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Candida species are the most common fungal causes of
deep-seated and disseminated infections in immuno-
compromised human hosts, and are associated with high
morbidity and mortality in this patient population.1,2

Although the incidence of invasive fungal infections
caused by unusual Candida spp. continues to rise, to
date Candida albicans remains the most frequently iso-
lated Candida species in the clinical setting, is the princi-
pal agent of nosocomial yeast infections,1,3 and is widely
accepted as being one of the most virulent Candida spe-
cies.4 A large number of virulence and fitness factors
have been identified in C. albicans, and include the abil-
ity to undergo yeast-hyphal transition, the expression of
adhesins, invasins and hydrolytic enzymes which pro-
mote biofilm formation and tissue invasion, and rapid
adaptations to changing extracellular environments
(reviewed in5). However, since disease severity and out-
come depend upon the complex interplay between the
virulence of the individual fungal pathogen and the
immune response of the host,6 study of both aspects is
central to furthering our understanding of fungal
pathogenesis.

A large number of animal models have been devel-
oped to allow the study of both superficial and dissemi-
nated candidosis, and murine models continue to be
promoted as the gold standard for evaluating Candida
pathogenicity.7 Study of the host response and the deter-
minants of fungal virulence have been aided by such ani-
mal models since they replicate human disease with high
fidelity. In addition, the availability of genetically modi-
fied or immune-depleted hosts has allowed the dissection
of the principal host immune components.8 However,
animal experimentation is constrained by major bioethi-
cal, economic and logistical issues, and the “3Rs” policy

adopted by many international and governmental fund-
ing agencies encourages the development of alternative
model systems that do not have associated bioethical
issues. Amongst alternative model systems for studying
microbial pathogenesis, two insects in particular have
been extensively used over recent years: the fruit fly Dro-
sophila melanogaster and the larvae of the greater wax
moth Galleria mellonella (reviewed in9). Advantages
include inexpensive and easy breeding in large numbers,
relatively simple maintenance in the laboratory, and ease
of inoculation. In addition, insect innate immune sys-
tems at the cellular and humoral level are structurally
and functionally very similar to the immune system in
mammals, allowing results obtained in insect models to
be easily translated to humans.10,11 In insects, pathogens
are recognised by pathogen recognition receptors,12,13

phagocytosed by hemocytes which are functional equiva-
lents of mammalian neutrophils,14 and eliminated using
reactive oxygen species as in mammals.15 Insects also
synthesise a range of antimicrobial peptides, many of
which are evolutionarily conserved between invertebrates
and mammals.16,17

The ability to infect Drosophila with fungi, bacteria
and viruses,18 the availability of a completed genome
sequence19 and extensive gene microarrays20 and the
ease of genetic manipulation have made this organism a
model system for infection studies.21 Indeed, research
with Drosophila has elucidated many of the central
mechanisms of anti-pathogen immunity,21,22 including
the discovery that the Toll signalling pathway was central
to an effective antifungal host response against Aspergil-
lus fumigatus.23 However, despite the lack of equivalent
genomic resources, Galleria also has specific advantages
for the study of human pathogens and is an increasingly
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popular choice for the investigation of the determinants
of fungal pathogenesis. Wild-type larvae are susceptible
to human-pathogenic fungi without the need for manip-
ulation of the Toll pathway and genetic crossing, and can
be housed in simple petri dishes in the laboratory. The
larger size of the larvae as compared to Drosophila
potentially allows multiple inoculations into the same
organism, the use of more accurately quantified inocula
with less specialised equipment, and more sophisticated
and varied end-point analyses (melanisation, fungal bur-
den, larval death, alterations in hemocyte composition
and larval genomic/proteomic changes).24,25 Moreover,
Galleria larvae can be maintained at human physiologi-
cal temperatures and above, an important consideration
when temperature-dependent virulence factors are
involved.26,27 In addition, several studies have demon-
strated that pre-exposure of G. mellonella to sub-lethal
doses of fungi protected the larvae from subsequent
lethal challenges, in part by inducing the production of
protective antimicrobial peptides, indicating that Galle-
ria is able to assess the extent of fungal infection and dif-
ferentially activate cellular and humoral responses.28,29

To date, Galleria mellonella has been successfully
employed in studies comparing virulence of different
fungi,30,31 elucidation of virulence factors,32-34 antifungal
drug response and resistance,35-37 combination therapy38

and pharmacokinetics,39 alternative antifungal thera-
pies40,41 and probiotics.42,43 In addition, this invertebrate
model is apparently capable of reproducing clinical fea-
tures seen with human infection with remarkable fidelity,
as evidenced by the demonstration of fungal grain devel-
opment in larvae infected with an agent of eumyce-
toma44 and aggregates of immobilised Listeria bacteria
on the brains of larvae that are similar to those seen on
the brains of infected humans.45

In a recent issue of Virulence,46 the group of Kava-
nagh, one of the leading proponents of the use of Galleria
as a fungal infection model has further strengthened the
argument, by exploiting the recently published transcrip-
tome and immune-gene repertoire of Galleria47 to exam-
ine the early cellular and humoral responses of larvae
after infection by Candida albicans. The authors infected
larvae with a dose of C. albicans that permitted larval
survival for 24 hours and followed fungal burden,
changes in hemocyte numbers and population structure
and employed semi-quantitative shotgun proteomics to
analyse the larval response early (6 hours) and late (24
hours) after infection. Their analyses revealed a biphasic
response to infection. In the early acute phase, hemocyte
density, antimicrobial peptides and immune proteins all
increased significantly in abundance with a concomitant
reduction in larval fungal burden. The late phase (6-24
hours) conversely was marked by extensive fungal

proliferation, reduction of the overall hemocyte popula-
tion with an increase in the number of granular hemo-
cytes and proteomic changes indicative of cellular stress,
tissue damage, chemo-protection and sequestration of
key immune related proteins in immune-fungal com-
plexes. These data are highly suggestive of a sophisticated
and orchestrated response in which early stages are
designed to gauge the extent of fungal infection via non-
specific immune reactions (antimicrobial peptides, mela-
nisation) and determine the full immune response
required, followed by the later unleashing of a large spe-
cific response involving increased production of antimi-
crobial peptides and phagocytic cells. What makes the
study more important is that the initial cellular and
humoral responses observed in Galleria appear very sim-
ilar to those that are seen in murine models of invasive
candidiasis, where an initial massive innate immune
response involving cellular recruitment, complement
activation and opsonisation occurs early in the neutro-
phil-poor kidneys of infected animals prior to wide scale
peripheral neutrophilia.48 Moreover, this latest addition
to the Galleria literature clearly demonstrates that the
lack of whole genome data for this model insect does not
prevent a detailed exploration of host-pathogen
interactions.
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