
fnagi-09-00107 April 22, 2017 Time: 15:37 # 1

ORIGINAL RESEARCH
published: 25 April 2017

doi: 10.3389/fnagi.2017.00107

Edited by:
Christos Frantzidis,

Aristotle University of Thessaloniki,
Greece

Reviewed by:
Chunbo Li,

Shanghai Jiao Tong University, China
Manousos A. Klados,

Max Planck Institute for Human
Cognitive and Brain Sciences (MPG),

Germany
Xu Lei,

Southwest University, China

*Correspondence:
Maria E. López

meugenia.lopez@uib.es

†These authors have contributed
equally to this work.

Received: 15 December 2016
Accepted: 04 April 2017
Published: 25 April 2017

Citation:
López ME, Engels MMA,

van Straaten ECW, Bajo R,
Delgado ML, Scheltens P,

Hillebrand A, Stam CJ and Maestú F
(2017) MEG Beamformer-Based

Reconstructions of Functional
Networks in Mild Cognitive

Impairment.
Front. Aging Neurosci. 9:107.

doi: 10.3389/fnagi.2017.00107

MEG Beamformer-Based
Reconstructions of Functional
Networks in Mild Cognitive
Impairment
Maria E. López1,2*†, Marjolein M. A. Engels3†, Elisabeth C. W. van Straaten4,5,
Ricardo Bajo6, María L. Delgado7,8, Philip Scheltens3, Arjan Hillebrand4,
Cornelis J. Stam4 and Fernando Maestú2,6,8

1 Laboratory of Neuropsychology, Universitat de les Illes Balears, Palma de Mallorca, Spain, 2 Networking Research Center
on Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain, 3 Alzheimer Center and Department of Neurology,
Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, Netherlands, 4 Department of Clinical
Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam,
Netherlands, 5 Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, Netherlands, 6 Laboratory of Cognitive and
Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University
of Madrid, Madrid, Spain, 7 Seniors Center of the District of Chamartín, Madrid, Spain, 8 Department of Basic Psychology II,
Complutense University of Madrid, Madrid, Spain

Subjects with mild cognitive impairment (MCI) have an increased risk of developing
Alzheimer’s disease (AD), and their functional brain networks are presumably already
altered. To test this hypothesis, we compared magnetoencephalography (MEG)
eyes-closed resting-state recordings from 29 MCI subjects and 29 healthy elderly
subjects in the present exploratory study. Functional connectivity in different frequency
bands was assessed with the phase lag index (PLI) in source space. Normalized
weighted clustering coefficient (normalized Cw) and path length (normalized Lw), as well
as network measures derived from the minimum spanning tree [MST; i.e., betweenness
centrality (BC) and node degree], were calculated. First, we found altered PLI values
in the lower and upper alpha bands in MCI patients compared to controls. Thereafter,
we explored network differences in these frequency bands. Normalized Cw and Lw
did not differ between the groups, whereas BC and node degree of the MST differed,
although these differences did not survive correction for multiple testing using the False
Discovery Rate (FDR). As an exploratory study, we may conclude that: (1) the increases
and decreases observed in PLI values in lower and upper alpha bands in MCI patients
may be interpreted as a dual pattern of disconnection and aberrant functioning; (2)
network measures are in line with connectivity findings, indicating a lower efficiency of
the brain networks in MCI patients; (3) the MST centrality measures are more sensitive
to detect subtle differences in the functional brain networks in MCI than traditional graph
theoretical metrics.

Keywords: mild cognitive impairment, magnetoencephalography, phase lag index, brain networks, minimum
spanning tree
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INTRODUCTION

Mild Cognitive Impairment
Mild cognitive impairment (MCI) is an intermediate state
between normal aging and dementia. Patients suffering from
MCI have an increased risk of developing dementia, in
particular Alzheimer’s disease (AD; Shah et al., 2000; Farias
et al., 2005). Those MCI subjects with positive biomarkers
for AD (i.e., amyloid deposition and neural injury markers
such as accumulations of intracellular tau or medial temporal
lobe atrophy [MTA]) are regarded to be at the symptomatic
pre-dementia phase of AD, and are often referred to as
“MCI due to AD” (Albert et al., 2011). The pathological
processes that these biomarkers indicate are well described
in AD (Braak and Braak, 1991) and are known to produce
synaptic disruptions. AD has been described as a “disconnection
syndrome,” not only at the cellular level, but also at the
macroscale, since the connections in the brain networks also seem
to be disrupted (Blennow et al., 1996; Selkoe, 2002; Delbeuck
et al., 2003; Arendt, 2009; Takahashi et al., 2010). In fact,
structural and functional changes have been described in MCI
subjects, suggesting that this disconnection of brain networks
already begins during the MCI-stage of AD (Pijnenburg et al.,
2004; Koenig et al., 2005; Buldú et al., 2011; Wang et al.,
2013).

Functional Connectivity
One of the main concepts used to understand how the different
brain areas interact is functional connectivity (Friston, 1994),
which reflects the statistical interdependencies between two-
time series of physiological activity. Several resting-state
electroencephalography (EEG) and magnetoencephalography
(MEG) studies have found decreases in functional connectivity,
especially in higher frequency bands (i.e., alpha and beta bands),
in MCI patients compared to healthy controls (Moretti et al.,
2008; Gómez et al., 2009; López et al., 2014b; Cuesta et al.,
2015). This change in synchronization pattern is quite similar
to that described for AD patients (Stam and van Dijk, 2002;
Jeong, 2004; Stam et al., 2006), although increased connectivity
has also been described for AD involving posterior brain
regions (Stam et al., 2006; Alonso et al., 2011). Reductions
in functional connectivity in MCI have also been observed
between regions of the default mode network (DMN), with
a parallel disruption of the anatomical connections (Garcés
et al., 2014; Pineda-Pardo et al., 2014). However, some
resting-state studies comparing different MCI groups have
also detected a specific hypersynchronization pattern in high
frequency bands (alpha and beta) in those MCI subjects
who finally developed AD (López et al., 2014a), or those
who presented abnormal concentration of phospho-tau
(p-tau) protein in the cerebrospinal fluid (CSF; Canuet
et al., 2015). In a recent multicenter study, this profile of
hypersynchronization was used to obtain a high percentage of
correct classification of MCI and healthy controls (Maestú et al.,
2015).

Brain Networks
Based on the estimated functional connectivity between time
series, a weighted network can be reconstructed using graph
theory (Bullmore and Sporns, 2009). For this purpose, brain
systems are described as sets of nodes (i.e., brain regions or
sensors) and links (i.e., functional connections between nodes).
The topology of these networks can then be characterized, for
example, providing information about the local integration of the
network (e.g., the “clustering coefficient”) as well as the global
integration (e.g., the “path length”; see Rubinov and Sporns,
2010 for a review). A small-world network has a high local
connectedness (quantified by a large clustering coefficient) and
a high global integration (quantified by a short path length) and
has been regarded as a network with an optimal topology for the
transfer of information. AD patients exhibit brain networks that
appear to have a sub-optimal topology in which the networks
have shifted toward a more random configuration. This was
mainly characterized by a loss of small-worldness (see Tijms
et al., 2013 for a review), supporting the hypothesis of the
disconnection syndrome. However, Tijms et al. (2013) also show
that the results differ drastically between studies. Only few
studies, using different approaches and modalities, have explored
the network topology in MCI, reporting a disturbed balance
between local and global integration [functional Magnetic
Resonance imaging (fMRI); Wang et al., 2013; MEG; Buldú et al.,
2011; Pineda-Pardo et al., 2014]. Methodological difficulties make
the comparison between networks of different sizes and different
edge densities challenging, if not impossible (Lee et al., 2006; van
Wijk et al., 2010; Stam, 2014; Tewarie et al., 2015). This might
lead to contradicting results that could be due to differences in
modalities (Tijms et al., 2013), but also due to methodological
biases (van Wijk et al., 2010). One solution is to reconstruct
the minimum spanning tree (MST; Stam, 2014). The MST is a
sub-graph of the complete network, which forms a backbone
of the original graph. It is uniquely defined whilst avoiding the
arbitrary choices of traditional approaches, therefore solving the
limitations of previous graph studies (van Wijk et al., 2010;
Tewarie et al., 2015). Despite its advantages and application in
other neurological disorders (Ortega et al., 2008; Fraschini et al.,
2014; Olde Dubbelink et al., 2014; Otte et al., 2015; Tewarie et al.,
2015), there is only one fMRI study and one EEG study that
has used the MST in comparing healthy elders and AD patients
(Çiftçi, 2011; Engels et al., 2015), and none that studied the MST
in patients with MCI.

For this reason, we performed an MEG study with MCIs and
healthy controls with the aim to characterize how the functional
network organization in the MCI stage differs from that of
controls. To this end, we estimated MEG resting-state functional
connectivity between cortical regions and characterized the
topology of the reconstructed MST. We expected to find subtle
differences in functional connectivity between MCI patients and
controls while the graph theoretical measures will show a clear
disrupted topological pattern in MCI. We expected that the novel
MST measures give more insight in the network changes of
MCI than the traditional network measures (normalized Cw and
normalized Lw).
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MATERIALS AND METHODS

Subjects
Magnetoencephalography recordings were obtained from 58
subjects (29 MCI patients and 29 healthy elderly subjects). The
MCI group was recruited from the Hospital Universitario
San Carlos (Madrid), and the control group from the
Seniors Center of the District of Chamartin (Madrid). All
subjects were right handed (Oldfield, 1971) and native Spanish
speakers.

All participants were screened by means of standardized
diagnostic instruments and also received an exhaustive
neuropsychological assessment. To evaluate their global
and cognitive functional status there were used: the Spanish
version of the Mini-Mental State Examination (MMSE; Lobo
et al., 1979), the Global Deterioration Scale (GDS; Reisberg
et al., 1982), the Functional Assessment Questionnaire (FAQ;
Pfeffer et al., 1982), the Geriatric Depression Scale-Short Form
(GDS-SF; Yesavage et al., 1982), the Hachinski Ischemic Score
(Rosen et al., 1980), the questionnaire for Instrumental Activities
of Daily Living (Lawton and Brody, 1969), and the Functional
Assessment Staging (FAST; Auer and Reisberg, 1997).

Additionally, all subjects underwent an extensive
neuropsychological assessment to explore their cognitive
functioning by using the following tests: direct and inverse
digit span test (DDS and IDS, Wechsler Memory Scale III,
WMS-III; Wechsler, 1997), immediate and delayed recall (IR
and DR, WMS-III; Wechsler, 1997), phonemic and semantic
fluency (PhF and SF, controlled oral word association test;
Benton and Hamsher, 1989), ideomotor praxis of Barcelona
test (IP; Peña-Casanova, 1990), Visual Object and Space
Perception Test (VOSP; Warrington and James, 1991), Boston
Naming Test (BNT; Kaplan et al., 1983), and Trail-Making
Test (TMT), parts A and B (TMT-A and TMT-B; Reitan,
1958).

The MCI diagnosis was established according to the
National Institute on Aging- Alzheimer Association (NIA-AA)
criteria (Albert et al., 2011), which includes: (i) self- or
informant-reported cognitive complaints; (ii) objective evidence
of impairment in one or more cognitive domains; (iii)
preserved independence in functional abilities; and (iv) not
demented (McKhann et al., 2011). Besides meeting the
clinical criteria, MCI participants had signs of neuronal
injury (hippocampal volume measured by magnetic resonance
imaging (MRI). So, they might be considered as “MCI
due to AD” with an intermediate likelihood (Albert et al.,
2011).

None of the participants had a history of psychiatric or
neurological disorders (other than MCI). General inclusion
criteria were: an age between 65 and 80, a modified Hachinski
score ≤ 4, a short-form Geriatric Depression Scale score ≤ 5,
and T1/T2-weighted MRI within 12 months and 2 weeks before
MEG screening without indication of infection, infarction, or
focal lesions (rated by two independent experienced radiologists;
Bai et al., 2012). Patients were off those medications that could
affect MEG activity, such as cholinesterase inhibitors, 48 h before
recordings.

Ethics Statement
Methods were carried out in accordance with the approved
guidelines. The study was approved by the Hospital Universitario
San Carlos Ethics Committee (Madrid), and all participants
signed a written informed consent prior to participation.

MEG Acquisition
Magnetoencephalography signals were measured by a 306
channel Vectorview system (Elekta Neuromag Oy) at the
Center for Biomedical Technology (Madrid, Spain), inside a
magnetically shielded room (VacuumSchmelze GmbH, Hanau,
Germany) within several days after the neuropsychological
assessment. Brain magnetic fields were recorded in the morning
during a task-free 3 min eyes-closed resting-state condition, while
subjects sat comfortably. Participants were instructed to move as
little as possible, and were monitored during the recording to
ensure that they did not fall asleep.

Sampling frequency was 1000 Hz with an online filter with
bandwidth 0.1–300 Hz. The position of the head inside the sensor
array was determined using a head-position indicator (HPI) with
four coils attached to the scalp (two on the mastoids and two on
the forehead). These four coils along with the head shape (∼500
points) of each subject (referenced to three anatomical fiducials:
nasion, and left-right preauricular points) were acquired using
a three-dimensional Fastrak Polhemus system (manufacturer:
Polhemus, Inc., USA). Vertical ocular movements were measured
by two bipolar electrodes attached above and below the left eye,
and a third one to the earlobe, for electrical grounding.

Maxfilter software (version 2.2, Elekta Neuromag Oy) was
used to remove noise from the MEG data using the temporal
extension of signal space separation (tSSS) with movement
compensation (Taulu and Simola, 2006). Flat channels, or those
that contained excessive artifacts, were manually discarded after
visual inspection of the data by one of the authors (M. E.
López) before estimation of the SSS coefficients. The tSSS filter
was subsequently used to remove noise signals that SSS failed
to discard, typically from noise sources near the head, using a
subspace correlation limit of 0.9 (Medvedovsky et al., 2009) and a
sliding window of 10 s.

MRI Acquisition
3D T1 weighted anatomical brain MRI scans were collected
with a General Electric 1.5T MRI scanner, using a high
resolution antenna and a homogenization PURE filter [Fast
Spoiled Gradient Echo (FSPGR) sequence with parameters:
TR/TE/TI= 11.2/4.2/450 ms; flip angle 12◦; 1 mm slice thickness,
a 256× 256 matrix and FOV 25 cm].

FreeSurfer software (version 5.1.0; Fischl et al., 2002) was used
to obtain the hippocampal volumes, which were normalized with
the overall intracranial volume (ICV) of each subject.

Co-registration and Beamforming
The outline of the scalp, as obtained from the subject’s
structural MRI, was used for co-registration with the MEG data
using the VUmc Amsterdam co-registration surface matching
software, resulting in an estimated co-registration accuracy of
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approximately 4 mm (Whalen et al., 2008). A single sphere fitted
to the scalp surface was used as a volume conductor model for
the beamformer analysis. An atlas-based beamformer was used to
project the MEG sensor signals to 78 cortical regions-of-interest
(ROIs) from the Automatic Anatomical Labeling (AAL) atlas (see
Supplementary Material) (Tzourio-Mazoyer et al., 2002; Gong
et al., 2009). Based on the broad-band (0.5–48 Hz) beamformer
weights, time series of neuronal activity were reconstructed for
the voxel with the maximum power within a ROI for each
frequency band separately, i.e., a virtual electrode that was
representative for that specific ROI was reconstructed. A detailed
description of this procedure is given in Hillebrand et al. (2012).

MEG Analysis
Per subject, five artifact free trials of approximately 16.384 s
(four times 4096 samples) were selected after careful visual
inspection, giving a total of 20 epochs of 4096 samples for further
analysis. Time-series of neuronal activation were computed for
the six frequency bands: delta (0.5–4 Hz), theta (4–8 Hz), lower
alpha (8–10 Hz), upper alpha (10–13 Hz), beta (13–30 Hz), and
gamma (30–48 Hz). Selected epochs were converted to ASCII-
files and imported into an in-house developed software package
BrainWave version 0.9.125, developed by one of the authors (C. J.
Stam) and available at: http://home.kpn.nl/stam7883/brainwave.
html.

Functional Connectivity
Functional connectivity was assessed with the PLI, which
quantifies the consistency of a phase relationship between two
signals while zero-lag (mod π) phase differences are ignored
(Stam et al., 2007b). Therefore, the PLI is insensitive to spurious
interactions caused by the effects of volume conduction and/or
field spread (Stam et al., 2007b; Hillebrand et al., 2012). The
PLI ranges between 0 and 1 in which 0 represents no consistent
coupling or coupling with zero-lag and one represents consistent
phase-lagged coupling. First, the instantaneous phase for each
time series is computed by taking the argument of the analytic
signal (Stam et al., 2007b) as computed using the Hilbert
transform. Second, we calculate the asymmetry of the distribution
of instantaneous phase differences between two time series:

PLI = | < sign[sin(18t)] > | (1)

where the phase difference 18t is defined in the interval [-π, π],
<> denotes the mean value, sign stands for signum function, | |
indicates the absolute value, and t corresponds to time samples 1,
. . ., Ns, where Ns is the number of samples. By calculating the PLI
values between all pairs of ROIs, we obtained a 78× 78 adjacency
matrix, which we used for the network analyses (see below).

Small-Worldness
A low characteristic path length (L) and a high clustering
coefficient (C) characterize a small-world network (Watts and
Strogatz, 1998). In an unweighted network, the C represents
the probability that two nodes are connected when they share
a neighboring node and the L represents the average of the
shortest distance between pairs of nodes, with distance defined

by the number of links between nodes. From the weighted
graph, the weighted clustering coefficient (Cw) and weighted
characteristic path length (Lw) were calculated as described in
Stam et al. (2007a). Fifty random control networks were created
by randomly shuffling the PLI values in each adjacency matrix
while keeping the matrix symmetry intact. For each ensemble
of 50 random networks, the average Cw (random) and Lw
(random) were computed. The observed network values were
divided by the average values obtained for the random networks
in order to create normalized values. The resulting normalized
clustering coefficient (normalized Cw) and normalized path
length (normalized Lw) were used for further analyses. These
measures were computed for each epoch, and then averaged over
the epochs for each subject.

Minimum Spanning Tree
We constructed the MST from the weighted adjacency matrix
containing the PLI values. The MST is a unique subgraph that
connects all nodes in the network by the strongest connections
(defined as the network links with the highest PLI values) without
forming cycles (Stam et al., 2014), and was reconstructed using
Kruskal’s algorithm (Kruskal, 1956). By using 1/PLI as input to
the algorithm, strongest connections are likely to be included
in the MST, as long as no cycles are formed. The MST was
characterized by the following measures: degree, betweenness
centrality (BC), eccentricity, degree distribution (κ), the number
of leafs, degree correlation (R), tree hierarchy and diameter. MST
measures were computed for each epoch, and then averaged over
the epochs for each subject. The degree describes how many
links each node has. BC is a measure of the importance of a
node within the network. The BC of node i is defined as the
number of shortest paths in the network that run through a
specific node, divided by the total number of shortest paths from
any node to all other nodes in the MST. In our calculations, we
used the maximum BC across all nodes as well as per node for
further testing. The eccentricity of a node is defined as the longest
distance between that node and any other node in the network.
The degree distribution is formed by the likelihood (P) that a
randomly chosen node of the network will have degree κ (the
number of connections of a specific node); it is a plot of P(κ) as a
function of κ (Stam and Reijneveld, 2007). The degree correlation
is an index of how much the degree of a node is correlated to
the degree of nodes it is connected to. The leaf number is the
number of nodes that have a degree of 1 representing the “leafs” or
“extremities” of the network. Tree hierarchy quantifies the trade-
off between large scale integration in the MST and the overload
of central nodes. The diameter represents the longest path in the
MST. For more information about these measures, we refer to
Boersma et al. (2013), Stam et al. (2014), Tewarie et al. (2015).

Statistical Analysis
Subject’s characteristics were tested using independent samples
t-tests or chi-square tests where appropriate using SPSS (20.0
for windows). For the PLI, permutation testing, based upon
t-statistics, was used for each pair of regions [among the 78
studied, (78 × 77)/2 in total], and in each frequency band, with
the aim of comparing both groups (Maris and Oostenveld, 2007).
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To this end, participants were randomly divided into two sets
with the same size as the original groups (29 vs. 29 subjects).
This procedure was repeated 2000 times (2000 permutations).
A new t-test between each pair of regions [(78 × 77)/2 couples]
in each frequency band, was then carried out using these
two newly created groups, getting a t-value for each pair of
regions and each frequency band. After sorting these 2001
t-test results [2000 corresponding to “randomly divided” groups
and another one for the original (MCI vs. Control) subject’s
distribution], only p-values within the 5% of lower values were
considered statistically significant [note that this is for each
pair of regions and each frequency band studied: hence it was
repeated ((78 × 77)/2) × (number of frequency bands) times].
These analyses were uncorrected for the number of permutations
performed and therefore serve as exploratory analyses (see
Figures 1, 2 and Tables 2, 3). Afterward, we performed an FDR
correction on the data with the goal to examine the statistical
significant results that survive a multiple comparison correction.
For the network analysis, we focused on those frequency bands in
which the connectivity analyses showed (uncorrected) significant
differences between the groups. Again, corrected and uncorrected
(exploratory) permutation testing was used to compare the

FIGURE 1 | Statistical differences between controls and MCIs in lower
alpha (upper panel) and upper alpha (lower panel) bands in PLI values
(uncorrected for multiple comparisons). When MCI group show lower
connectivity values than the control group is represented in blue: left gyrus
rectus (1) – left superior frontal gyrus (3); left superior temporal gyrus (30) – left
insula (39) for the lower alpha band; and left insula (39) – left middle temporal
gyrus (31); right gyrus rectus (40) – right olfactory cortex (41); left precuneus
(21) – right inferior temporal gyrus (71); right fusiform gyrus (67) – right
parahippocampal gyrus for the upper alpha band. On the contrary, when MCI
group exhibit higher PLI values than the control group is represented in red:
left superior frontal gyrus (dorsolateral) (7) – right superior frontal gyrus
(dorsolateral) (46); right superior frontal gyrus (medial orbital) (43) – right
precentral gyrus (53) – left postcentral gyrus (16) – left anterior cingulate and
paracingulate gyri (36) – right superior occipital gyrus (61) – right cuneus (65)
for the lower alpha band. AAL numbers appear in parentheses.

groups. All statistical analyses were performed using MATLAB
(R2015b, Mathworks).

RESULTS

Demographics
Subject characteristics are shown in Table 1. Controls and MCI
patients did not differ in age, gender, or educational level. As
expected, the scores of MMSE and two measures of episodic
memory (immediate and delayed recall) were both lower in
MCI patients compared to controls. Additionally, hippocampal
volumes were both lower in the MCI group.

Functional Connectivity
Significant differences between MCI patients and controls in PLI
using the uncorrected permutation tests were obtained in the
lower (8–10 Hz) and upper (10–13 Hz) alpha band (Figure 1). In
the lower alpha band, compared to the control group, PLI in the
MCI group was lower between left superior frontal gyrus -orbital
part- and left gyrus rectus, and between left superior temporal
gyrus and left insula (p < 0.01). Additionally, in the same
frequency band, MCI subjects showed higher PLI values than
controls between four regions, namely between right superior
frontal gyrus (medial orbital) and right precentral gyrus, right
superior frontal gyrus (dorsolateral) and left superior frontal
gyrus (dorsolateral), left anterior cingulate and paracingulate gyri
and left postcentral gyrus, and between right cuneus and right
superior occipital gyrus.

TABLE 1 | Subject’s characteristics (Control group, n = 29; MCI group,
n = 29).

Group Mean ± SD p-values

Age (years) Control 70.62 ± 3.913 0.766∗

MCI 72.55 ± 4.163

Gender (M/F) Control 10/19 ± 0.484 0.096∗∗

MCI 15/14 ± 0.509

Educational level Control 3.72 ± 1.162 0.202∗

MCI 2.68 ± 1.362

MMSE Control 29.38 ± 0.68 <0.001∗

MCI 27.21 ± 1.75

Immediate recall Control 39.14 ± 8.05 <0.001∗

MCI 18.11 ± 10.03

Delayed recall Control 24.83 ± 7.18 <0.001∗

MCI 7.59 ± 8.35

RH_ICV Control 0.0026 ± 0.0003 0.004∗

MCI 0.0021 ± 0.0006

LH_ICV Control 0.0025 ± 0.0003 0.006∗

MCI 0.0022 ± 0.0005

Mean ± standard deviation (SD) and p-values. The p-values were obtained by two-
independent samples t-test (∗) or chi-square test (∗∗) where relevant. M, male; F,
female; MMSE, Mini Mental State Examination score; RH_ICV and LH_ICV, right
and left hippocampal volume normalized with intracranial volume, respectively.
Highest education completed, using five levels: (1) Illiterate, (2) Primary studies,
(3) Elemental studies, (4) High school studies, and (5) University studies.
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FIGURE 2 | Statistical differences between the control group and the MCI group in betweenness centrality (BC) (Left) and degree (Right) in lower and
upper alpha bands (uncorrected for multiple comparisons). Blue is represented when MCIs exhibit lower BC values than the control group in: left anterior
cingulate and paracingulate gyri (36) for lower alpha band; left middle temporal gyrus (31), right fusiform gyrus (67) and right parahippocampal gyrus (74) for the upper
alpha band; and in degree values in: right olfactory cortex (41) for the lower alpha band; left middle temporal gyrus (31), right inferior frontal gyrus, orbital part (45) and
right parahippocampal gyrus (74) for the upper alpha band. Red is represented when the MCI present higher BC values in: left precentral gyrus (14), left postcentral
gyrus (16); left superior parietal gyrus (17), right middle frontal gyrus (47), right superior parietal gyrus (56), right temporal pole: superior temporal gyrus (72), right
temporal pole: middle temporal gyrus (73) and right Insula for the lower alpha band; left superior frontal gyrus, dorsolateral (7), right supramarginal gyrus (58), and
right anterior cingulate and paracingulate gyri (75) for the upper alpha band; and higher degree values in: left superior frontal gyrus, dorsolateral (7), left postcentral
gyrus (16), left Heschl gyrus (29) and right middle frontal gyrus (47) for the lower alpha band; left superior frontal gyrus, dorsolateral (7), left superior parietal gyrus
(17), right supramarginal gyrus (58) and right anterior cingulate and paracingulate gyri (75) for the upper alpha band. AAL numbers appear in parentheses.

Furthermore, in the upper alpha band, MCI subjects presented
lower PLI values than controls between four regions, namely
between right gyrus rectus and right olfactory cortex, left insula
and left middle temporal gyrus, right parahippocampal gyrus and
right fusiform gyrus, and right inferior temporal gyrus and left
precuneus.

After FDR-correction for multiple comparisons, none of these
significant differences survived.

Small-worldness
We focused the network analysis on those frequency bands in
which there were differences in connectivity, namely in lower and
upper alpha bands.

Using the uncorrected permutation tests, no differences
between controls and MCI subjects were found for normalized
Cw and normalized Lw.

Minimum Spanning Tree
We found group differences in BC and degree in lower and upper
alpha bands using the uncorrected permutation tests (see below).

Betweenness centrality results are shown in Figure 2 and
Table 2. In the lower alpha band, there were no differences
between controls and MCI patients in the maximum value of BC
globally. However, compared to the healthy controls, the MCI

group showed higher BC values in eight brain areas: the left pre-
and post-central gyri, the left and right superior parietal gyri,
the right middle frontal gyrus, the right superior and middle
temporal gyrus (temporal pole) and the right insula; and lower
values in one brain area: the left anterior cingulated/paracingulate
gyri (see Supplementary Material).

In the upper alpha band, we did not find global differences
between the groups, but there were differences in BC for
specific brain areas. Compared to controls, MCIs exhibited
higher values in three brain areas: the left superior frontal gyrus
dorsolateral (lSFGdor), the right supramarginal gyrus (rSMG),
and the right anterior cingulate/paracingulate gyri (rACG); and
lower BC values in three brain areas: the left middle temporal
gyrus (lMTG), the right fusiform gyrus (rFFG) and the right
parahippocampal gyrus (rPHG).

Finally, the MCI group showed higher MST degree values
than controls in the lower alpha band in five brain areas: the left
superior frontal gyrus, dorsolateral, the left postcentral gyrus, the
left Heschl gyrus, the right middle frontal gyrus and the right
calcarine fissure and surrounding cortex; while they exhibited
a lower degree value in one brain area: the right olfactory
cortex. In the upper alpha band, MCI subjects exhibited higher
degree values in four brain areas: the left superior frontal gyrus,
dorsolateral, the left superior parietal gyrus, the rSMG and the
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TABLE 2 | Mean ± standard deviation (SD) of the betweenness centrality (BC) in the lower and upper alpha band, p-values were obtained using
permutation testing without correction for multiple comparisons across regions.

MST BC

Name of the area Group Mean ± SD p-values Change

Lower alpha band

Left precentral gyrus (lPreCG) Control 0.0454 ± 0.0039 0.034 ↑MCI

MCI 0.0703 ± 0.0050

Left postcentral gyrus (lPoCG) Control 0.0363 ± 0.0016 0.035 ↑MCI

MCI 0.0636 ± 0.0035

Left superior parietal gyrus (lSPG) Control 0.0629 ± 0.0043 0.037 ↑MCI

MCI 0.0984 ± 0.0050

Right middle frontal gyrus (rMFG) Control 0.0266 ± 0.0013 0.041 ↑MCI

MCI 0.0595 ± 0.0043

Right superior parietal gyrus (rSPG) Control 0.2978 ± 0.0097 0.012 ↑MCI

MCI 0.3627 ± 0.0068

Right temporal pole: superior temporal gyrus (rTPOsup) Control 0.2673 ± 0.0032 0.012 ↑MCI

MCI 0.3118 ± 0.0041

Right temporal pole: middle temporal gyrus (rTPOmid) Control 0.2561 ± 0.0027 0.003 ↑MCI

MCI 0.3019 ± 0.0036

Right insula (rINS) Control 0.2644 ± 0.0020 0.032 ↑MCI

MCI 0.3079 ± 0.0067

Left anterior cingulate and paracingulate gyri (lACG) Control 0.1077 ± 0.0037 0.002 ↓MCI

MCI 0.0629 ± 0.0034

Upper alpha band

Left superior frontal gyrus, dorsolateral (lSFGdor) Control 0.0443 ± 0.0034 0.018 ↑MCI

MCI 0.0897 ± 0.0079

Right supramarginal gyrus (rSMG) Control 0.0593 ± 0.0055 0.012 ↑MCI

MCI 0.0967 ± 0.0059

Right anterior cingulate and paracingulate gyri (rACG) Control 0.0320 ± 0.0012 0.014 ↑MCI

MCI 0.0722 ± 0.0040

Left middle temporal gyrus (lMTG) Control 0.0998 ± 0.0096 0.014 ↓MCI

MCI 0.0414 ± 0.0017

Right fusiform gyrus (rFFG) Control 0.0824 ± 0.0032 0.048 ↓MCI

MCI 0.0586 ± 0.0035

Right parahippocampal gyrus (rPHG) Control 0.0904 ± 0.0044 0.004 ↓MCI

MCI 0.0539 ± 0.0057

Arrows indicate lower or higher values in the MCI group.

right anterior cingulate and paracingulate gyri; and lower degree
values in three brain areas: the lMTG, the right inferior frontal
gyrus, orbital part and the rPHG. MST degree results are shown
in Figure 2 and Table 3.

After FDR-correction for multiple comparisons, none of
these significant differences survived. Also, we did not find any
differences between the controls and the MCI group for any of
the other MST measures in these two frequency bands.

DISCUSSION

With the aim to corroborate our hypothesis about the differences
in both functional connectivity and network organization
between healthy aging and MCI, we performed a functional
connectivity (PLI) and MST analyses in resting state MEG data.
The main finding of this study was the detection of differences
in both functional connectivity and brain network topology

in a group of patients with MCI compared to controls. Note
however, that these results are exploratory and the significance
between the groups did not survive FDR correction for multiple
comparisons. The uncorrected connectivity results showed that
the MCI patients exhibited more increases than decreases in PLI
values in the lower alpha band, and decreases in the upper alpha
band. As differences in connectivity between both groups were
found in the alpha band, we examined differences of network’s
topography in this frequency band by using concepts from
graph theory. We did not find any group difference in weighted
clustering and path length, but regionally we obtained higher BC
and degree values when examining the MST in the MCI group in
lower alpha band, and both increases and decreases in the upper
alpha band.

Mild cognitive impairment patients demonstrated lower PLI
values in the lower alpha band that affected frontal and temporal
brain areas within the left hemisphere. Using EEG, an overall
decrease in the lower alpha band has been observed in AD
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TABLE 3 | Mean ± standard deviation (SD) and p-values after a t-test without correction for multiple comparisons for degree values in the control group
compared with the MCI group in lower and upper alpha bands.

MST DEGREE

Name of the area Group Mean ± SD p-values Change

Lower alpha band

Left superior frontal gyrus, dorsolateral (lSFGdor) Control 0.0221 ± 8.3 × 10−5 0.007 ↑MCI

MCI 0.0272 ± 8.5 × 10−5

Left postcentral gyrus (lPoCG) Control 0.0204 ± 3.7 × 10−5 0.010 ↑MCI

MCI 0.0247 ± 4.8 × 10−5

Left Heschl gyrus (lHES) Control 0.0244 ± 8.2 × 10−5 0.038 ↑MCI

MCI 0.0302 ± 1.2 × 10−4

Right middle frontal gyrus (rMFG) Control 0.0186 ± 3.3 × 10−5 0.008 ↑MCI

MCI 0.0238 ± 7.1 × 10−5

Right calcarine fissure and surrounding cortex (rCAL) Control 0.2559 ± 0.0041 0.022 ↑MCI

MCI 0.2966 ± 0.0052

Right olfactory cortex (rOLF) Control 0.0280 ± 8.2 × 10−5 0.044 ↓MCI

MCI 0.0230 ± 5.3 × 10−5

Upper alpha band

Left superior frontal gyrus, dorsolateral (lSFGdor) Control 0.0224 ± 9.9 × 10−5 0.035 ↑MCI

MCI 0.0278 ± 1.3 × 10−4

Left superior parietal gyrus (lSPG) Control 0.0242 ± 9.2 × 10−5 0.021 ↑MCI

MCI 0. 0320 ± 2.2 × 10−4

Right supramarginal gyrus (rSMG) Control 0.0243 ± 1.0 × 10−4 0.049 ↑MCI

MCI 0.0291 ± 9.7 × 10−5

Right anterior cingulate and paracingulate gyri (rACG) Control 0.0196 ± 1.2 × 10−5 0.043 ↑MCI

MCI 0.0241 ± 7.5 × 10−5

Left middle temporal gyrus (lMTG) Control 0.0297 ± 2 × 10−4 0.030 ↓MCI

MCI 0.0220 ± 5.6 × 10−5

Right inferior frontal gyrus, orbital part (rORBinf) Control 0.0266 ± 8.5 × 10−5 0.023 ↓MCI

MCI 0.0213 ± 1.7 × 10−5

Right parahippocampal gyrus (rPHG) Control 0.0255 ± 6.5 × 10−5 0.008 ↓MCI

MCI 0.0211 ± 9 × 10−5

Arrows indicate lower and higher values in the MCI group.

patients (Stam et al., 2006, 2009), and also in MCI patients
(Babiloni et al., 2006). In a recent study performed with EEG data
in AD (Engels et al., 2015), the decrease of connectivity in the
lower alpha band was related to the severity of the disease, mainly
over posterior areas. However, in the present study, MCI patients
also showed an increase in connectivity between intra- and inter-
hemispheric frontal areas, and in right posterior regions. This
intra- and inter-hemispheric increase in connectivity has been
usually described in the MCI population while performing a
cognitive task. Pijnenburg et al. (2004) found an increase in
lower alpha band in MCIs compared to subjects with subjective
memory complaints (SMC) during a visual working memory
(WM) task. Jiang (2005) and Zheng et al. (2007) obtained higher
coherence values in both lower and upper alpha bands during an
arithmetic WM paradigm in MCIs compared to healthy controls.
In addition, an MEG study performed in progressive MCI
patients (pMCI) found a higher synchronization in those patients
who finally developed AD, compared with those who remained
stable over time (stable MCI, sMCI), in lower alpha and upper
alpha bands while performing a memory task (Bajo et al., 2012).
In the same vein, a recent resting-state MEG study which did not

divide the alpha band into two sub-bands, found that patients
with MCI that eventually converted to AD, exhibited a higher
connectivity in this frequency range than those MCI patients that
remained stable over time, between the right anterior cingulate
and temporo-occipital brain regions (López et al., 2014a). Our
findings add to the current knowledge that results of functional
connectivity in MCI patients are dependent on the region and
on the frequency band. However, there is no consistent increase
or decrease in connectivity in patients with MCI compared to
controls during resting state. Therefore, we conclude that, the
increases and decreases of functional connections observed in
the MCI population in the lower alpha band may reflect the
aberrant functioning until the breakdown of the system, which
characterizes AD.

The increase in PLI values found in the lower alpha band
in patients with MCI has been commonly considered as a
compensatory mechanism. This interpretation was related to
the attempt of the brain to overcome the damage caused by
the disease in the networks involved in cognitive functioning
(see Grady, 2012; Scheller et al., 2014 for reviews). In the
case of healthy controls, this mechanism would not be needed
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while AD patients would not compensate any more due to the
severity of the disease. Nonetheless, recent studies postulated
that instead of being a compensatory mechanism, it would be a
pathological characteristic of MCI patients (de Haan et al., 2012;
López et al., 2014a,b). During the course of the disease, there
is a loss of GABAergic synapsis caused by the accumulation of
β-amyloid (Aβ) plaques (Garcia-Marin et al., 2009), producing
an inhibitory deficit. The loss of inhibitory interneurons in the
cortex would induce increasing brain activity/connectivity in
MCI patients, leading to an aberrant functioning (disinhibition)
until the breakdown of the system, which is what occurs in AD.

In agreement with what has previously been described in
some AD studies (Stam et al., 2002; Pijnenburg et al., 2004), we
obtained lower connectivity values in the MCI group in the upper
alpha band mainly concerning temporal and parietal brain areas.
As far as we know, no studies have been performed describing
this finding in MCI. However, considering the alpha band as one
(normally from 8 to 13 Hz), some authors have revealed this
decrease in connectivity in MCI patients compared to controls
(Koenig et al., 2005; Garcés et al., 2014; Cuesta et al., 2015).
Our results point out that networks that are usually implicated
in episodic memory, olfactory function, visuospatial processing
or executive functioning (previously described in the Results
section) are already impaired in MCI patients. These results
may indicate that in MCI the disconnection that characterizes
AD would have already started, probably contributing to the
cognitive deficits observed in this population. According to the
increases and decreases obtained in PLI values, which have
been also described in previous studies, it might be considered
that during the symptomatic pre-dementia phase of AD, two
mechanisms could be coexisting in MCI: disconnection and
aberrant functioning.

To elucidate about the meaning of this duality of hyper
and hypo connectivity we decided to evaluate the functional
network organization using the network theory approach. We
started with two of the most basic network parameters: the
characteristic path length and the clustering coefficient. As firstly
described by Watts and Strogatz (1998), these two measures
together form the concept of the small-world network topology
whereas the network architecture combines an efficient balance
between local (short range) and global (long range) connectivity.
This small-world configuration is thought to be better suited
for information transfer and thus presumably for cognitive
processing rather than the topology of random or regular
networks (Bassett and Bullmore, 2006; Stam et al., 2007a). We
did not find differences in terms of clustering and path length
in our MCI cohort. In other studies, however, an increased
path length and decreased clustering coefficient in MCI was
found (Xiang et al., 2013; Zhang et al., 2015) and therefore
MCI mimics results of AD studies (Stam et al., 2007a). MCI
has been referred to as an intermediate state between healthy
aging and AD in terms of their network topology (Seo et al.,
2013). Our cohort did not differ in terms of the small-world
parameters clustering coefficient and characteristic path length
and therefore the exploration of different network measures
is interesting since they may be more sensitive for the subtle
changes in MCI.

Studying brain networks using measures like the clustering
coefficient and the characteristic path length give useful insights
within datasets of similar network sizes and link densities, but
cause a comparison problem when these requirements are not
met. This problem is thoroughly explained in a paper by van
Wijk et al. (2010). It stresses the comparison problem between
networks, not only because of the differences in network sizes
(number of nodes) and degree but also due to arbitrary choices
that have to be made (i.e., the threshold for the link density within
a weighted network). This was the main reason for the use of the
MST (Stam, 2014). Using MST, no arbitrary choices have to be
made in case of unique functional connectivity values: it does
not require setting a threshold and the number of nodes and
links is fixed. It can be regarded as the backbone of a network
(Çiftçi, 2011; Yu et al., 2015). In the present study, we found
differences in two measures of centrality when comparing the
MST of MCI patients and healthy controls. The MST is regarded
as the backbone of a functional network since it merely involves
the strongest links of the network (Stam, 2014). The MST-BC
as a measure for centrality has previously shown a shifted hub
location in patients with AD in high frequency bands (Engels
et al., 2015). In our study, we found increased BC values in
MCI patients as well as some decreases in lower and upper
alpha bands. The degree, also a measure of centrality, was also
found to be reduced mainly in the temporal regions. As with the
functional connectivity measures, we thus found a dual pattern in
the MCI population. These findings may suggest that the loss of
BC/degree, mainly in temporal areas, may reflect that these areas
are weakened in the brain network while frontal and parietal
compensate for this malfunction. It also may reflect that some
brain areas lose control within the network while others are
functioning in a more aberrant way. In conclusion, although after
correcting for multiple comparisons the significant differences in
MST disappeared, this study showed that the classical network
measures (normalized Lw and Cw) did not distinguish between
MCIs and controls during resting state, but MST analysis may be
a new and useful procedure to characterize and differentiate both
populations. Although the reduction in centrality in temporal
regions was not reported in the one study evaluating the MST BC
in AD (Engels et al., 2015), this finding can be understood in the
light of the disease pathology, which involves the temporal lobe.
The differences between these two studies may be explained by
differences in age difference (patients in our cohort were older)
and therefore parietal pathology may be relatively less present
(Adriaanse et al., 2012).

This study has a number of strengths and limitations. A strong
point is that we used the PLI as a measure of functional
connectivity since it reduces the bias due to volume conduction
and/or field spread (Stam et al., 2007b). Another strong point is
the use of conventional network measures (i.e., the normalized
clustering coefficient and the characteristic path length), which
are well described in literature, and MST parameters, that offer
an arbitrary-free method for comparing networks with different
properties. Our source-space analyses included 78 regions of
interest according to the AAL atlas. This is a commonly used
atlas, but our approach could be applied to other atlases as well.
Besides these advantages, this study has several limitations as
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well which should be taken into account. Our results may have
been influenced by methodological choices such as the selection
of artifact-free epochs by one of the authors (M. M. Engels).
Epochs with signs of artifacts, drowsiness were discarded. One
of the other authors (M. E. López) checked the selected epochs
and therefore, we expect that the epochs we have selected for our
final analyses are artifact-free. An important consideration for
this approach was that we did not want to apply data cleaning
approaches (e.g., Delorme et al., 2006) that could modify the
connectivity structure of the data, and thereby bias subsequent
functional connectivity and network analyses. Consistent with
our previous work, we therefore opted to rely on thorough visual
inspection for the selection of artifact free data segments.

Finally, it should be pointed that our MCIs were recruited
from a clinical context. Several studies have reported that it is
easier to find more cases of MCIs within a clinical population
and also that the rate of conversion to AD per year is higher
in a clinical setting compared to the general population (Farias
et al., 2005; Jelic et al., 2006). Although NIA-AA clinical criteria
is standard for all subjects (Albert et al., 2011), our findings
may be more representative of the clinical than the community
population.

Please note that the significant differences described in this
study were not corrected for multiple testing. The FDR-corrected
results did not show any significant group differences. Therefore,
these results are presented as an exploratory study that can be
used as a guide for regions and measures that show a trend toward
significance between MCI and controls.

Our results revealed differences between MCI patients and
controls. These patients did not have dementia yet, although they
have an increased risk of developing it. Although these patients
only have minor cognitive deficits, the functional connectivity
and network differences are striking, suggesting a possible

causative role. Therefore, measures of functional connectivity,
and the network parameters derived from these inter-areal
functional connections, may help to characterize the very early
stages of dementia.
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