of empirical case-control GWAS summary 

statistics for the same disorder, for which no case-case associations are expected. We 

focused on breast cancer (BC), as this is a disorder with two sets of independent, publicly 

available GWAS summary statistics in very large, well-powered samples26 (see Methods). 

The CC-GWAS analyses yielded no genome-wide significant case-case association 

(Supplementary Table 9). Notably, CC-GWAS identified two genome-wide significant 

candidate loci prior to filtering for differential tagging of stress test SNPs. All SNPs in these 

two loci very clearly met the filtering criteria (Supplementary Table 10), and remained 

filtered when applying various perturbations to the filtering criteria (Supplementary Table 8). 

We emphasize that these BC vs. BC analyses were only intended to test the robustness of 

CC-GWAS, as CC-GWAS is intended for comparing two different disorders with genetic 

correlation < 0.8 (see Methods). Nevertheless, our analyses of BC vs. BC further validate the 

robustness of CC-GWAS.

CC-GWAS identifies 116 independent loci with different allele frequencies among cases of 
SCZ, BIP and MDD

We applied CC-GWAS to publicly available summary statistics for SCZ,16 BIP17 and 

MDD18 (Table 1). To run CC-GWAS, we assumed 10,000 independent causal SNPs for each 

psychiatric disorder27 (see Methods for a detailed discussion of the assumed number of 

causal SNPs in applications of CC-GWAS). The underlying CC-GWASOLS weights and CC-

GWASExact weights used by CC-GWAS are reported in Table 1, along with the disorder-

specific parameters used to derive these weights. The CC-GWASOLS weights are based on 

the expected genetic distances between cases and/or controls (FST,causal) (Figure 1B–D and 

Supplementary Table 11). For each disorder, we specified a range of disorder prevalences to 

CC-GWASExact (Table 1; see Overview of Methods). We defined CC-GWAS-specific loci as 

loci for which none of the genome-wide significant SNPs had r2>0.8 with any of the 

genome-wide significant SNPs in the input case-control GWAS results (Supplementary 

Table 12).

For each pair of SCZ, BIP and MDD, the total number of independent CC-GWAS loci and 

number of independent CC-GWAS-specific loci are reported in Table 1. The CC-GWAS 

analysis identified 121 loci summed across pairs of disorders, resulting in 116 independent 

CC-GWAS loci (Supplementary Table 12) including 21 CC-GWAS-specific loci; 8 of these 
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loci have not been reported previously (conservatively defined as: no SNP in 1000 

Genomes28 with r2>0.8 with a genome-wide significant CC-GWAS SNP in the locus 

reported for any trait in the NHGRI GWAS Catalog29; Supplementary Table 12). Notably, 

the CC-GWASExact component did not filter out any variants identified using the CC-

GWASOLS component, i.e. all SNPs with P<5×10–8 using CC-GWASOLS weights also had 

P<10–4 using CC-GWASExact weights (for all disorder prevalences in the specified ranges), 

because the CC-GWASOLS weights were relatively balanced. In addition, no variants were 

excluded based on the filtering step to exclude potential false positive associations due to 

differential tagging of a causal stress test SNP. For each CC-GWAS locus, the respective 

input case-control effect sizes for each disorder are reported in Figure 4 and Supplementary 

Table 13. Details of the 21 CC-GWAS-specific loci are reported in Table 2, and details of the 

remaining 100 CC-GWAS loci are reported in Supplementary Table 13 (the locus names 

reported in these Tables incorporate results of our SMR analysis30; see below). We discuss 

secondary analyses in the Supplementary Note, Supplementary Tables 14–22 and 

Supplementary Figure 11.

CC-GWAS-specific loci implicate known and novel disorder genes

We used two approaches to link the 21 CC-GWAS-specific loci to genes (Table 2). First, we 

linked exonic lead SNPs to the corresponding genes. Second, we used the SMR test for 

colocalization30 to identify CC-GWAS loci with significant associations between gene 

expression effect sizes in cis across 14 brain tissues31,32 and CC-GWASOLS case-case effect 

sizes (see Methods and Supplementary Table 23). Below, we highlight 4 CC-GWAS-specific 

loci from Table 2, representing both known and novel findings.

The CC-GWAS-specific SCZ vs. MDD locus defined by lead SNP rs2563297 

(chr5:140,097,072) produced significant SMR colocalization results for 11 gene-tissue pairs 

representing 7 unique genes (Supplementary Table 23). The 7 unique genes included 5 

protocadherin alpha (PCDHA) genes, which play a critical role in the establishment and 

function of specific cell-cell connections in the brain33, and the NDUFA2 gene, which has 

been associated with Leigh syndrome (an early-onset progressive neurodegenerative 

disorder)34. Significant CC-GWAS SNPs in this locus have previously been associated to 

schizophrenia35–38 (in data sets distinct from our input schizophrenia GWAS16, in which 

this locus was not significant due to sampling variance and/or ancestry differences), 

depressive symptoms7, neuroticism39, educational attainment38,40, intelligence41, blood 

pressure42,43, and a meta-analyses of schizophrenia, education and cognition38, implying 

that this is a highly pleiotropic locus.

The CC-GWAS-specific SCZ vs. MDD locus defined by lead SNP rs2944833 

(chr7:71,774,496) produced a significant SMR colocalization result for one gene-tissue pair, 

involving the CALN1 gene in meta-analyzed brain eQTL32 (Supplementary Table 23). 

CALN1 plays a role in the physiology of neurons and is potentially important in memory 

and learning44. Indeed, SNPs in this locus have previously been associated to educational 

attainment40,45, intelligence41,46, cognitive function47, and a meta-analysis of schizophrenia, 

education and cognition38. Again, this implies that CC-GWAS can increase power to detect 

associated loci in the input case-control GWAS data sets analyzed here.
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Finally, two distinct CC-GWAS-specific loci implicated genes in the Kruppel-like family of 

transcription factors. The CC-GWAS-specific SCZ vs. BIP locus defined by lead SNP 

rs1054972 (chr19:1,852,582) located within an exon of KLF16, and the CC-GWAS-specific 

SCZ vs. MDD locus defined by lead SNP rs17731 (chr10:3,821,561) located within an exon 

of KLF6. The respective case-control effect sizes suggest that rs1054972 and rs17731 both 

have an impact on SCZ, but have not yet reached significance in the respective case-control 

analyses (P=1.3e–5 and P=2.9e–7 respectively; Table 2 and Supplementary Table 24). 

KLF16 and KLF6 play a role in DNA-binding transcription factor activity and in neurite 

outgrowth and axon regeneration48, and we hypothesize they may play a role in the 

previously described schizophrenia pathomechanism of synaptic pruning49. Furthermore, the 

KLF5 gene from the same gene family has previously been reported to be downregulated in 

post-mortem brains of schizophrenia patients50. At the time of our analyses, KLF16 and 

KLF6 had not previously been associated to schizophrenia; KLF6 has very recently been 

associated to schizophrenia in a meta-analysis of East Asian and European populations37, 

but KLF16 has still not been associated to schizophrenia. This implies that CC-GWAS can 

identify novel disorder genes.

CC-GWAS identifies 196 independent loci distinguishing cases of eight psychiatric 
disorders

We applied CC-GWAS to all 28 pairs of eight psychiatric disorders by analysing ADHD19, 

AN20, ASD21, OCD22, and TS23 in addition to SCZ16, BIP17 and MDD18 (Supplementary 

Table 25). To run CC-CWAS, we assumed 10,000 independent causal SNPs for each 

psychiatric disorder27 (see Methods). The underlying CC-GWASOLS weights and CC-

GWASExact weights used by CC-GWAS are reported in Supplementary Table 14. The CC-

GWASOLS weights are based on the expected genetic distances between cases and/or 

controls (FST,causal) (Supplementary Figure 13 and Supplementary Table 11). For each 

disorder, we specified a range of disorder prevalences to CC-GWASExact (Supplementary 

Table 25). For each pair of psychiatric disorders, the total number of independent CC-GWAS 

loci and number of independent CC-GWAS-specific loci are reported in Table 3. The CC-

GWAS analysis identified 313 loci summed across pairs of disorders, resulting in 196 

independent loci including 72 CC-GWAS-specific loci. Seven candidate CC-GWAS loci 

were excluded (reducing the number of CC-GWAS loci from 320 to 313) based on the filter 

to exclude potential false positive associations due to differential tagging of a causal stress 

test SNP (Supplementary Note, Supplementary Tables 6 and 10). A further detailed 

description of results is provided in the Supplementary Note, Supplementary Tables 8,12–

14,23,25 and Supplementary Figure 14.

CC-GWAS loci replicate in independent data sets

We investigated whether case-case associations identified by CC-GWAS replicate in 

independent data sets. Of the eight psychiatric disorders, only SCZ and MDD had sufficient 

sample size to perform replication analyses of the SCZ vs. MDD results based on publicly 

available GWAS results of subsets of the data15,51. To further validate the CC-GWAS 

method, we also analysed three case-case comparisons of three autoimmune disorders with 

publicly available GWAS results for independent discovery and replication data sets with 

substantial sample sizes (Crohn’s disorder (CD)52, ulcerative colitis (UC)52 and rheumatoid 
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arthritis (RA)53. To obtain independent replication results for SCZ, MDD, CD and UC, we 

subtracted the subset GWAS results from the full set GWAS results16,18,52 using 

MetaSubtract54.

Results for these four pairs of disorders are reported in Figure 5, Supplementary Tables 26–

27. For SCZ vs. MDD, the CC-GWAS discovery analysis identified 57 independent loci 

(less than the 99 independent loci in Table 1, due to smaller sample size), yielding a 

replication slope (based on a regression of replication vs. discovery effect sizes55) of 0.57 

(SE 0.06) (Figure 5A) comparable to the corresponding case-control replication slopes 

(Supplementary Figure 15, and Supplementary Tables 26,28). We hypothesize that all slopes 

were smaller than 1 owing to within-disorder heterogeneity1. For the autoimmune disorders, 

a replication slope of 0.83 (SE 0.03) was obtained (Figure 5B), again comparable to the 

corresponding case-control replication slopes (Supplementary Figure 15). We further 

investigated the replication of the subset of 22 CC-GWAS-specific loci (9 for SCZ vs. MDD 

and 13 for the 3 autoimmune disorders) obtaining a replication slope of 0.70 (SE 0.07) 

(Figure 5C), which was borderline significantly different (P=0.07) from the slope of 0.83 

(0.02) for the 97 remaining loci (Figure 5D); we note that CC-GWAS-specific loci had 

smaller case-case effect sizes and are thus expected to be more susceptible to winner’s 

curse56 and attain a lower replication slope.

We performed additional replication analyses that did not require the use of MetaSubtract, 

analysing 6 comparisons of each pair of 4 disorders (of low biological interest, but useful for 

assessing the robustness of the CC-GWAS method): the resulting 153 CC-GWAS loci 

replicated convincingly (Supplementary Figures 16). A further detailed description of the 

replication analyses is provided in the Supplementary Note, Supplementary Tables 25–28, 

and Supplementary Figures 13, 15–16.

Discussion

We developed a new method, CC-GWAS, to compare allele frequencies among cases of two 

different disorders by analysing case-control GWAS summary statistics for each disorder 

(while modelling sample overlap6). We identified 196 independent loci with different allele 

frequencies among cases of eight psychiatric disorders by applying our CC-GWAS method 

to the respective case-control GWAS summary statistics. 72 of the 196 loci were CC-

GWAS-specific, highlighting the potential of CC-GWAS to produce new biological insights. 

In particular, the lead SNPs of two distinct loci were located in exons of KLF6 and KLF16, 

which have been linked to neurite outgrowth and axon regeneration48; we hypothesize that 

these genes may be involved in the role of synaptic pruning in SCZ49. We confirmed the 

robustness of CC-GWAS via simulations, analytical computations, empirical analysis of BC 

vs. BC, and independent replication of empirical CC-GWAS results.

A detailed discussion of differences between CC-GWAS and other methods based on 

summary statistics – the Delta method6; methods combining GWAS results of correlated 

disorders to increase power7–9; GWIS10; ASSET11; and mtCOJO13 – is provided in the 

Supplementary Note, Supplementary Tables 4,13, and Supplementary Figures 17 and 18. 

The most natural method to compare CC-GWAS to is a case-case GWAS based on 
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individual-level data, as performed in ref.4 for SCZ vs. BIP based on individual level data 

from ref.15 and ref.17 respectively. CC-GWAS identified 12 SCZ vs. BIP loci (or 10 when 

applied to data from ref.15 and ref.17, as in ref.4) compared to 2 SCZ vs. BIP loci identified 

in ref.4, which discarded ~25% of the cases compared to the respective case-control data 

(owing to non-matching ancestry and genotyping platform). The results of ref.4 and CC-

GWAS were generally concordant (see Supplementary Note and Supplementary Tables 

28,29). We note two advantages of CC-GWAS over a direct case-case GWAS. First, CC-

GWAS is much less sensitive to subtle allele frequency differences due to differences in 

ancestry and/or genotyping platform (Supplementary Table 30), because the case-case 

comparison accounts for the allele frequency in matched controls by comparing case-control 

effects. Second, CC-GWAS filters potential false positive associations due to differential 

tagging of a causal stress test SNP (with the same allele frequency in cases of both 

disorders). This is not possible in a direct case-case GWAS based on data from cases alone, 

as the filtering criteria require information about case-control effect sizes.

The CC-GWAS method has several limitations. First, the choice of the threshold for the CC-

GWASExact p-values in CC-GWAS is somewhat arbitrary, but we believe 10–4 is a 

reasonable choice as it (i) effectively protects against false positives due to stress test SNPs 

(Figure 2C and Supplementary Figure 6), which cannot be numerous (e.g. 100 independent 

stress test SNPs as defined in Figure 2C would explain 29% of liability-scale variance in 

disorder B), and (ii) has only limited impact on the power of CC-GWAS (Figure 2A). 

Second, the filtering criteria to avoid false positive associations due to differential tagging of 

a causal stress test SNP (Supplementary Table 6) are ad hoc and somewhat arbitrary. 

However, we verified that applying perturbations to these filtering criteria had little impact 

on our results, both in extensive simulations (Supplementary Table 8) and in analyses of 

empirical data (Supplementary Table 8). We discuss ten additional limitations in detail in the 

Supplementary Note, Supplementary Tables 5–8,14,31–34, and Supplementary Figures 6 

and 19.

In conclusion, we have shown that CC-GWAS can reliably identify loci with different allele 

frequencies among cases, providing novel biological insights into the genetic differences 

between cases of eight psychiatric disorders. Thus, CC-GWAS helps promote the ambitious 

but important goal of better clinical diagnoses and more disorder-specific treatment of 

psychiatric disorders.

Methods

Quantifying genetic distances between cases and/or controls of each disorder

We derive FST,causal, the average normalized squared difference in allele frequencies at 

independent causal variants, for the comparisons A1A0, B1B0, A1B1, A1B0, A0B1, A0B0. 

We consider two disorders A and B with lifetime prevalences KA and KB, liability-scale 

heritabilities ℎlA
2  and ℎlB

2 , and genetic correlation rg. Assume the heritabilities and genetic 

correlation have been assessed on data of m independent SNPs, and assume these SNPs 

impact both traits with effects following a bivariate normal distribution. The heritabilities are 

transposed to the observed scales, ℎoA
2  and ℎoB

2 , with proportions of cases of 0.5 in line with 
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refs.25,57. The coheritability is also expressed on this scale as coℎoA, oB = rg ℎoA
2 ℎoB

2 . We 

derive FST,causal,A1A0 as (see Supplementary Note and Supplementary Tables 35,36)

FST , causal, A1A0 ≈
ℎoA

2

m

FST , causal, B1B0 ≈
ℎoB

2

m

FST , causal, A1B1 ≈
ℎoA

2

m 1 − KA 2 − 2
coℎoA, oB

m (1 − KA)(1 − KB) +
ℎoB

2

m 1 − KB 2

FST , causal, A1B0 ≈
ℎoA

2

m (1 − KA)2 + 2
coℎoA, oB

m (1 − KA)KB +
ℎoB

2

m KB2

FST , causal, A0B1 ≈
ℎoA

2

m KA2 + 2
coℎoA, oB

m KA(1 − KB) +
ℎoB

2

m (1 − KB)2

FST , causal, A0B0 ≈
ℎoA

2

m KA2 − 2
coℎoA, oB

m KAKB +
ℎoB

2

m KB2

The quantity m * FST , causal can be used to represent the cases and controls of two disorders 

in a 2-dimensional plot (see Figure 1, Supplementary Note and Supplementary Figure 13). 

We note that the distances can be intuitively interpreted as (i) the square root of the average 

squared difference in allele frequency at causal SNPs, (ii) proportional to the average power 

in GWAS (assuming equal sample sizes and numbers of causal SNPs), (iii) heritability on 

the observed scale based on 50/50 ascertainment (although the heritability has no clear 

interpretation when comparing overlapping small subsets of the population), and (iv) an 

indication of the accuracy of polygenic risk prediction. The genetic correlation rg is equal to 

the cosines of the angle of the lines (population mean - A1) and (population mean - B1).

In application, we derive FST,causal analytically based on the heritabilities, population 

prevalences and genetic correlation. We note three important differences between FST,causal 

and the FST from population genetics58. First, we restrict our definition of FST,causal to 

independent SNPs, while FST from population genetics is based on all genome-wide SNPs. 

Second, FST,causal at variants with large LD-scores are larger than at SNPs with low LD-

scores due to tagging. In contrast, the FST from population genetics is mainly attributable to 

drift and more or less evenly distributed over the genome (except for small effects of 

selection). Third, FST,causal between cases and controls is of the order of magnitude of 10−6 
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depending on the number of SNPs m considered. In contrast, the FST between European and 

East Asian has been estimated58 at 0.11. Because of the low magnitude of FST,causal, we 

report m * FST,causal in Figure 1 and Supplementary Figure 13 (note that m * FST,causal is 

independent of m when other parameters are fixed, because the equations for FST,causal have 

m in the denominator; see Supplementary Note).

CC-GWAS method

The CC-GWAS method relies on FST,causal, and assumes that all m SNPs impact both 

disorders with effect sizes following a bivariate normal distribution (violation of this 

assumption may impact power, but does not affect type I error rate; see further). CC-GWAS 

weights the effect sizes from the respective case-control GWAS using weights that minimize 

the expected squared difference between estimated and true A1B1 effect sizes (while 

modelling sample overlap6); we refer to these as ordinary least squares (CC-GWASOLS) 

weights. To obtain the CC-GWASOLS weights, we analytically derive the expected 

coefficients of regressing the causal effect sizes A1B1 on the GWAS results of A1A0 and 

B1B1 (see Supplementary Note)

βA1B1
OLS = ωA1A0

OLS βA1A0
GW AS + ωB1B0

OLS βB1B0
GW AS

The CC-GWASOLS weights depend on the number of independent causal SNPs, the 

heritabilities, population prevalences, the genetic correlation, and the variance and 

covariance of error terms of the betas (depending on sample sizes NA1, NA0, NB1, NB0 and 

the sample overlap between A0 and B0).

The CC-GWASOLS weights may be susceptible to type I error for SNPs with nonzero A1A0 

and B1B0 effect sizes but zero A1B1 effect size, which we refer to as “stress test” SNPs (see 

further). To mitigate this, CC-GWAS also computes sample size independent weights based 

on infinite sample size; we refer to these as CC-GWASExact weights. The CC-GWASExact 

weights depend only on the population prevalences KA and KB (see Supplementary Note 

and Supplementary Table 35)

βA1B1
Exact = (1 − KA)βA1A0

GW AS − (1 − KB)βB1B0
GW AS

The z-values and p-values of the CC-GWASOLS component and CC-GWASExact component 

are estimated by dividing the beta estimates by their standard errors (see Supplementary 

Note). CC-GWAS reports a SNP as statistically significant if it achieves P < 5 * 10−8 using 

CC-GWASOLS weights and P < 10−4 using CC-GWASExact weights (all statistical tests in 

this paper are two-sided), balancing power and type I error. We note that CC-GWAS is 

intended for comparing two different disorders with genetic correlation < 0.8. At larger 

genetic correlation, the anticipated number of stress test loci may increase posing a risk of 

per-study type I error > 0.05, and the CC-GWASOLS weights may become meaningless 

when the expected genetic distance between cases is close to 0. We note that ωA1A0 > 0 and 

ωB1B0 < 0, which indicates that sample overlap of controls (introducing positive covariance 

between case-control error terms) will reduce the standard error and increase power of CC-
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GWAS. When GWAS results are available for a direct case-case GWAS, βA1B1
GW AS, CC-

GWAS can be extended to CC-GWAS+ (see Supplementary Note). CC-GWAS transposes 

the case-control odd ratios from logistic regression to the standardized observed scale based 

on 50/50 case-control ascertainment59 for convenience in analytical computations (see 

Supplementary Note).

Filtering criteria to exclude potential false positive associations due to differential tagging 
of a causal stress test SNP

CC-GWAS identifies and discards false positive associations that can arise due to differential 

tagging of a causal stress test SNP (Figure 3A). Specifically, CC-GWAS screens the 1MB 

region around every genome-wide significant candidate CC-GWAS SNP for evidence of a 

differentially linked stress test SNP, and conservatively filters the candidate CC-GWAS SNP 

when suggestive evidence of a differentially linked causal stress test SNP is detected. The 

criteria of the filtering step were motivated by extensive simulations (Supplementary Table 

7). For each candidate CC-GWAS SNP, filtering comprises of three sets of criteria (A, B, 

and C), and the SNP is discarded when at least one of the three sets of criteria is met. The 

criteria (A) are intended for intermediate sample sizes, the criteria (B) for relatively small 

sample sizes, and the criteria (C) for very large sample sizes. See Supplementary Note and 

Supplementary Tables 6,7 for details.

Main simulations and analytical computations to assess power and type I error of CC-
GWAS

We first simulated individual-level data of independent SNPs without LD. We simulated (i) 

causal SNPs with effect sizes following a bivariate normal distribution to assess power, (ii) 

null-null SNPs with no effect on both disorders to asses type I error, and (iii) stress test 

SNPs, impacting both disorders but with no case-case allele frequency difference, to assess 

type I error (see Supplementary Note). The parameters of simulation were largely in line 

with those used in Figure 2, but in order to reduce computational time, sample sizes were 

reduced to NA1 = NA0 = NB1 = NB0 = 4,000, number of causal SNPs to m = 1,000, and 

required levels of significance were reduced to p < 0.01 for the CC-GWASOLS component 

and p < 0.05 for the CC-GWASExact component. Simulation results are displayed in 

Supplementary Table 2 and match analytical computations (see Supplementary Note). The 

concordance of simulation and analytical computations confirms that increasing sample 

sizes and decreasing p-value thresholds in analytical computations in Figure 2 is justified. 

We also simulated data with a different bivariate architecture, with the distribution of SNP 

effects in line with the general distribution applied in Frei et al.60: 1/3 of causal SNPs have 

an impact on disorder A only, 1/3 of SNPs have an impact on disorder B only, and 1/3 of 

SNPs have an impact both disorder A and disorder B (Supplementary Table 5).

Simulation of false positive associations due to differential tagging of a causal stress test 
SNP

We also simulated GWAS results of causal stress test SNPs and their tagging SNPs to study 

the impact of potential false positive associations due to differential tagging of a causal 

stress test SNP. We used real LD patterns in two distinct populations61: 25k British UK 
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Biobank samples and 25k “other European” UK Biobank samples (defined as non-British 

and non-Irish); we note that the FST between these two populations is 0.000658, which is 

greater than the range of FST values in the 3 CC-GWAS comparisons of psychiatric 

disorders for which in-sample allele frequencies were available to estimate FST (0.0001–

0.0005; Supplementary Table 37). An overview of LD (signed correlation) differences 

between 25k British UK Biobank samples and 25k “other European” UK Biobank samples 

is provided in Supplementary Table 38. Other parameters were based on our main stress test 

SNP simulations (Figure 2C). We refer to the Supplementary Note for further details. The 

advantage of simulating GWAS summary statistics is that this allows increasing the number 

of simulation runs and sample size dramatically compared to simulations based on 

individual-level data.

Based on the simulated GWAS results, we first applied CC-GWAS twice including the 

filtering step: once with the causal stress test SNP included in the GWAS results (CC-

GWAS-causal-typed), and once excluding the causal stress test SNP (and all SNPs in perfect 

LD in both populations) from the GWAS results (CC-GWAS-causal-untyped). Subsequently, 

we applied CC-GWAS without the filtering step (CC-GWAS-nofilter), and reported the 

results from βi, A1B1 (Direct case-case GWAS). We report the per-locus type I error rate: the 

number of loci with at least one genome-wide significant tagging SNP divided by the 

number of loci tested. The simulation results are reported in Figure 3B and Supplementary 

Table 7 We performed several secondary simulation analyses (Supplementary Note and 

Supplementary Tables 7,8).

Empirical data sets

We compared cases from SCZ16, BIP17, MDD18, ADHD19, AN20, ASD21, OCD22, and 

TS23 based on publicly available case-control GWAS results. To further validate CC-GWAS 

we also compare cases from BC26, CD52, UC52 and RA53. Numbers of cases and controls 

are listed in Table 1 and Supplementary Table 14. In quality control SNPs were removed 

with MAF < 0.01, INFO < 0.6, Neff < 0.67 * max(Neff), duplicate SNP names, strand-

ambiguous SNPs, and the MHC region (chr6:25,000,000–34,000,000) was excluded due to 

its compilated LD structure. The transformation of odds ratios to the standardize betas on the 

observed scale requires Neff (Supplementary Note). For some of the disorders (BIP, MDD, 

AN and RA), Neff was provided on a SNP-by-SNP basis in publicly available GWAS results. 

For other disorders (SCZ, ADHD, ASD, OCD, TS, BC, CD and UC), we approximated a 

genome-wide fixed Neff by summing the Neff of the contributing cohorts as 

∑coℎorts
4

1/Ncase, coℎort i + 1/Ncontrol, coℎort i
. (In principle, applying a fixed Neff for cohorts 

without SNP-by-SNP Neff information could lead to inaccurate transformation of beta for 

some SNPs. Therefore, we reran CC-GWAS analyses for SCZ, BIP and MDD with fixed 

Neff yielding nearly identical results to the primary analyses (with fixed Neff for SCZ and 

SNP-by-SNP Neff for BIP and MDD). This confirms that using fixed Neff is appropriate.) All 

reported SNP names and chromosome positions are based on GRCh37/hg19.
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Application of CC-GWAS to breast cancer

To further assess robustness of CC-GWAS, we applied CC-GWAS to BC case-control 

GWAS results of 61,282 cases + 45,494 controls (OncoArray sample in ref.26) vs. BC case-

control GWAS results 46,785 cases + 42,892 controls (iCOGs sample in ref.26). Input 

parameters of CC-GWAS are the population prevalences62, liability-scale heritabilities 

(ℎl
2)63–65, genetic correlation (rg)2, the intercept from cross-trait LD score regression2 (used 

to model covariance of the error-terms), the sample size including overlap of controls 

(Noverlap = 0; also used to model covariance of the error-terms; see below), and expectation 

of the number of independent causal SNPs (m). The number of independent causal SNPs 

was set at m = 7,50066 (see below for a detailed discussion of the assumed number of causal 

SNPs in applications of CC-GWAS). The resulting CC-GWASOLS weights and CC-

GWASExact weights are reported in Supplementary Table 9.

Application of CC-GWAS to psychiatric and other empirical data sets

Input parameters of CC-GWAS are the population prevalences (K), liability-scale 

heritabilities (ℎl
2), genetic correlation (rg), the intercept from cross-trait LD score regression2 

(used to model covariance of the error-terms), the sample sizes including overlap of controls 

(also used to model covariance of the error-terms; see below), and expectation of the number 

of independent causal SNPs (m; see below). Prevalences are displayed in Table 1 and 

Supplementary Table 25 and were based on ref.67 for the eight psychiatric disorders, on ref.
68 for UC and CD, and ref.53 for RA. Heritabilities were assessed with stratified LD score 

regression based on the baseline LD v2.0 model63–65, and transposed to liability-scale25,57. 

Genetic correlations were estimated with cross-trait LD score regression2. The number of 

causal SNPs was set at m = 10,000 for the psychiatric disorders, and m = 1,000 for CD, UC 

and RA based on ref.27. CC-GWAS estimates the covariance of case-control error terms 

based on (i) the intercept of cross-trait LD score regression7) and (ii) sample overlap of 

controls (see Supplementary Note and Supplementary Table 39). CC-GWAS conservatively 

uses the minimum of these to estimates, because overestimation of the covariance of error 

terms will underestimate the standard error of CC-GWAS results thereby risking increased 

false positive rate. Based on the listed input parameters, CC-GWAS (software provided in 

R69) was applied one disorder pair at a time.

CC-GWAS results were clumped in line with ref.16 using 1000 Genomes data28 as LD 

reference panel with Plink 1.970 (--clump-p1 5e-8 --clump-p2 5e-8 --clump-r2 0.1 --clump-

kb 3000) (Supplementary Table 12). Loci within 250kb of each other after the first clumping 

step were collapsed. We defined CC-GWAS-specific loci as loci for which none of the 

genome-wide significant SNPs have an r2>0.8 with any of the genome-wide significant 

SNPs in the input case-control GWAS results (Supplementary Table 12). We chose this value 

because we think it is unlikely that a CC-GWAS locus would statistically result from a 

significant case-control locus for which all significant SNPs have r2≤0.8 with all significant 

SNPs in the CC-GWAS locus. An overview of the number of CC-GWAS loci is given in 

Table 1 and Supplementary Table 14, and details are reported in Table 2 and Supplementary 

Table 13. Secondary analyses are described in the Supplementary Note and Supplementary 

Table 18.
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The assumed number of causal SNPs in applications of CC-GWAS

Our primary recommendation is to specify m based on published estimates of genome-wide 

polygenicity, such as the effective number of independently associated causal SNPS27 or the 

total number of independently associated SNPs60,66,71,72. These values generally range from 

1,000 for relatively sparse traits (e.g. autoimmune diseases) to 10,000 for highly polygenic 

traits (e.g. psychiatric disorders). When estimates of genome-wide polygenicity are not 

available, our recommendation is to specify m=1,000 for traits that are expected to have 

relatively sparse architectures (e.g. autoimmune diseases), m=10,000 for traits that are 

expected to have highly polygenic architectures (e.g. psychiatric disorders), and m=5,000 for 

traits with no clear expectation. When comparing disorders with different levels of 

polygenicity, our recommendation is to specify m based on the expected average across both 

disorders. We note that misspecification of m may impact power, but does not affect type I 

error rate (Supplementary Note and Supplementary Figure 12).

SMR and HEIDI analyses

We used the SMR test for colocalization30 to identify CC-GWAS loci with significant 

associations between gene expression effect sizes in cis and CC-GWASOLS case-case effect 

sizes. We tested cis-eQTL effects in 13 GTEx v7 brain tissues31 (Amygdala, Anterior 

cingulate cortex, Caudate basal ganglia, Cerebellar Hemisphere, Cerebellum, Cortex, Frontal 

Cortex, Hippocampus, Hypothalamus, Nucleus accumbens basal ganglia, Putamen basal 

ganglia, Spinal cord cervical c-1, and Substantia nigra), and a meta-analysis of eQTL effects 

in brain tissues32. In line with standard application of SMR30, we tested probes of genes 

with significant eQTL associations, with the lead eQTL SNP within 1MB of the lead CC-

GWAS SNP. SMR analyses were performed on 2MB cis windows around the tested probe. 

The threshold of significance was adjusted per tested disorder-pair by dividing 0.05 by the 

respective number of probes tested (Supplementary Table 23). We used the HEIDI test for 

heterogeneity30 to exclude loci with evidence of linkage effects (P < 0.05).

Replication analyses

Of the eight psychiatric disorders, only SCZ and MDD had sufficient sample size to perform 

replication analyses of the SCZ vs. MDD results based on publicly available GWAS results 

of subsets of the data15,51. We used CC-GWAS discovery results of additional analyses of 

SCZ vs. MDD based on GWAS results from Ripke et al.15 and Wray et al.51 (Supplementary 

Table 26). To obtain independent replication data, we applied MetaSubtract54 separately for 

SCZ (results (i) Pardinas et al.16 – results (ii) Ripke et al.15) and for MDD (results (i) 

Howard et al.18 – results (ii) Wray et al.51; see Supplementary Note). For further replication 

analyses, we used CC-GWAS discovery results from the three comparisons of CD52, UC52 

and RA53. For CD52 and UC52, we also applied MetaSubtract54 to obtain independent 

discovery and replication results (Supplementary Note and Supplementary Table 26). In a 

final set of secondary replication analyses, we sought to perform replication analyses using 

independent replication data that was obtained without requiring the use of MetaSubtract, 

and we focused on 6 comparisons of each pair of 4 disorders26,51,53,61,73 (of low biological 

interest, but useful for assessing the robustness of the CC-GWAS method; see 

Supplementary Note).
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For replication analyses, we computed CC-GWASOLS A1B1 effects based on the CC-

GWASOLS weights from the respective discovery results (Supplementary Table 26). (We 

applied CC-GWASOLS weights from the discovery analyses rather than re-estimating the 

CC-GWASOLS weights based on the replication GWAS results, because CC-GWASOLS 

weights are sample size dependent.) We used the replication slope (based on a regression of 

replication vs. discovery effect sizes55) to assess the level of replication for all CC-GWAS 

loci and for the CC-GWAS-specific loci separately. We note that CC-GWAS-specific loci are 

expected to have smaller case-case effect sizes (because the respective case-control effect 

sizes are not significant per definition) than the remaining CC-GWAS loci. Thus, CC-

GWAS-specific loci are expected to be more susceptible to winner’s curse56 and attain a 

lower replication slope than the remaining CC-GWAS loci (see Supplementary Note).

Data availability

CC-GWAS results generated in the present study for 8 psychiatric disorders and 3 

autoimmune diseases are available for public download at https://data.broadinstitute.org/

alkesgroup/CC-GWAS/. GWAS results for breast cancer are available at http://

bcac.ccge.medschl.cam.ac.uk/bcacdata/. GWAS results for attention deficit/hyperactivity 

disorder, anorexia nervosa, autism spectrum disorder, bipolar disorder, major depressive 

disorder (Wray 2018), obsessive–compulsive disorder, schizophrenia (Ripke 2014), 

schizophrenia vs bipolar disorder, and Tourette’s syndrome and other tic disorders are 

available at https://www.med.unc.edu/pgc/results-and-downloads/. GWAS results for major 

depressive disorder (Howard 2019) are available at https://datashare.is.ed.ac.uk/handle/

10283/3203. GWAS results for schizophrenia (Pardinas 2018) are available at https://

walters.psycm.cf.ac.uk/. GWAS results for Crohn’s disorder and ulcerative colitis are 

available at https://www.ibdgenetics.org/downloads.html. GWAS results for rheumatoid 

arthritis are available at http://www.sg.med.osaka-u.ac.jp/tools.html. GWAS results for 

coronary artery disease are available at http://www.cardiogramplusc4d.org/data-downloads/. 

eQTL data of 13 GTEx v7 brain tissues and meta-analysis of eQTL effects in brain tissues 

are available at https://cnsgenomics.com/software/smr/#DataResource. Access to the UK 

Biobank resource is available via application (http://www.ukbiobank.ac.uk).

Code availability

CC-GWAS software (R package) is available at https://github.com/wouterpeyrot/CCGWAS. 

R software is available at https://www.r-project.org/ (version 3.5.1 was used). LDSC 

software is available at https://github.com/bulik/ldsc (version 1.0.0 was used). SMR software 

is available at https://cnsgenomics.com/software/smr/ (version 1.02 was used). PLINK1.9 

software is available at www.cog-genomics.org/plink/1.9/ (version v1.90b6.7 was used).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genetic distance between cases and/or controls of SCZ, BIP and MDD.
We report genetic distances for (A) an illustrative example, (B) SCZ vs. BIP, (C) SCZ vs. 

MDD and (D) SCZ vs. BIP. Genetic distances are displayed as m * FST , causal, derived 

based on the respective population prevalences, SNP-based heritabilities and genetic 

correlations reported in Table 1 (m, number of independent causal variants; see Methods). 

Approximate standard errors of m * FST,causal,A1B1 are 0.04 for SCZ vs. BIP, 0.02 for SCZ 

vs. MDD and 0.03 for BIP vs. MDD (see Methods). For SCZ and BIP, despite the large 

genetic correlation (rg = 0.7), the genetic distance between SCZ cases and BIP cases is only 

slightly smaller ( m * FST , causal = 0.49) than the case-control distances for SCZ (0.66) and 

BIP (0.60), because of the doubly strong ascertainment (due to low disorder prevalences) in 

SCZ cases and BIP cases and because a genetic correlation of 0.7 is still considerably 
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smaller than a genetic correlation of e.g. 0.9 (Supplementary Figure 20). For SCZ and MDD 

(rg = 0.31), the genetic distance between MDD cases and SCZ cases (0.63) is larger than for 

MDD case-control (0.29) (Panel C) owing to the larger prevalence and lower heritability of 

MDD. For MDD and BIP (rg = 0.33), genetic distances are similar to MDD and SCZ (Panel 

D). Numerical results are reported in Supplementary Table 11.
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Figure 2. Power and type I error of CC-GWAS.
We report (A) the power to detect SNPs with effect sizes following a bivariate normal 

distribution, (B) the type I error rate for loci with no effect on A1A0 or B1B0 (“null-null” 

SNPs) and (C) the type I error rate for SNPs with the same allele frequency in A1 vs. B1 

that explain 0.10% of variance in A1 vs. A0 and 0.29% of variance in B1 vs. B0 (“stress 

test” SNPs), for each of four methods: CC-GWAS, the CC-GWASOLS component, the CC-

GWASExact component, and a naïve Delta method (see text). Default parameter settings are: 

h2=0.2, prevalence K=0.01, and sample size 100,000 cases + 100,000 controls for disorder 

A; liability-scale h2=0.1, prevalence K=0.15, and sample size 100,000 cases + 100,000 

controls for disorder B; m=5,000 causal SNPs for each disorder; and genetic correlation 

rg=0.5 between disorders. Numerical results of these analytical computations are reported in 

Supplementary Table 1, and confirmed with simulation results in Supplementary Table 2.
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Figure 3. Type I error of CC-GWAS due to differential tagging of a causal stress test SNP.
(A) Illustrative example of how differential tagging of a causal stress test SNP can lead to 

type I error. (B) Simulation results of type I error due to differential tagging. We report the 

per-locus type I error rate, defined as the number of loci with at least one genome-wide 

significant tagging SNP divided by the number of loci tested, for each of four methods/

scenarios: CC-GWAS, causal stress test SNP genotyped/imputed (denoted CC-GWAS-

causal-typed); CC-GWAS, causal stress test SNP not genotyped/imputed (denoted CC-

GWAS-causal-untyped); CC-GWAS, no filter; and Direct case-case GWAS (see text). 
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Default parameter settings are: h2=0.2, prevalence K=0.01, and sample size 100,000 cases + 

100,000 controls for disorder A; liability-scale h2=0.1, prevalence K=0.15, and sample size 

100,000 cases + 100,000 controls for disorder B; m=5,000 causal SNPs for each disorder; 

and genetic correlation rg=0.5 between disorders. Per-locus type I error rates <5×10−8 were 

truncated to 5×10−8 for visualization purposes. All simulation standard errors were 0 for 

CC-GWAS-causal-typed (zero false positives across all simulations performed); ≤2.7×10−5 

for CC-GWAS-causal-untyped; ≤1.7×10−3 for CC-GWAS, no filter; and ≤2.1×10−3 for 

Direct case-case GWAS. Numerical results are reported in Supplementary Table 7.
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Figure 4. Case-control effect sizes at CC-GWAS loci for SCZ, BIP and MDD.
We report the respective case-control effect sizes for lead SNPs at CC-GWAS loci for (A) 

SCZ vs. BIP, (B) SCZ vs. MDD and (C) BIP vs. MDD. Effect sizes are reported on the 

standardized observed scale based on 50/50 case-control ascertainment. Red points denote 

CC-GWAS-specific loci, and black points denote remaining loci. Dashed lines denote effect-

size thresholds for genome-wide significance. All red points (denoting lead SNPs for CC-

GWAS-specific loci) lie inside the dashed lines for both disorders; in panel A, one black 

point (denoting the lead SNP for a CC-GWAS locus that is not CC-GWAS-specific) lies 
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inside the dashed lines for both SCZ and BIP, because the lead SNP is not genome-wide 

significant for SCZ but is in LD with a SNP that is genome-wide significant for SCZ. 

Numerical results are reported in Supplementary Table 13. SCZ, schizophrenia; BIP, bipolar 

disorder; MDD, major depressive disorder.
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Figure 5. Independent replication of CC-GWAS results.
We report replication case-case CC-GWASOLS effect sizes vs. discovery case-case CC-

GWASOLS effect sizes for (A) schizophrenia (SCZ) vs. major depressive disorder (MDD), 

(B) three autoimmune disorders, (C) SCZ vs. MDD and three autoimmune disorders, 

restricting to CC-GWAS-specific loci, and (D) SCZ vs. MDD and three autoimmune 

disorders, restricting to remaining loci. We also report regression slopes (SE in parentheses), 

effect sign concordance, and effect sign concordance together with replication POLS<0.05. 

Red points denote CC-GWAS-specific loci, and black points denote remaining loci. 
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Numerical results are reported in Supplementary Table 27, and corresponding case-control 

replication results are reported in Supplementary Figure 15 and Supplementary Table 28.
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Table 1.
Summary of CC-GWAS results for schizophrenia, bipolar disorder and major depressive 
disorder.

For each pair of schizophrenia (SCZ)16, bipolar disorder (BIP)17 and major depressive disorder (MDD)18, we 

report the case-control sample sizes, #SNPs, the most likely prevalence (K)67, liability-scale heritability 

estimated using stratified LD score regression63–65 (h2), genetic correlation estimated using cross-trait LD 

score regression2 (rg), CC-GWASOLS weights (based on the most likely prevalences), number of independent 

genome-wide significant loci for each case-control comparison, number of independent genome-significant 

CC-GWAS loci, and number of independent genome-significant CC-GWAS loci that are CC-GWAS-specific. 

CC-GWASExact weights are equal to (1 − KA) for disorder A and −(1 − KB) for disorder B. CC-GWAS reports 

a SNP as statistically significant if it achieves P < 5 * 10−8 using CC-GWASOLS weights and P < 10−4 using 

CC-GWASExact weights. We specified a range of prevalences to the CC-GWASExact component for SCZ 

(0.4%−1.0%)16,67, BIP (0.5%−2.0%)17, and MDD (16%−30%)18,67 (yielding 2 × 2 = 4 CC-GWASExact p-

values per comparison, all required to be < 10−4). Statistical tests are two-sided.

Number of significant 
independent loci

CC-GWAS

A1A0 B1B0 CC-
GWAS 
specific

A1A0 (N case/ 
N control)

B1B0 (N case/ N 
control) # SNPs K 

(%) h2 K 
(%) h2 rg

OLS 
weights A1A0 B1B0 all

SCZ 
(40,675/64,643)

BIP 
(20,352/31,358) 4,548,414 0.40 0.20 1.00 0.20 0.70 0.55/−0.43 139 15 12 7

SCZ 
(40,675/64,643)

MDD 
(170,756/329,443) 4,483,387 0.40 0.20 16.00 0.10 0.31 0.77/−0.51 139 50 99 10

BIP 
(20,352/31,358)

MDD 
(170,756/329,443) 6,265,453 1.00 0.20 16.00 0.10 0.33 0.58/−0.43 14 53 10 4
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Table 2.
List of 21 CC-GWAS-specific loci for SCZ, BIP and MDD.

For each CC-GWAS-specific locus, we report the lead CC-GWAS SNP and its chromosome, physical position, 

and reference allele frequency, the locus name, the respective case-control effect sizes and p-values, and the 

CC-GWASOLS case-case effect size and p-value. Effect sizes are reported on the standardized observed scale 

based on 50/50 case-control ascertainment.

Disorder A1A0 B1B0 A1B1 (OLS)

A B SNP Chr Position Freq Locus 
name Beta P Beta P Beta P

SCZ BIP rs9866687a 3 94,828,190 0.44 LINC00879 1.24e-02 1.38e-04 −1.45e-02 1.70e-03 1.30e-02 4.05e-08

SCZ BIP rs7790864a 7 28,478,625 0.38 CREB5 1.46e-02 7.18e-06 −1.23e-02 7.93e-03 1.32e-02 2.18e-08

SCZ BIP rs12554512 9 23,352,293 0.43 ELAVL2 −6.22e-03 5.54e-02 2.25e-02 1.28e-06 −1.30e-02 4.06e-08

SCZ BIP rs3764002 12 108,618,630 0.26 WSCD2c 1.62e-02 6.05e-07 −1.54e-02 9.04e-04 1.55e-02 6.33e-11

SCZ BIP rs9319540a 16 79,458,022 0.58 MAF 1.22e-02 1.84e-04 −1.49e-02 1.26e-03 1.30e-02 3.67e-08

SCZ BIP rs1054972 19 1,852,582 0.2 KLF16c −1.42e-02 1.32e-05 1.31e-02 4.74e-03 −1.33e-02 1.75e-08

SCZ BIP rs11696888 20 47,753,265 0.43 CSE1Lb −1.21e-02 1.94e-04 1.80e-02 1.05e-04 −1.43e-02 1.39e-09

SCZ MDD rs2471403 2 48,490,508 0.48 FOXN2b −1.70e-02 1.78e-07 3.08e-03 6.21e-02 −1.47e-02 2.34e-08

SCZ MDD rs16846133a 2 212,289,728 0.31 ERBB4 −1.63e-02 5.68e-07 4.43e-03 5.84e-03 −1.48e-02 1.71e-08

SCZ MDD rs2563297 5 140,097,072 0.44 PCDHA7b 1.60e-02 8.76e-07 −6.00e-03 3.73e-04 1.54e-02 5.25e-09

SCZ MDD rs113113059 6 43,160,375 0.19 CUL9b −1.68e-02 2.37e-07 4.84e-03 2.93e-03 −1.55e-02 4.11e-09

SCZ MDD rs2944833 7 71,774,496 0.57 CALN1b −1.70e-02 1.80e-07 2.52e-03 1.21e-01 −1.44e-02 4.22e-08

SCZ MDD rs71523422a 8 31,445,336 0.08 NRG1 −1.57e-02 1.41e-06 4.69e-03 3.82e-03 −1.45e-02 3.38e-08

SCZ MDD rs10967586a 9 26,895,808 0.13 CAAP1 1.67e-02 2.87e-07 −4.57e-03 4.60e-03 1.52e-02 6.94e-09

SCZ MDD rs17731 10 3,821,561 0.35 KLF6c 1.67e-02 2.86e-07 −3.39e-03 3.89e-02 1.46e-02 2.64e-08

SCZ MDD rs34232444 19 4,965,404 0.3 UHRF1 −1.45e-02 8.70e-06 7.66e-03 2.56e-06 −1.51e-02 9.92e-09

SCZ MDD rs8137258a 22 20,135,961 0.22 ZDHHC8 1.59e-02 9.87e-07 −5.65e-03 4.50e-04 1.52e-02 7.82e-09

BIP MDD rs28565152 5 7,542,911 0.25 ADCY2 2.35e-02 3.83e-07 −3.77e-03 2.23e-02 1.53e-02 2.79e-08

BIP MDD rs12538191a 7 44,980,824 0.24 SNHG15b −2.44e-02 1.46e-07 2.81e-03 8.21e-02 −1.54e-02 2.36e-08

BIP MDD rs4447398 15 42,904,904 0.88 LRRC57b −2.46e-02 1.10e-07 2.54e-03 1.22e-01 −1.54e-02 2.28e-08

BIP MDD rs11908600 20 43,633,418 0.3 STK4b −2.34e-02 4.26e-07 3.53e-03 2.90e-02 −1.51e-02 4.16e-08

a
denotes loci that have not been reported previously29.

b
denotes locus names based on (most) significant SMR results.

c
denotes locus names based on exonic lead SNPs. Remaining locus names are based on nearest gene, and do not refer to any inferred biological 

function. Case-case effect sizes and p-values for the CC-GWASExact component are reported in Supplementary Table 13. SCZ, schizophrenia; 

BIP, bipolar disorder; MDD, major depressive disorder.
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Table 3.
Summary of CC-GWAS results for eight psychiatric disorders.

For each pair of disorders, we report the genetic correlation estimated using cross-trait LD score regression2 

(rg) (lower left) and the number of independent genome-significant CC-GWAS loci (number of CC-GWAS-

specific loci in parentheses) (upper right). The respective case-control heritabilities, prevalences and GWAS 

sample sizes (input parameters of CC-GWAS) are presented in Supplementary Table 25 and its legend. The 

CC-GWASOLS weights and number of SNPs tested are reported in Supplementary Table 14. CC-GWAS 

reports a SNP as statistically significant if it achieves P < 5 * 10−8 using CC-GWASOLS weights and P < 10−4 

using CC-GWASExact weights. Statistical tests are two-sided. SCZ, schizophrenia; BIP, bipolar disorder; 

MDD, major depressive disorder; ADHD, attention deficit/hyperactivity disorder; AN, anorexia nervosa; ASD, 

autism spectrum disorder; OCD, obsessive–compulsive disorder; TS, Tourette’s Syndrome and Other Tic 

Disorders.

rg\# loci SCZ BIP MDD ADHD ANO ASD OCD TS

SCZ - 12 (7) 99 (10) 43 (14) 41 (5) 40 (10) 0 (0) 13 (4)

BIP 0.70 - 10 (4) 8 (6) 5 (2) 3 (0) 1 (1) 5 (3)

MDD 0.31 0.33 - 9 (2) 6 (1) 3 (2) 0 (0) 0 (0)

ADHD 0.16 0.18 0.44 - 4 (3) 1 (0) 2 (2) 2 (2)

AN 0.26 0.10 0.28 0.01 - 1 (1) 0 (0) 2 (1)

ASD 0.25 0.17 0.34 0.37 0.11 - 1 (1) 1 (1)

OCD 0.32 0.27 0.25 -0.20 0.42 0.10 - 1 (1)

TS 0.11 0.08 0.23 0.19 0.08 0.16 0.50 -
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