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An integrated multimodal model of alcohol use
disorder generated by data-driven causal discovery
analysis
Eric Rawls 1✉, Erich Kummerfeld2 & Anna Zilverstand1

Alcohol use disorder (AUD) has high prevalence and adverse societal impacts, but our

understanding of the factors driving AUD is hampered by a lack of studies that describe the

complex neurobehavioral mechanisms driving AUD. We analyzed causal pathways to AUD

severity using Causal Discovery Analysis (CDA) with data from the Human Connectome

Project (HCP; n= 926 [54% female], 22% AUD [37% female]). We applied exploratory

factor analysis to parse the wide HCP phenotypic space (100 measures) into 18 underlying

domains, and we assessed functional connectivity within 12 resting-state brain networks. We

then employed data-driven CDA to generate a causal model relating phenotypic factors, fMRI

network connectivity, and AUD symptom severity, which highlighted a limited set of causes

of AUD. The model proposed a hierarchy with causal influence propagating from brain

connectivity to cognition (fluid/crystalized cognition, language/math ability, & working

memory) to social (agreeableness/social support) to affective/psychiatric function (negative

affect, low conscientiousness/attention, externalizing symptoms) and ultimately AUD

severity. Our data-driven model confirmed hypothesized influences of cognitive and affective

factors on AUD, while underscoring that addiction models need to be expanded to highlight

the importance of social factors, amongst others.
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Lifetime incidence of alcohol use disorder (AUD) is as high as
29–30%1,2, with alcohol use being a leading cause of death [3
million worldwide in 2016 or 5.3% of all deaths worldwide3].

Success rates for quitting drinking in AUD are low [30–40%4,5],
which has been attributed to the multi-causality of the mechan-
isms underlying AUD and the need for more targeted
treatments6. However, the development of targeted interventions
for AUD is hampered by a lack of studies investigating multi-
factorial mechanisms driving AUD.

Early theories of addiction maintenance proposed single key
mechanisms, such as allostasis7, or hedonic signaling8. These
early theories have given way to multifactorial models of addic-
tion, such as the “three-stage cycle” model9, which proposes that
negative affect, incentive salience, and executive function are
functional domains involved in addiction. There is a great deal of
empirical support for the involvement of these three domains.
The three domains have been mapped onto corresponding per-
sonality profiles that confer addiction risk10 and have been used
to develop a set of proposed neuroclinical assessment tools11,12

that were successfully applied to AUD13. However, a three-
domain model is far from encompassing the entire phenotypic
space that contributes to AUD. The NIMH RDoC14,15 proposed
23 functional domains underlying psychopathology, recognizing
a need for multivariate models that incorporate increasing
knowledge of the many functional domains contributing to psy-
chiatric dysfunction. A recent consensus paper on a multivariate
assessment approach for addiction identified another seven
“addiction-specific” domains in addition to the RDoC domains16.
Critically, in all of these approaches, the proposed functional
domains were identified by expert consensus and therefore might
not exactly match the true underlying domains that exist in the
data. For example, in an exploratory analysis of a large public
dataset, Van Dam et al.17 derived seven phenotypic factors that
only partially mapped onto RDoC domains, but predicted psy-
chiatric distress. A more recent addiction theory18 identified ten
domains contributing to maladaptive decision-making in addic-
tion. A systematic review of neuroimaging studies in addicted
populations implicated the involvement of at least six different
neurobiological mechanisms in AUD19. These recent develop-
ments underscore the need for data-driven, multivariate analysis
methods capable of fully examining and describing the large
phenotypic space underlying addiction, if we are to understand
the central question of how multi-causal factors underlie the
maintenance and escalation of alcohol use.

In the current study, we leveraged the deep behavioral and
psychiatric phenotyping20 and high-resolution neuroimaging
data21 from the Human Connectome Project (HCP)22. Using
data from nearly 1000 participants, we first derived a set of data-
driven domains underlying the full range of phenotypic func-
tioning measured in the HCP dataset. We extracted whole-brain
connectivity metrics from 12 data-derived resting-state functional
magnetic resonance imaging (fMRI) networks23 to measure
individual neurobiological differences. To examine the relation-
ships between fMRI network connectivity, phenotypic domains,
and AUD symptom severity, we applied Causal Discovery Ana-
lysis (CDA), a class of machine learning techniques that learns
causal models from input data. These methods search the enor-
mous set of possible structural models and return a graph
representing estimated causal relationships in the data. The par-
ticular method we applied, Greedy Fast Causal Inference
(GFCI)24, uses conditional dependence relations to discover when
unmeasured variables confound the relationships between mea-
sured variables, making this method particularly powerful for
real-world data sets that cannot possibly capture every variable of
interest. By (1) deriving data-driven domains encompassing the
whole phenotypic space measured in HCP, (2) extracting whole-

brain network connectivity profiles, and (3) applying CDA to the
resulting phenotypic and neurobiological domains, we generated
an integrated, multimodal causal model of neurobehavioral fac-
tors contributing to AUD symptom severity.

Results
Exploratory factor analysis: decomposing the phenotypic space
measured in the HCP. To reduce the phenotypic space measured
in the HCP to a set of underlying domains, we conducted an
exploratory factor analysis (EFA) in the entire HCP sample that
had complete phenotypic data (n= 933, 53.5% females). Based on
the results of Monte Carlo simulation we extracted 18 factors (p <
0.05) from the 100-variable phenotypic space measured in the
HCP dataset, which collectively accounted for 47% of common
variance. Results of the Monte Carlo permutation test for
eigenvalue significance are presented in Supplementary Fig. S1
(eigenvalue significance), Supplementary Data 1 (observed, ran-
dom, and resampled eigenvalues), and Supplementary Table S1
(percent variance explained per factor, eigenvalues, and cumu-
lative variance). EFA model fit indices indicated good factor
separation (RMSEA= 0.03, Tucker–Lewis Index= 0.86).

Factors, in order of common variance accounted for, were
associated with: (1) Somaticism (high DSM/ASR somaticism,
high DSM depression, low PSQI sleep quality), (2) Fluid
Cognition (high Raven’s progressive matrices performance), (3)
Internalizing (high DSM/ASR anxiety, high DSM depression,
high NEO-FFI neuroticism), (4) Gambling Task Reaction Time
(slow gambling task reaction time), (5) Conscientiousness/
Attention (low DSM attention deficit hyperactivity disorder,
low ASR attention problems, and high NEO-FFI conscientious-
ness), (6) Visuospatial Processing (high Penn short line
orientation task performance), (7) Social Support (high NIH
toolbox friendship, low loneliness, low perceived rejection and
perceived hostility, high emotional and instrumental support), (8)
Processing Speed (high NIH Toolbox Flanker Total Score, fast
fMRI emotion task RT), (9) Externalizing (high ASR aggression
and rule-breaking, high DSM antisocial, high NIH toolbox
aggression), (10) Social Withdrawal (high ASR withdrawal, high
DSM avoidance, low NEO-FFI extraversion), (11) Language Task
Performance (high fMRI language task story average difficulty,
and high math problem accuracy), (12) Relational Task Reaction
Time (slow fMRI relational task reaction time [RT]), (13) Delay
Discounting (high delay discounting AUC for $200 and $40k),
(14) Working memory (fMRI N-Back task fast reaction time [RT]
and high accuracy), (15) Negative Affect (high NIH toolbox
anger, fear, sadness and stress), (16) Crystalized IQ (high NIH
toolbox English reading and picture vocabulary, high education,
and high NEO-FFI openness), (17) Positive Affect (high NIH
toolbox life satisfaction, positive affect, and meaning and purpose,
and NEO-FFI extraversion), and (18) Agreeableness (low
aggression and high NEO-FFI agreeableness). Factor loadings
for each item are available in Supplementary Data 2 (raw
variables) and Supplementary Data 3 (standardized variables),
and the factor correlation structure is available in Supplementary
Data 4.

Causal discovery of the neurobehavioral underpinnings of
AUD
Model fit and quality metrics. To build a multidomain model of
the causal neurobehavioral underpinnings of AUD, we used a
recently developed causal discovery machine learning algorithm
called GFCI24, which is particularly powerful for use with
observational data because it has the capacity to determine when
causal relationships are impacted by unobserved confounding
variables. We submitted the 18 factors extracted by EFA,
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within-network brain resting-state fMRI connectivity from 12
previously defined resting-state networks23, and a measure of AUD
severity (AUD symptom count) to a unified causal modeling fra-
mework using GFCI. The output of GFCI is presented in Fig. 1.

We extracted measures of model fit and effect sizes for causal
relationships using structural equation modeling (SEM). The
SEM fit to this model indicated a good fit, RMSEA= 0.06,
Tucker-Lewis Index= 0.91, and every edge in the causal model
was significant in the corresponding SEM (p < 0.001). Recovered
edge weights from SEM were presented overlaid on the GFCI
graph. Stability testing (jackknife analysis) demonstrated the high

stability of the model (Supplementary Fig. S2 and Supplementary
Data 5). Furthermore, the model was highly replicable when
using a separately defined brain network parcellation (RMSEA=
0.06, Tucker–Lewis Index= 0.87, every edge p < 0.001) (Supple-
mentary Fig. S3). As such, the results described here do not
appear to depend on the specific parcellation used to measure
fMRI resting-state network connectivity.

Causal model results interpretation. First, we found that brain
network connectivity measures and phenotypic factors largely
separated into two interconnected separate clusters. The brain
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Fig. 1 Causal discovery of the neurobehavioral underpinnings of alcohol use disorder. Causal discovery analysis of the neurobehavioral determinants of
AUD symptom severity in the HCP dataset was done using Greedy Fast Causal Inference (GFCI). GFCI returns a partial ancestral graph (PAG) depicting
causal relationships between a set of variables, while assessing for unmeasured third variables in relationships (confounders). Standardized edge weights
recovered via structural equation modeling (SEM) are displayed in text next to each edge in the graph. The overall SEM fit was good, RMSEA= 0.06,
Tucker-Lewis Index= 0.91.
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network subgraph indicated several salient points. We found that
high connectivity within the ventral attention/language network
during rest caused high connectivity within default mode (DMN),
cingulo-opercular, and multimodal sensory association networks
—networks that play a central role in self-reflective brain pro-
cesses. We also found effects indicating causal influences of
cingulo-opercular connectivity on attentional processing (cin-
gulo-opercular→ dorsal attention). Finally, we found converging
causal influences onto the frontoparietal network (cingulo-oper-
cular/posterior multimodal→ frontoparietal, dorsal attention→
frontoparietal).

Brain connectivity intersected with behavioral phenotypic
variables in a link between high frontoparietal connectivity and
high Fluid Cognition. From this point, causal influences
propagated from Fluid Cognition to Visuospatial Processing
and Crystalized IQ, replicating a well-studied effect that
individuals high in fluid cognitive ability will also be high in
crystalized intelligence25,26. From there causal influences pro-
ceeded to more specific cognitive measures, including Working
Memory, Language Task Performance (verbal and math ability),
and Delay Discounting. We found a direct link between
Crystalized IQ and Delay Discounting, such that individuals
higher in Crystalized IQ also exhibited lower (less impulsive)
discounting rates. These cognitive measures were then in turn
causally linked to affective, social, and psychiatric factors. High
Language Task (verbal and math) performance and less impulsive
Delay Discounting caused Agreeableness. Low Working Memory
performance, and low Agreeableness caused lowered Social
Support, and decreased Social Support contributed to increased
Negative Affect, increased Social Withdrawal, and decreased
Positive Affect. High Negative Affect in turn contributed to
higher Internalizing symptoms, and lower Conscientiousness/
Attention. Low Conscientiousness/Attention, and low Agreeable-
ness caused high Externalizing psychopathology, while high
Externalizing psychopathology directly caused increased AUD
symptom severity.

Previous hypotheses have particularly focused on the influ-
ences of negative affect, incentive salience, and executive function
in AUD. Our results support a causal role for cognitive and
affective influences on AUD, while expanding our understanding
of the complex multifactorial space contributing to AUD.

Discussion
Early addiction models posited that addiction was due to single
key mechanisms7,8, but modern addiction models have begun
to emphasize the multifactorial mechanisms underlying
addiction9,11,16,18,19. In this study, we used a data-driven
approach to characterize phenotypic domains in a large com-
munity sample, and examined whole-brain network connectivity
at a large scale using a data-driven network analysis and
parcellation23. We then modeled large-scale brain and behavioral
influences on AUD symptom severity using CDA. Our results
shed light on the relationship between brain network connectivity
and phenotypic domains in general, as well as providing specific
information on how brain and behavioral factors contribute to
the severity of AUD, and which could be targeted in treatment.

Our analysis significantly expands the multifactorial space of
current addiction models. Our factor analysis uncovered a variety
of factors that map relatively well onto domains elaborated in
RDoC (Table 1). For example, we found factors that mapped well
onto aspects of the RDoC Cognitive Systems domain, the RDoC
Negative Valence Systems domain, and the RDoC Social domain.
To assist in interpreting the large-scale domains that our data-
driven factors mapped onto, we grouped factors based on their
correlations. Interestingly, we found that the Conscientiousness/

Attention and the Social Withdrawal factors correlated with other
factors in the Negative Valence Systems domain, rather than the
RDoC-assigned grouping of these factors (Cognitive Systems:
Attention and Social Systems: Affiliation & Attachment, respec-
tively). A previous review found that inattention and anxiety are
tightly linked27, but our results provide evidence of the direct link
between inattention and negative affect. We also found that the
Delay Discounting factor, while considered part of the RDoC
Positive Valence System: Reward Valuation subconstruct28, cor-
related instead with Cognitive Systems factors, suggesting delay
discounting is more related to Cognitive Control/Impulsivity
domains than to Reward Valuation29–31.

Here we summarize several key points from our mapping of
causal influences on AUD symptom severity onto the RDoC
framework. First, our analysis uncovered strong evidence for the
direct causal effect of the Negative Valence domain in AUD. This
specifically included a causal influence of the Negative Affect
factor on AUD, mediated through Conscientiousness/Attention
(which correlated with other Negative Valence Systems factors).
While many neurobiological models of addiction agree on the
importance of negative affect in AUD9,19, this is not unanimously
agreed upon by experts in the addiction sciences16. The presented
empirical data hence provides important empirical evidence
implicating the broader Negative Affect Domain (as defined in
RDoC) as an important treatment target in AUD.

Second, our analysis uncovered strong evidence for a mediat-
ing/buffering role of the Social Systems domain in AUD. Low
Social Support and low Agreeableness were indirect causes of
AUD severity and fully mediated the effect of cognition on the
negative valence domain, providing strong empirical evidence
that addiction models should incorporate measures of social
function32,33. Epidemiological research has established a solid
link between social affiliation and drug addiction34, and increased
social affiliation is associated with decreased risk of relapse in
drug users who are seeking treatment35. Despite the considerable
evidence research has uncovered for the importance of social
affiliation as a protective factor in addiction36, current neuro-
biological models of addiction generally fail to consider social
factors32 and their close relationship to cognitive/affective factors.

We generally found weak evidence for the involvement of the
Positive Valence Systems domain in this analysis, although this is
likely due to a limitation of the dataset employed. Positive
Valence Systems subdomains, including reward-based domains
that are particularly important in addiction16 are relatively
neglected in the HCP dataset37. We did find a causal influence of
Delay Discounting on AUD severity, but as noted previously the
Delay Discounting factor correlated with other Cognitive factors,
suggesting that Delay Discounting (as measured in the HCP
study) might be related to Cognitive Control/Impulsivity more so
than Reward Valuation29–31.

Finally, our analysis provides strong evidence that prefrontal
cortex (PFC) brain networks, and associated cognitive factors, are
situated at the top of the causal hierarchy of influences on AUD
severity. The role of PFC and associated high-level cognitive
factors in addiction is often referenced and is a part of major
current theories of addiction19,38, but our results are among the
first to empirically demonstrate this hierarchical influence on
AUD. Importantly, our causal model indicates that cognitive
influences on AUD severity may extend far beyond the traditional
consensus that inhibitory control is the most important cognitive
influence on addiction16,38,39, as we also highlighted influences of
fluid and Crystallized IQ, working memory, and language/math
ability on AUD.

Our results also shed light on theorized externalizing and
internalizing pathways to AUD. Previous research has shown that
externalizing symptomatology predicts AUD in young adult
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samples40. Our data-driven causal model revealed that externa-
lizing fully mediated the impact of all other (measured) causes of
AUD; that is, AUD is unrelated to other phenotypic or brain
network factors when externalizing is controlled for. Note that
our externalizing factor consisted of ASR rule-breaking, aggres-
sion, and antisocial scales, and NIH toolbox aggression. The ASR
rule-breaking scale contains an item that assesses whether a
subject “gets drunk,” but this does not appear to have influenced
the current analysis. First, this is only one out of 14 items on the
rule-breaking scale (and 40 items in total that contributed to the
Externalizing factor). Second, all four scales that formed the
Externalizing factor independently correlated with AUD symp-
tom severity (all p < 0.001), such that each individual aspect of
Externalizing appears to be related to AUD severity. Overall the
model hence supports that externalizing symptoms in general
mediate the causal influence of other factors on AUD.

Research has also focused on the high coincidence of AUD and
internalizing disorders41–43. Previous causal modeling research
found a causal path from internalizing disorder to drinking
behavior in AUD (mediated through drinking-to-cope)44. The
current model contains a confounded relationship between
Internalizing and Conscientiousness/Attention, indicating an
inability of the model to determine the relationship between these
two factors, possibly due to underlying constructs (e.g. drinking
motives) that were not captured in this dataset. Therefore, it
remains to be further described by future research if negative
affect is a common underlying cause of internalizing and AUD
symptoms41, or if there is an independent causal influence of
internalizing psychopathology on AUD symptoms. It is possible
that this relationship could be better examined through a long-
itudinal study, as pathodevelopmental perspectives on AUD have
proposed that early stages of addiction are characterized by low
levels of internalizing, but later stages of addiction are char-
acterized by increasing levels of internalizing41.

Interestingly, our results suggest an important role of fluid
cognition in AUD, but this is seldom addressed in current neu-
robiological models of addiction. However, executive function is
central to neurobiological models of addiction9,19,38,39. Fluid
cognition (here, measured through performance on an abbre-
viated form of Raven’s progressive matrices)45, or a person’s
ability to reason and think abstractly and flexibly, has an intuitive
relationship with the concept of executive function. Authors have
often considered working memory to be either indicative of
executive function46, or of fluid cognition47, and executive
function and fluid cognition are similarly impacted by brain
lesions48. Our results generate the hypothesis that fluid cognition
and Crystalized IQ, including problem-solving and abstract rea-
soning, lie at the beginning of a causal hierarchy eventually
influencing AUD severity. This fits previous empirical evidence
demonstrating that AUD is associated with deficits attributed to
various fluid cognitive abilities or executive function such as
working memory49,50 and planning and goal maintenance51, but
expands on this by indicating that these factors have a causal
influence on AUD symptom severity. Previous research has also
demonstrated that high-level cognition predicts initiation of
substance use in adolescence52, lifetime drug use and abuse53, and
addiction treatment outcomes54. Our model thus adds to the
growing body of empirical evidence that proposes a causal role of
cognition as a primary resilience factor and potential treatment
target in AUD.

Our results also provide critical empirical evidence for the role
of hierarchical brain network interactions in AUD. We found a
direct brain-phenotype link from frontoparietal (executive) net-
work connectivity to fluid cognition, corroborating previous
evidence of this link in healthy populations55–59. In addiction,
frontoparietal network dysfunction has been implicated in
impaired inhibitory control19,60,61 and self-regulation27,61. Indi-
viduals with AUD show decreased recruitment of frontoparietal

Table 1 Discovered factors (EFA) using 100 phenotypic measures.

Domains Factors grouped according to factor correlationsa RDoC subdomainsb

Negative Valence Externalizing (high ASR aggression and rule-breaking, high DSM antisocial, high NIH
aggression)

Frustrative Non-reward

Conscientiousness/Attention (low DSM ADHD, low ASR attention problems, and high NEO-
FFI conscientiousness)

Attentionc

Somaticism (high DSM/ASR somaticism, high DSM depression, low PSQI sleep quality) Sustained threat
Internalizing (high DSM/ASR anxiety, high DSM depression, high NEO-FFI neuroticism) Potential threat, Sustained threat
Negative Affect (high NIH anger, fear, sadness and stress) Acute threat, loss, sustained threat
Social Withdrawal (high ASR withdrawal, high DSM avoidance, low NEO-FFI extraversion) Affiliation & Attachmentc

Cognition Visuospatial Processing (high Penn short line orientation task performance) Visual
Delay Discounting (high delay discounting AUC for $200 and $40k) Reward valuationc

Language Task Performance (high fMRI language task story average difficulty, and high math
problem accuracy)

Language behavior

Crystalized IQ (high NIH English reading and picture vocabulary, high education, and high
NEO-FFI openness)

Declarative memory

Fluid Cognition (high Raven’s progressive matrices performance) Working memory
Gambling Task Reaction Time (slow gambling task reaction time)
Working memory (fMRI N-Back task fast reaction time (RT) and high accuracy, fast Penn
word memory RT)

Declarative/working memory

Processing speed (high NIH flanker total score, fast fMRI emotion task RT)
Relational Task Reaction Time (slow fMRI relational task RT)

Social Social Support (high NIH friendship, low loneliness, low perceived rejection and perceived
hostility, high emotional and instrumental support)

Affiliation & Attachment

Positive Affect (high NIH life satisfaction, positive affect, and meaning and purpose, and NEO-
FFI extraversion)

Perception and Self

Agreeableness (low aggression and high NEO-FFI agreeableness) Affiliation & Attachment

aFactors are grouped according to correlations between the factors.
bThe right column indicates the RDoC domain each factor most closely approximated.
cFactors whose correlation structure did not match the RDoC domain assignment for that factor (n= 3) are displayed in italics.
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network during social–emotional processing62,63, decision-
making64, and cognitive control65, as well as decreased fronto-
parietal connectivity during rest66. Frontoparietal disengagement
during social–emotional processing predicts relapse in AUD67,
and decreased frontoparietal activation during inhibitory control
predicts later drinking in adolescents68,69. Our results indicate
that causal influences of frontoparietal network connectivity on
AUD are mediated through deficits in overall cognitive
ability and its downstream effects on the broader Negative
Affect domain. A recent systematic review70 also showed that
targeting dlPFC (part of the frontoparietal network)23 can
improve cognitive deficits in addiction, including executive
functions. This is particularly relevant, as our data-driven model
also indicates that neuromodulation of frontoparietal network
could improve executive functioning, with downstream effects on
AUD severity.

We also found direct effects of cingulo-opercular and dorsal
attention network connectivity onto the frontoparietal network.
The cingulo-opercular network reacts to salient stimuli regardless
of positive/negative valence71,72, while the dorsal attention net-
work supports the external focusing of attention73 and encodes
top-down control and working memory load74. Individuals with
AUD also show decreased cingulo-opercular activation during
social–emotional processing62,63, cognitive control65,75,76, and
decision-making64. Our results suggest that dysfunctional con-
nectivity in salience and attentional networks can contribute to
cognitive dysfunction in AUD, with these effects being mediated
through executive network connectivity. The presented causal
model hence provides direct evidence for brain-directed treat-
ment approaches targeted at the frontoparietal network, such as
cognition-enhancing therapy61,77,78, pharmacological interven-
tions (cognitive enhancers)77 or neuromodulation treatment (e.g.,
by external devices)70,79 or neurofeedback interventions27.

A key result generated from our CDA is the role of ventral
attention/language network connectivity as a central “hub” in the
brain during resting-state. The ventral attention/language net-
work has been characterized in many brain network
partitions80–82, and while it historically has been implicated in
language processing23, more recent research has described a role
in orienting attention to unexpected events83,84. Ventral atten-
tion/language network connectivity caused cingulo-opercular
network connectivity directly, and indirectly caused dorsal
attention network connectivity (mediated through cingulo-
opercular connectivity, and posterior multimodal association
network connectivity). Therefore, ventral attention/language
network connectivity exerts influences on frontoparietal network
connectivity through multiple different pathways, and might have
long-range impacts on cognition and eventually on AUD severity.
The potential involvement of ventral attention/language network
in AUD appears to have been scarcely investigated. This network
encompasses vlPFC regions that are close to left dlPFC regions
that are often targeted in neuromodulation interventions for
addiction79, and therefore neuromodulation targeted at left
DLPFC might also stimulate ventral attention/language networks.
Left vlPFC regions are also implicated in cognitive interventions
for addiction61. Future analysis should examine the relationship
between brain ventral attention/language networks and cognitive
dysfunction in AUD, and the implications for treatment.

The analysis method used in the current manuscript is not free
of limitations, and other limitations are also imposed by the
nature of the dataset we used. Notably, the fact that we did not
find any cycles (i.e. variable X causes variable Y, and variable Y
causes variable X) in the current data does not mean that they do
not exist. The causal discovery algorithm used in this analysis
cannot discover recurring cycles in cross-sectional data, but is
capable of discovering recurrent cycles when more than one time

point is measured and the cycles unfold over time. Future analysis
should incorporate longitudinal data to specifically test the pos-
sibility that recurrent cycles might contribute to AUD9. This
limitation extends to the brain network subgraph we recovered as
well; the causal discovery algorithm we used cannot recover
bidirectional relationships in cross-sectional data, so some brain
network links that are actually bidirectional processing streams
may instead be represented as the predominant causal relation-
ship between two networks. Finally, the CDA algorithm also uses
a penalized likelihood score, therefore potentially missing weak
causal links present in the data; however, this practice also serves
to increase the confidence in the causal relationships the algo-
rithm does find.

An important limitation of the dataset is the extremely limited
assessment of the Positive Valence domain in the HCP dataset.
Current perspectives in addiction emphasize the role of Positive
Valence domains9,16,19,38,39, but the HCP dataset does not con-
tain many measures in this domain. The data did contain a
measure of Delay Discounting, which had causal influences on
AUD severity, but this factor appeared to be grouped with other
cognitive factors and could not be interpreted as a unique mea-
sure of Reward Valuation. The HCP dataset also contained a
gambling choice fMRI task, but this task did not provide a phe-
notypic measure of incentive salience processing. Future analysis
will need to carefully measure Positive Valence domains, in
addition to the domains measured in the HCP dataset, to
determine where these domains fit in an overall causal model of
AUD. Another limitation of the dataset is that the cross-sectional
design employed by the HCP is also unable to assess certain
predictions of pathodevelopmental perspectives on addiction,
such as the possibility that different causal factors are involved in
early and late stages of AUD41.

To conclude, this study is the first to conduct a machine
learning search for causal influences of AUD symptoms over a
wide phenotypic and neurobiological space. We found pheno-
typic factors related to several RDoC domains, and confirmed
hypothesized influences of a Negative Valence (Negative affect >
Conscientiousness/Inattention > Externalizing > AUD symptom
severity) and Cognitive Systems (Fluid Cognition > Crystalized
IQ >Working Memory/Language/Math > Social/Affective/Psy-
chiatric factors > AUD symptom severity) on AUD. The model
proposed a hierarchy with causal influence propagating from
brain function to cognition (Fluid/Crystalized Cognition, Lan-
guage/Math & Working Memory) to social (Agreeableness/Social
Support) to affective/psychiatric function (Negative Affect, low
Conscientiousness/Attention, Externalizing symptoms) and ulti-
mately AUD symptoms. These results underscore (a) a strong
causal link between prefrontal brain function/cognition and
affective/psychiatric factors and (b) an important buffer function
of social factors (Social Support, Agreeableness). Our data-driven
model hence confirmed hypothesized influences of cognitive and
affective factors on AUD, while underscoring that traditional
addiction models need to be expanded to highlight the impor-
tance of social factors, among others. Results further demon-
strated that it is possible to reduce a broad phenotypic space (100
measures) to a limited set of causal factors of AUD, which can
inform future research. We argue that the presented causal model
of AUD provides evidence for exploring two different kinds of
treatment approaches, specifically for investigating (a) “top-
down” interventions aimed at enhancing high-level cognition,
including brain-directed interventions targeting the executive
network and (b) “integrative” interventions that take the interplay
between brain/cognitive, affective/psychiatric factors, and social
factors into account. We note that we did not investigate the
individual heterogeneity of the causal factors involved in this
model, but only provided a static causal model of an “average”
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individual with AUD symptoms, as a first step. We believe that
this initial step of describing a comprehensive, integrated, mul-
timodal but also reduced model (in a principled data-driven way)
is crucial. We see the provided causal model as a working model,
which can be further expanded (e.g. by the RDoC Positive
Valence factors), explored with regard to individual heterogeneity
and used in predictive modeling studies on alcohol use trajec-
tories in active users, as well as in individuals with AUD in
treatment.

Methods
Subjects. We analyzed data from the final release of the WU-Minn Human
Connectome Project (n= 1206, aged 22–35, 54% females). All subjects provided
written informed consent at Washington University. The CDA included all subjects
who had complete data from all modalities (phenotypic n= 933, resting-state fMRI
n= 1085, final n= 926). Subjects with AUD comprised 22% of the included
sample, and 37% of subjects with AUD were females. See Table 2 for demographic
characteristics of the included sample.

Outcome measure: AUD symptom severity. Subjects were assessed for symp-
toms of alcohol abuse and dependence using the Semi-Structured Assessment for
the Genetics of Alcoholism (SSAGA). Symptom count data were provided for
DSM-IV-TR alcohol abuse and alcohol dependence (Table 3). Symptom counts for
alcohol abuse were provided as 0, 1, or 2+, and symptom counts for alcohol
dependence were provided as 0, 1, 2, or 3+ (i.e. truncated symptom counts were
provided). Given the low number of subjects with the highest symptom counts, it is
unlikely that including a more fine-grained symptom count would have provided
much additional information. It is therefore also likely that participants mostly had
mild/moderate AUD severity, and that as the sample was young adults (age 22–35),
this sample likely represents an early stage of AUD.

DSM-5 re-categorized alcohol abuse and alcohol dependence into a single
disorder (AUD) using the criteria of both alcohol abuse and dependence, with one
symptom of alcohol abuse removed (legal problems) and one symptom added
(craving). We reconstructed this change by adding alcohol abuse and dependence
symptom counts for each subject. Given recent interest in dimensional rather than
categorical psychiatric dysfunction, we used the AUD symptom count (severity) as
our primary outcome variable.

Behavioral and self-report measures. The HCP dataset contains a wide array of
self-report, diagnostic and behavioral measures assessing domains of cognition,

Table 2 Demographic characteristics of the final sample (n= 926).

Demographics Options Total N AUD Control AUD− Control difference

Gender M 428 128 300 χ2= 28.74, p < 0.001
F 498 76 498

Race White 700 166 534 χ2= 19.56, p= 0.002
Black/African-American 130 15 115
Asian/Nat. Hawaiian/Other Pacific Islander 57 8 49
Other 39 15 24

Age Mean 28.84 28.65 28.88 t(924)= 0.80, p= 0.43
Standard deviation 3.69 3.38 3.74

Education Mean 14.98 14.95 14.99 t(924)= 0.31, p= 0.76
Standard deviation 1.77 1.75 1.77

Income Mean 5.10 5.00 5.13 t(924)= 0.78, p= 0.44
Standard deviation 2.13 2.15 2.13

AUD symptoms 0 538
1 184
2 98
3 46
4 43
5+ 17

AUD diagnosis Yes 204
No 722

Table 3 List of AUD symptoms as described in the DSM.

DSM-IV-TR Symptoms DSM-5

Alcohol Abuse 1. Recurrent use of alcohol resulting in a failure to fulfill major role obligations at work, school, or home (e.g., repeated
absences or poor work performance related to alcohol use; alcohol-related absences, suspensions, or expulsions
from school; neglect of children or household)

Y

2. Recurrent alcohol use in situations in which it is physically hazardous (e.g., driving an automobile or operating a
machine when impaired by alcohol use).

Y

3. Recurrent alcohol-related legal problems (e.g., arrests for alcohol-related disorderly conduct). N
4. Continued alcohol use despite having persistent or recurrent social or interpersonal problems caused or exacerbated

by the effects of alcohol (e.g., arguments with spouse about consequences of intoxication)
Y

Alcohol Dependence 1. Need for markedly increased amounts of alcohol to achieve intoxication or desired effect; or markedly diminished
effect with continued use of the same amount of alcohol.

Y

2. The characteristic withdrawal syndrome for alcohol; or drinking (or using a closely related substance) to relieve or
avoid withdrawal symptoms.

Y

3. Drinking in larger amounts or over a longer period than intended. Y
4. Persistent desire or one or more unsuccessful efforts to cut down or control drinking Y
5. Important social, occupational, or recreational activities given up or reduced because of drinking Y
6. A great deal of time spent in activities necessary to obtain, to use, or to recover from the effects of drinking Y
7. Continued drinking despite knowledge of having a persistent or recurrent physical or psychological problem that is

likely to be caused or exacerbated by drinking.
Y
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emotion, social function, psychiatric dysfunction, and personality. We selected all
available measures from these domains for further analysis (100 in total). We
included all provided measures, but when provided, we used summary scores
rather than item-level or minor scores as long as the summary score encompassed
the task construct of interest85. For example, for the Short Continuous Penn Test,
we included the summary statistics of sensitivity and specificity but not more
specific scores, and for delay discounting we included the area under the curve for
$200 and $40k but not the individual discounting levels. For behavioral tasks
completed in the scanner, we included separate behavioral measures for each of the
major conditions. Note that in the interest of more completely characterizing the
phenotypic space measured in the HCP data, we included behavior from tasks
completed in the scanner but not fMRI measures of task-related brain activation.

If both age/gender-adjusted and unadjusted scores were provided, we included
only the adjusted scores. For example, data from the Achenbach self-report
inventory included raw scale scores, and scale scores adjusted for age and gender;
given the strong relationship between psychiatric symptomology and age/gender,
we included the age/gender-adjusted measures from this self-report inventory. This
age/gender adjustment was thus applied to 14/100 (14%) of variables. Data from
the NIH Toolbox cognition battery were likewise adjusted for participant age, given
the strong dependency between age and cognitive abilities. Finally, the sensory
sensitivity battery provided by the HCP consortium included measures of noise,
taste, smell, and pain intensity, likewise controlled for the influence of age. Thus,
age adjustment was applied to 11/100 (11%) of variables. Therefore in sum, 25% of
variables were adjusted in some manner for participant characteristics (age: 11%,
age/gender: 14%), while the remaining 75% of variables were not adjusted for any
participant characteristics. We also excluded all items that were linear
combinations of other data. For a list of included variables and excluded variables
see Supplementary Data 6; for descriptive statistics of the included variables see
Supplementary Data 7.

Factor analysis of phenotypic data. To reduce the phenotypic space measured in
the HCP to a set of underlying domains, we conducted an EFA in the entire HCP
sample that had complete phenotypic data (n= 933, 53.5% females). Factors were
extracted using maximum likelihood as calculated by the expectation-maximization
algorithm, and we used an oblimin rotation to allow for correlated factors. EFA was
calculated in R using the “psych” package86. The choice of EFA over similar data
reduction schemes such as PCA was made because EFA explicitly accounts for error
due to unreliability in measurement87 unlike PCA88. Furthermore, maximum
likelihood extraction is robust against violation of distributional assumptions [as
discussed in refs. 89,90], providing a powerful technique for reduction of ques-
tionnaire and other behavioral data. As factor analysis conducts an eigenvalue
decomposition of the correlation matrix among items, this analysis also does not
assume that items submitted to factor analysis are measured on similar scales.
Oblimin rotation allows for correlated factors, which is critical to data reduction
over a large phenotypic variable space as we expect many factors to be closely
related but separable (for example, negative affect and internalizing psychopathol-
ogy). We used Monte Carlo permutation analysis (parallel analysis)91 to determine
how many factors were statistically significant at p < .0592. Monte Carlo simulation
was also calculated using the “psych” package for R86. While some methods for
choosing the number of factors in a solution are not robust against violation of
distributional assumptions, the use of permutation analysis to choose the number of

extracted factors ensures that this selection does not depend on any assumptions
regarding underlying distributional qualities.

Resting-state fMRI acquisition and preprocessing. High-resolution structural
and functional MRI data were collected on a Siemens 3T Connectome Skyra
scanner with a 32-channel head coil at Washington University. See Uğurbil et al.21

for a full description of the acquisition parameters for rfMRI in the HCP database.
Resting-state fMRI (rfMRI) was collected over 2 days in four runs of 14:33 each.
Structural data were preprocessed as described in Glasser et al.93, using the most
recent version of the HCP preprocessing pipeline (4.1). Briefly, anatomical image
preprocessing consisted of bias field and gradient distortion correction, coregis-
tration of T1w and T2w images, and linear and nonlinear registration to MNI
space. Cortical surfaces were constructed using FreeSurfer. Surface files were
transformed to MNI space, registered to the individual’s native-mesh surfaces, and
downsampled.

Functional MRI preprocessing is fully described in Glasser et al.93. Briefly,
volumetric fMRI were subjected to gradient distortion correction, motion
correction, and referencing to T1w. All transforms were concatenated and run in a
single nonlinear resampling to MNI space. Data were then masked by the
PostFreeSurfer brain mask and normalized. This volumetric timeseries was then
mapped to a combined cortical surface and subcortical voxel space
(“grayordinates”) and smoothed with a 2 mm FWHM Gaussian.

Finally, fMRI data were high-pass filtered (FWHM= 2355 s) and cleaned of
artifacts using ICA-FIX94,95. Artifact components and 24 motion regressors96 were
regressed out of the data in a single step. This produced the final ICA-FIX denoised
versions of the data in both volumetric and CIFTI (combined grayordinates and
subcortical/cerebellar voxels) space (https://www.humanconnectome.org/study/
hcp-young-adult/document/1200-subjects-data-release). CIFTI data were used for
all primary analyses, while a replication analysis used the volumetric data to ensure
the results replicated with multiple different brain network measures.

rfMRI parcellation and network assignment. Our analysis of rfMRI network
connectivity only included subjects who completed at least one full day of rfMRI
acquisition (two runs of 14:33), and 94% of subjects had four full runs of rfMRI
data. We parcellated the whole brain, including cortex, subcortex, and cerebellum,
into 718 parcels using the Cole-Anticevic brain-wide network partition (CAB-
NP)23, a parcellation scheme that builds on the Glasser et al.97 multimodal cortex
parcellation (360 parcels). We chose the CAB-NP parcellation because while the
Glasser parcellation used multiple measures including myelination, rfMRI activity,
and anatomical landmarks to delineate a fine-grained map of cortical space, it did
not include any subcortical voxels, and did not explicitly assign parcels to large-
scale networks using principled statistical methods. The CAB-NP parcellation built
on the Glasser parcellation by (1) assigning subcortical and cerebellar voxels to
parcels and (2) by using Louvain community detection to delineate 12 large-scale
networks consisting of cortical, subcortical, and cerebellar regions (Fig. 2).

As the choice of parcellation can influence network connectivity profiles98, we
furthermore investigated whether the results of this part of the analysis would
replicate when using an independently derived set of resting-state networks. We
used the set of 300 regions-of-interest (ROIs) and associated network assignments
described in ref. 82, which included the 264 ROIs described in ref. 81 with added
subcortical and cerebellar ROIs (Supplementary Fig. S4). This parcellation used a

Fig. 2 Cole-Anticevic brain-wide network partition (CAB-NP). We conducted a whole-brain parcellation and assigned brain parcels to 12 large-scale
networks according to the Cole-Anticevic brain-wide network partition (CAB-NP) parcellation23. This parcellation built on the Glasser multimodal cortical
parcellation by including subcortical and cerebellar parcels, and assigned each of the 718 parcels to a large-scale brain network using Louvain community
detection.
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set of functionally defined spherical ROIs in volumetric space, and employed the
Infomap algorithm to compute network assignments for each ROI. As this analysis
was intended as a replication of our primary results, we only selected the networks
that aligned closely with the CAB-NP networks (Supplementary Table S2).

Calculation of rfMRI network connectivity. For each network, we computed
pairwise Pearson correlations between each pair of parcels in the network. Pearson
correlations were transformed to approximate a normal distribution using Fisher’s
z-transform. Within each of the networks, we then took the average of the parcel-
to-parcel correlations to obtain a summary statistic for within-network
connectivity99–103. This procedure therefore summarizes how tightly connected
(coherent) the regions comprising each of the 12 networks are with each other.
This resulted in a set of average network-level connectivity values for each subject.

CDA: Greedy Fast Causal Inference. Causal models represent, often graphically,
the set of cause-and-effect relationships that are present within a set of data104. As
the number of variables in a dataset increases, so too does the space of possible
causal models that could give rise to the observed data, making the problem of
identifying which of the potential causal models best fits the observed data very
difficult. CDA uses machine learning to determine which causal models are best
supported by the data105. There are many CDA algorithms that make a wide
variety of assumptions and have varying performance characteristics; for review,
see Glymour et al.106.

In the current study, we applied GFCI24, an accurate and fast algorithm for
establishing causal relationships from data even in the presence of unmeasured
confounds. GFCI operates in two phases. GFCI begins by searching the space of
possible graphs to create a preliminary graph that minimizes a penalized likelihood
score, in this case the Bayesian Information Criteria107. This initial search phase is
done using the Fast Greedy Equivalence Search method108. After the initial search
phase, the algorithm refines the discovered graph by conducting a series of
conditional independence tests. This phase rules out any edges that imply
conditional dependencies not borne out by the data (for an example, see Fig. 3).
Specifically, this phase capitalizes on the fact that “collider” structures (Fig. 3a; a
case where two variables both cause a third variable) imply a separate set of
conditional dependencies than any other ways those three variables could be
causally related (Fig. 3b–d). The most important distinction of GFCI compared to
other causal discovery methods is that GFCI can detect confounding factors, and as
such is particularly suited to analysis of real-world data, where there is no
guarantee that every relevant variable has been measured. The output of the GFCI
algorithm is a partial ancestral graph with edge types indicating causal
relationships, uncertain relationships, and the presence of unmeasured
confounding variables. GFCI analysis was implemented using Tetrad. Analysis was
run with default parameters; that is, using alpha= 0.01, maximum degree of the
graph= 100, and a penalty discount of two. Penalized likelihoods for models were
calculated using the Bayesian Information Criteria107, which is the default model fit
index in Tetrad and the most commonly used model fit index in CDA.

To recover effect sizes of the edges in the model, we fit a structural equation
model (SEM) to the graph structure using the “lavaan” package for R109. We
present the graph GFCI learned from the full dataset with SEM effect sizes for each
edge. As an additional analysis of model stability in smaller samples, we also
conducted a stability analysis by resampling 90% of the sample110 without
replacement with 1000 repetitions (jackknifing). Finally, to test the replicability of
the brain model, we used the R package “lavaan” to fit a SEM representing the
discovered causal model (CAB-NP)23 to the alternately derived brain network data
(Greene-300)82.

Statistics and reproducibility. Factor analysis (parallel analysis and factor
extraction) was done using the “psych” package (version 2.0.12)86, and factor
rotation used the “GPArotation” package (version 2014.11-1) for R (version 3.6.3).
FMRI network connectivity analysis was done using Connectome Workbench

(version 1.4.2) and MATLAB (version R2018b). Causal discovery analysis (GFCI)
was done using Tetrad (version 6.7). Stability analysis (jackknifing) was done in
Tetrad (version 6.7) using 90% subsampling and 1000 replications. Effect size
calculation was done using the “lavaan” package (version 0.6-6) running in R
(version 3.6.3). We used a very large, well-documented, and publicly available
dataset (HCP; n= 926) to ensure the representativeness of the analysis, and we
additionally validated the stability of the neurobiological analyses using a sec-
ondary, independently derived brain parcellation, and the stability of the causal
discovery analyses using a jackknifing procedure.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data analyzed for this study are available from the WU-Minn Human Connectome
Project Consortium (https://www.humanconnectome.org/study/hcp-young-adult/
document/1200-subjects-data-release). These data are available for public use with a data
use agreement. Raw data sufficient to reproduce the GFCI and SEM results is available
(Supplementary Data 8).

Code availability
All code and analysis packages used in this manuscript are freely available with the
exception of MATLAB. MATLAB was used for convenience (fMRI network correlations)
but is not required to replicate analyses. Connectome Workbench is freely available from
https://www.humanconnectome.org/software/get-connectome-workbench. R is freely
available from https://www.r-project.org/. The R packages “psych”, “GPArotation”, and
“lavaan” can be freely installed within R. Tetrad is freely available from https://www.ccd.
pitt.edu/tools/.
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