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Abstract: The COVID-19 pandemic caused by the severe acute respiratory syndrome 

coronavirus-2 (SARS-CoV-2) resulted in millions of deaths globally. Adults with 

immunosuppression (e.g., solid organ transplant recipients) and those undergoing active cancer 

treatments experience worse infections and more severe COVID-19. It is difficult to conduct 

clinical studies in these populations, resulting in a restricted amount of data that can be used to 

relate mechanisms of immune dysfunction to COVID-19 outcomes in these vulnerable groups. 

To study immune dynamics after infection with SARS-CoV-2 and to investigate drivers of 

COVID-19 severity in individuals with cancer and immunosuppression, we adapted our 

mathematical model of the immune response during COVID-19 and generated virtual patient 

cohorts of cancer and immunosuppressed patients. The cohorts of plausible patients 

recapitulated available longitudinal clinical data collected from patients in Montréal, Canada 

area hospitals. Our model predicted that both cancer and immunosuppressed virtual patients 

with severe COVID-19 had decreased CD8+ T cells, elevated interleukin-6 concentrations, and 

delayed type I interferon peaks compared to those with mild COVID-19 outcomes. 

Additionally, our results suggest that cancer patients experience higher viral loads (however, 

with no direct relation with severity), likely because of decreased initial neutrophil counts (i.e., 

neutropenia), a frequent toxic side effect of anti-cancer therapy. Furthermore, severe cancer and 

immunosuppressed virtual patients suffered a high degree of tissue damage associated with 

elevated neutrophils. Lastly, parameter values associated with monocyte recruitment by 

infected cells were found to be elevated in severe cancer and immunosuppressed patients with 

respect to the COVID-19 reference group. Together, our study highlights that dysfunction in 

type I interferon and CD8+ T cells are key drivers of immune dysregulation in COVID-19, 

particularly in cancer patients and immunosuppressed individuals.  
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INTRODUCTION 

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 

(SARS-CoV-2) caused more than 7 million deaths globally as of  July 20241. COVID-19 results 

in heterogeneous immune responses and outcomes, where some individuals experience no or 

very few symptoms while others become hyperinflamed and may need supportive oxygen or 

succumb to the infection. The risk of severe complications to SARS-CoV-2 infection is 

increased for individuals with weakened or suppressed immune responses2. Thus, it is critically 

important to study immuno-infection dynamics, especially in vulnerable groups (e.g., 

immunocompromised individuals3–5 such as patients receiving immunosuppressants after organ 

transplantation, cancer patients6–8, older adults9,10) whose immune systems may not adequately 

protect against the virus and who may have imperfect vaccine-induced immune responses11. 

Cancer patients tend to have weaker responses to viral infections7, mostly due to impaired 

responses of  type I interferon (IFN) that are typical of cancers12 and diverse immune cell 

dysfunctions that are frequent adverse effects of oncologic treatments. COVID-19 mortality 

risk in patients with hematological malignancies is around 34%, although a study by Vijenthira 

et al. found the most relevant factor impacting mortality to be age13. COVID-19-positive 

leukemia patients have an increased fatality rate compared to the patients with other cancer 

types14, likely due to the susceptibility of blood cancer patients to experience lymphocyte 

depletion. Furthermore, anti-cancer treatments like cytotoxic chemotherapy can result in 

decreased T and B lymphocytes15,16, leaving patients undergoing treatment vulnerable to severe 

infections. It has also been observed that patients receiving anti-cancer therapy tend to have low 

platelet and/or decreased neutrophil counts15. Although some studies have reported neutropenia 

as a risk factor in COVID-19-positive hematological malignancy patients16, others found no 

significant connection17. However, cancer patients often have hyperactivated IL-65,7, which 

may be another factor affecting COVID-19 severity, as multiple studies have shown that 

elevated IL-6 concentrations are associated with poor COVID-19 outcomes18–20. 

Immunosuppressed patients, such as solid organ transplant recipients, are treated with anti-T or 

anti-B cell therapies to prevent immunological rejection of transplantable tissue. This results in 

decreased lymphocytes3. A recent study showed that IL-6 concentrations in COVID-19 

immunosuppressed patients without autoimmune disease were significantly increased 

compared to COVID-19 patients without immunosuppression4. Together, this lack of 

lymphocytes and elevated concentrations of inflammatory cytokines (i.e., IL-6) results in a 

weakened immune response against acute infections including ones caused by respiratory 

viruses, resulting in severe infections21. IL-6 dysregulation may result in hyperinflammation 

that is characteristic of severe COVID-19, particularly in patients requiring intensive care22.  

Once it was identified that extreme inflammatory responses could develop from SARS-CoV-2 

infections, potential causes and treatment strategies were intensively studied22–24. Although the 

direct causes of hyperinflammation have yet to be established, several hypotheses exist22. One 

links the condition with the viral replication leading to pyroptosis, a highly inflammatory form 

of apoptosis, which then causes a pro-inflammatory cytokine reaction that affects macrophages 

and lymphocytes22 and causes excessive IL-6 production25. Others include uncontrolled 

adaptive and neutralizing antibody responses, proposing that antibody binding to spike protein 

causes hyperinflammation22. Collecting longitudinal data in humans, particularly vulnerable 

populations, can be difficult and thus limited in scope. Further, these studies may not be able to 
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uncover kinetic differences and causes for dysregulated immune responses, which are difficult 

to establish in humans, particularly given that early infection dynamics are generally not 

captured in clinical data. Mechanistic mathematical modelling helps to overcome these 

complexities because it allows for the investigation of immune response mechanisms, aids the 

prediction of clinical outcomes or vaccination efficacy26,27, and facilitates uncovering potential 

drivers of severity with  limited data sources28.   

Here, we focused on investigating and predicting COVID-19 immune dynamics in vulnerable 

populations, including those undergoing cancer treatments or who are immunosuppressed 

without autoimmune disease (e.g., solid organ transplant recipients on immunosuppressive 

agents). For this, we extended our approach described in Jenner et al.28, where we generated a 

cohort of COVID-19-positive virtual patients based on a mechanistic model of the immune 

response to SARS-CoV-2. The model predicted that patients with severe outcomes are more 

likely to experience delayed IFN peaks and CD8+ T cell depletion. Because our previous work 

did not take existing comorbidities into account, in this study we used the same model to 

generate three virtual patient cohorts: 1) a cohort of COVID-19+ patients with cancer, 2) a 

cohort of COVID-19+ immunosuppressed patients, and 3) a reference group of COVID-19+ 

patients without cancer or immunosuppression. The virtual patient cohorts were based on data 

collected from Montréal, Canada area hospitals29–31 and data available in the literature. Our 

simulations suggested that both severe cancer and immunosuppressed patients have decreased 

CD8+ T cells, elevated neutrophils and IL-6 concentrations, and delayed IFN peaks. As in our 

previous work, we found these alterations to be driven by monocyte to macrophage 

differentiation and monocyte recruitment, consistent with experimental and clinical studies32–

34, suggesting these are host-intrinsic rather than driven by comorbidities. Overall, our findings 

suggest suppressed CD8+ T cells, overproduction of IL-6, and delayed IFN peaks are correlated 

with disease severity in cancer and immunosuppressed patients with COVID-19, similar to 

previous results in COVID-19 severe virtual patients described in Jenner et al.28 However, we 

determined that the most severe outcomes in cancer and immunosuppressed virtual patients 

were characterized by more marked increases in elevated neutrophils during infection, higher 

rates of monocyte to macrophage differentiation by IL-6, and increased monocyte recruitment 

by infected cells. Thus, our study further highlights that immune dysfunction is heightened in 

immunocompromised patients, with potential consequences on COVID-19 severity, and 

identifies biomarkers driving this dysregulation.   

METHODS 

Mathematical model of the immune response to SARS-CoV-2 

We used the differential equation-based mathematical model of Jenner et al.28 that mimics the 

immune response to SARS-CoV-2 to understand and predict immune dynamics during COVID-

19 (Figure 1A). The model describes the dynamics of immune cells (neutrophils, monocytes, 

CD8+ T cells, and tissue-resident and inflammatory macrophages) together with cytokine 

production and binding kinetics, including IFN-,, IL-6, granulocyte-macrophage colony-

stimulating factor (GM-CSF), and granulocyte colony-stimulating factor (G-CSF).  

In brief, infection begins with virus infecting susceptible lung epithelial cells (𝑆), resulting in 

the production of virus (𝑉) and infected cell (𝐼) death. Infected cells can secrete IFN-, and, 

depending on the IFN concentration, neighbouring cells may also become resistant (𝑅) to viral 
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entry and replication. Infected cells are then removed by cytotoxic CD8+ T cells (𝑇), 

inflammatory macrophages (𝑀𝛷𝐼), and neutrophils (𝑁), with neutrophils causing damage to all 

lung epithelial cells through their release of granules. Monocytes differentiate into 

inflammatory macrophages based on IL-6 and GM-CSF concentrations, and tissue-resident 

macrophages (𝑀𝛷𝑅) can transition into inflammatory subsets through contact with either dead 

or infected cells. Dead cells (𝐷) are eliminated by inflammatory macrophages. Neutrophils are 

recruited by IL-6 and G-CSF, whereas monocytes are attracted by infected cells and GM-CSF. 

Recruitment of CD8+ T cells is driven by infected cells and IFN and suppressed by IL-6 

concentrations (it should be noted that we considered IL-6 as a proxy for the multitude of 

cytokines that inhibit T cell recruitment). A detailed description of the model equations and 

parametrization is provided in the Supplementary Information and Jenner et al.28. All model 

simulations were performed in MATLAB35 using ddesd.   

 

Figure 1. Mathematical model of the systemic immune response to SARS-CoV-2 and virtual 

patient generation algorithm. A) Mathematical model describing the immune response during 

COVID-19. Reproduced from Jenner et al.28 under CC BY. Virus infects susceptible cells and creates 

infected or resistant cells based on IFN concentrations. Infected cells die and produce more virus or are 

eliminated by inflammatory macrophages, neutrophils (recruited by IL-6 and G-CSF), or CD8+ T cells 

whose population expands based on IFN concentrations and is inhibited by IL-6. Monocytes are 

recruited by infected cells and differentiate into inflammatory macrophages, which is regulated by GM-

CSF and IL-6 concentrations. Some tissue-resident macrophages convert to become inflammatory after 

encountering infected or dead cells. See Supplementary Information for full model equations and 

parameter values. B) Schematic description of the virtual patient cohort generation algorithm adapted 

from Jenner et al.28 1) Parameters associated with macrophage, IL-6, and IFN production are sampled 
from normal distributions extracted from clinical data (Figure 2). 2) The model is simulated and 

simulated annealing is performed to minimize the distance between model predictions (outputs) and 

physiological ranges. 3) Virtual patients whose dynamics fit into the pre-defined ranges are assigned to 

the cohort of plausible patients. 4) The population of plausible virtual patients is subsampled based on 

data specific to each studied group (e.g., COVID-19 reference, cancer, immunosuppressed).  

Generating virtual patient cohorts 

To generate the three virtual patient cohorts in our study, we followed the algorithm described 

in Jenner et al.28 (Figure 1B) to ensure that each plausible patient's immunological trajectory 

corresponds to available clinical data4. The generation process began from the most sensitive 

Sample 
parameters

4

3

2

1

Create 
plausible 

patients by 
ensuring 

model 
predictions 
lay within 
plausible 

physiological 
ranges

Predict plausible 
cohort dynamics by 
simulating model for 

each plausible 
virtual patient

Subsample plausible 
cohort to best represent 
physiological ranges in 

subgroup data

Assign 
accepted 

virtual patients 
to  virtual 

patient cohort

5

Sample 
parameters

4

3

2

1

Create 
plausible 

patients by 
ensuring 

model 
predictions 
lay within 
plausible 

physiological 
ranges

Predict plausible 
cohort dynamics by 
simulating model for 

each plausible 
virtual patient

Subsample plausible 
cohort to best represent 
physiological ranges in 

subgroup data

Assign 
accepted 

virtual patients 
to  virtual 

patient cohort

5

T

V

S

M
N

D

MɸR

GM-CSF

IFN

IV

IFN
D

I

D

I

GM-CSF

T

N

G-CSF

IL-6

! ! "N

IL-6

VR
IFN

IFN

I

IL-6

! ! "

! ! "

N

MɸI

A B

V

S

I

N

M

Virus 

Susceptible cells 

Infected cells

Neutrophils

Monocytes

Alveolar macrophages

CD8+ T cells

! ! #

D Dead cells

Induced death 

by cell “y”

Recruitment 

by cytokine 

“x” or cell “y”

x Cell type change or 

production caused 

by cytokine “x” or 

cell “y”

R Resistant cells Cytokine production 

by cell “y”

y

x

yy

T

! ! " Inflammatory macrophages

y

B

Sample 
parameters

4

3

2

1

Create 
plausible 

patients by 
ensuring 

model 
predictions 
lay within 
plausible 

physiological 
ranges

Predict plausible 
cohort dynamics by 
simulating model for 

each plausible 
virtual patient

Subsample plausible 
cohort to best represent 
physiological ranges in 

subgroup data

Assign 
accepted 

virtual patients 
to  virtual 

patient cohort

5

T

V

S

M
N

D

MɸR

GM-CSF

IFN

IV

IFN
D

I

D

I

GM-CSF

T

N

G-CSF

IL-6

! ! "N

IL-6

VR
IFN

IFN

I

IL-6

! ! "

! ! "

N

MɸI

A B

V

S

I

N

M

Virus 

Susceptible cells 

Infected cells

Neutrophils

Monocytes

Alveolar macrophages

CD8+ T cells

! ! #

D Dead cells

Induced death 

by cell “y”

Recruitment 

by cytokine 

“x” or cell “y”

x Cell type change or 

production caused 

by cytokine “x” or 

cell “y”

R Resistant cells Cytokine production 

by cell “y”

y

x

yy

T

! ! " Inflammatory macrophages

y

A

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 2, 2024. ; https://doi.org/10.1101/2024.08.01.605860doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.605860
http://creativecommons.org/licenses/by-nc/4.0/


 5 

parameters (𝒑) revealed in the sensitivity analysis in Jenner et al.28, including parameters 

associated with IFN, macrophage and IL-6 production. These were first sampled from normal 

distributions obtained from available clinical data30, with mean values and standard deviations 

taken from measurements on specific days (see Figure 2). For each virtual patient, the model 

was simulated and the cost function36, 

min
𝒑

𝐽(𝒑) = min
𝒑

[∑ max (( 𝑀𝑖(𝒑) −
𝑙𝑖 + 𝑢𝑖

2
)

2

− (𝑢𝑖 −
𝑙𝑖 + 𝑢𝑖

2
)

2

, 0)   
𝑖

] , (1) 

was minimized using simulated annealing. Here, 𝑀𝑖(𝒑) is the model output, and 𝑙𝑖 and 𝑢𝑖 are 

the lower and upper bounds of each immune population, respectively. We used simulated 

annealing via the simulannealbnd function in Matlab29 for this optimization. If predicted 

dynamics fell within the established data ranges, a virtual patient was accepted as a plausible 

patient and placed into their respective cohort.  

Using this approach, we created three cohorts representative of hospitalized and outpatients: 1) 

COVID-19 cancer, 2) COVID-19 immunosuppressed, and 3) COVID-19 reference (which 

included patients without cancer or immunosuppression). We then subsampled within each 

cohort to more tightly match available clinical29–31 and reference data4,5 (Figure 2; data 

descriptions can be found in the Supplementary Information). Because COVID-19-positive 

cancer and immunosuppressed patients tend to have fewer lymphocytes3,5 and increased IL-64,5 

concentrations, we subsampled virtual patients according to the data from each of these patient 

groups. For the cancer virtual patient cohort (VPC), we used data from Cai et al.5 and clinical 

data from Montréal hospitals29–31 for CD8+ T cells and IL-6 concentrations (Figure 2). 

To replicate the neutropenia experienced by patients undergoing chemotherapy37, we decreased 

the initial concentrations of neutrophils for virtual patients in the cancer cohort. For this, we 

digitized the data from neutropenic patients during SARS-CoV-2 infection described in Lee et 

al.37 using PlotDigitizer38. To generate immunosuppressed virtual patients, we used IL-6 

concentrations from Monreal et al.4. Given their overall higher IL-6 concentrations, these 

virtual patients also experienced lower CD8+ T cell counts compared to those in the COVID-

19 reference group, consistent with our model findings28. We assumed that these decreased 

values were representative of the CD8+ T cell dynamics in hospitalized patients, as CD8+ T 

cells are lower in immunosuppressed patients due to ongoing treatments. In all, this process 

resulted in the creation of 280 patients in each of the three cohorts.   

Evaluating disease severity across cohorts using an updated inflammation marker 

To compare patient responses across cohorts, we modified the equation for the inflammation 

marker (Ψj) introduced by Jenner et al.28 to evaluate the severity of COVID-19+ virtual 

patients. This inflammation marker measures each virtual patient’s maximum IL-6 and 

neutrophil concentrations, and maximal lung tissue damage (i.e., concentration of 𝐷, see 

Supplementary Information) according to the mean in the virtual patient cohort. These patient 

attributes were chosen as they are known to be strongly associated with the final disease 

outcomes (i.e., disease severity). By comparing patient immune populations to the 

inflammation marker, our prior work found that IFN peaks were correlated with severity, and 

that the IFN peak delay defined a severity threshold for Ψj that separated mild from severe 

cases. Thus, it was concluded that patients with delayed IFN peaks (i.e., those with 

inflammation marker values above 3) experienced worse (more severe) outcomes.  
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In our previous work, patient severity was classified based on Ψj values, but it was done within 

a single cohort. However, to compare patient responses between cohorts, adjustments to the 

inflammation marker equation introduced in Jenner et al.28 were necessary, given that the 

normalization (denominator terms) in the original equation are specific to the cohort being 

considered and that these values will vary across cohorts. Thus, we opted here to use the 

COVID-19 reference cohort as a baseline to measure severity across groups. Accordingly, we 

modified the denominator values to reflect mean biomarker values from the reference group: 

Ψj =
max

𝑡
(𝐿𝑈

𝑗 (𝑡))

1
𝑉𝑟𝑒𝑓 ∑ (max

𝑡,𝑗𝑟𝑒𝑓
(𝐿𝑈

𝑗𝑟𝑒𝑓
(𝑡)))𝑉𝑟𝑒𝑓

𝑗𝑟𝑒𝑓=1

+
max

𝑡
(𝑁𝑗(𝑡))

1
𝑉𝑟𝑒𝑓 ∑ (max

𝑡,𝑗𝑟𝑒𝑓
(𝑁𝑗𝑟𝑒𝑓(𝑡)))𝑉𝑟𝑒𝑓

𝑗𝑟𝑒𝑓=1

+
𝑆𝑚𝑎𝑥 − min

𝑡
(𝑆𝑗(𝑡) + 𝑅𝑗(𝑡))

1
𝑉𝑟𝑒𝑓 ∑ (𝑆𝑚𝑎𝑥 

𝑗
− min

𝑡,𝑗𝑟𝑒𝑓
(𝑆𝑗𝑟𝑒𝑓(𝑡) + 𝑅𝑗𝑟𝑒𝑓(𝑡)))𝑉𝑟𝑒𝑓

𝑗𝑟𝑒𝑓=1

, 

(2) 

 

where the index 𝑗 corresponds to the 𝑗-th patient, 𝐿𝑈
𝑗

, 𝑁𝑗 , 𝑆𝑗  + 𝑅𝑗 and 𝑆𝑚𝑎𝑥 represent the 

concentrations of unbound IL-6, neutrophils, susceptible plus resistant epithelial cells 

(undamaged tissue), respectively, and 𝑗𝑟𝑒𝑓  is the 𝑗th VP in the COVID-19 reference cohort with 

𝑉𝑟𝑒𝑓=280 being the total number of patients in the cohort. The change from our previous work 

allows for inter-cohort comparisons of patient responses, which is crucial as some patients in 

the vulnerable population virtual cohorts had lower Ψj values compared to COVID-19 

reference patients while at the same time exhibiting markers of increased disease severity (e.g., 

higher IL-6, lower T cells, etc.) with respect to their own cohort but not necessarily to the others.  

Sensitivity analysis  

Given the neutropenic status of the cancer virtual patients in our study, in addition to the 

sensitivity analysis of full model parameters previously performed in Jenner et al.28, we ran a 

local sensitivity analysis to see how changes in the initial concentration of neutrophils (𝑁0) may 

impact other populations and, thus, severity. For this, we varied the initial concentration of 

neutrophils from 60% to 140% of its baseline value and checked the differences in the output 

values of certain immune populations (maximal viral concentration, minimum tissue 

concentration, maximum IFN exposure and maximum concentration of dead cells, 

inflammatory macrophages, CD8+ effector T cells, IL-6, IFN) compared to their baseline 

output values. Parameter changes that caused changes greater than 40% were considered 

significant.  

Statistical analysis  

We used the Kolmogorov-Smirnov test at a level of significance of α=0.05 via the kstest2 

function in Matlab35 to evaluate statistically significant differences in pair-wise distributions of 

virtual patient parameters between severe and mild patients across, and among cohorts. To 

analyze statistical differences in maximal biomarker values observed in virtual patients, we 

performed ANOVA tests at a level of significance of α=0.05 using anova1 function in Matlab35. 

To further analyze the statistical differences in parameter values and some maximal biomarker 

values (e.g., neutrophils, damaged tissue, and IFN concentrations) between certain groups of 

patients (i.e., severe vs. mild), we performed a pairwise non-parametric Wilcoxon test using the 
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stat_compare_means function in R39. We considered coefficients of 𝑅 ≥ 0.6 to indicate 

moderate to strong correlations. 

RESULTS 

Data suggests differences in immune biomarkers values in cancer and immunosuppressed 

patients compared to those without comorbidities 

To ensure all virtual patients trajectories matched the clinical data, we subsampled them based 

on the biomarker measurements from clinical29–31 and reference data4,5 sources (Figure 2; see 

Generating virtual patients cohorts in the Methods and the Supplementary Information). In 

these data, cancer patients with COVID-19 tended to have decreased T cells count throughout 

the course of infection compared to cancer-free (reference) individuals with COVID-19 (Figure 

2P-2Q). Mean concentrations of IL-6 were increased in both COVID-19+ cancer and 

immunosuppressed patients groups compared to comorbidity-free group after day 10 post 

symptom-onset, reaching above 60 pg/ml. The initial value of neutrophils was lowest in 

COVID-19+ cancer patients, but neutrophil concentrations were similar across the three groups 

throughout the course of infection. Mean values of GM-CSF were highest in the COVID-19+ 

immunosuppressed patients (Figure 2G-2I), whereas IFN values tended to decrease in cancer 

patients during infection, while they remained generally on a constant level in the reference 

cohort versus the cancer and immunosuppressed patients (Figure 2A-2C).  
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Figure 2. Clinical data measurements from 15 days post-symptom onset in COVID-19+ cancer 

patients, COVID-19+ immunosuppressed patients, and COVID-19+ patients without cancer or 

immunosuppression. A-C) IFN concentrations; D-F) IL-6 concentrations; G-I) GM-CSF 

concentrations; J-L) G-CSF concentrations; M-O) neutrophil concentrations; P-Q) CD8+ T cell 

concentrations. Note that there were no available CD8+ T cell data from immunosuppressed patients. 

For further descriptions of the clinical data used in our study, see the Methods and Supplementary 

Information. Solid lines: mean values. Shaded areas: standard deviations. Dashed lines indicate single 

observations. Boxplots were used where data were available only on certain days with mean values 

indicated by diamonds and standard deviations marked by error bars.   

Key differences in immunological dynamics of virtual patients in the reference, cancer, 

and immunosuppressed cohorts  

To uncover the potential causes of COVID-19 associated severity in cancer and 

immunosuppressed populations, we generated virtual patient cohorts each consisting of 280 

virtual individuals with COVID-19 who were otherwise healthy (“reference”), had cancer, or 

were immunosuppressed. The virtual patient selection process (Figure 1B, see Methods) 

resulted in diverse dynamics. Namely, the cancer (Figure 3A) and immunosuppressed virtual 

patients (VPs) (Figure 3B) both exhibited significantly decreased CD8+ T cell concentrations 

(p-values < 10-8) compared to the VPs from the reference cohort (Figure 3C). Around 10 days 

after infection (when concentrations peaked), the mean T cell concentration reached 1.3 × 106 

cells/ml in the cancer cohort, while it was 1.8 × 106 cells/ml in the COVID-19 reference cohort 

(Table 1). In comparison, VPs from the immunosuppressed cohort had lower maximal CD8+ T 

cell concentrations, with a mean of 0.9 × 106 cells/ml (Table 1). These patterns also extended 

to IL-6 concentrations that similarly varied between groups: immunosuppressed patients had 

the highest maximal mean values of IL-6 of 60 pg/ml (Figure 3H, Table 1), followed by VPs in 

the cancer cohort (Figure 3G, Table 1), who were predicted to have an average peak value of 

40 pg/ml. In contrast, virtual patients in the COVID-19 reference group had the lowest mean 

IL-6 peak concentrations of 25 pg/ml (Figure 3I, Table 1), which is consistent with reduced 

severity in otherwise healthy individuals. Statistical differences in maximal IL-6 values 

between three groups were confirmed by ANOVA (p-values <10-8). A similar trend was 

observed in GM-CSF, where ANOVA confirmed statistically significant differences in 

maximal GM-CSF values between cohorts (p-values < 10-8); COVID-19 immunosuppressed 

VPs had highest mean GM-CSF maximal concentration (117 pg/ml), which was almost two 

times higher than in the COVID-19 reference group (60.17 pg/ml). By comparing maximal 

values of inflammatory macrophages, we also found statistical differences (p-value < 10-8) 

between all three cohorts. Maximal values of neutrophils were significantly decreased (p-value 

< 10-8) in the cancer cohort compared to other two cohorts (Figure 3J-3L, Table 1). Despite 

these dissimilarities, our model did not predict a statistically significant difference in the 

maximal IFN, G-CSF and monocyte concentrations between the three groups (Figure 3D-3F, 

Table 1). 
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 Units COVID-19+ 

cancer  

mean (SD) 

COVID-19+ 

immunosuppressed 

mean (SD) 

COVID-19 

reference  

mean (SD) 

T cells  106cells/ml 1.32 (0.28) ** 0.87 (0.17) ** 1.78 (0.58)  

IFN  pg/ml 0.17 (0.06) 0.17 (0.07)  0.18 (0.06)  

IL-6  pg/ml 39.65 (12.95) ** 58.75 (11.01) ** 25.15 (12.25)  

Neutrophils  106 cells/ml 5.35 (0.39) ** 6.29 (0.52) * 6.33 (0.36)  

GM-CSF pg/ml 78.92 (25.81) ** 117.01 (21.89) ** 60.17 (24.43)  

G-CSF  pg/ml 27.27 (0.83) 27.18 (1.09) 27.25 (0.76) 

Monocytes  105  cells/ml 4.59 (0.21) 4.59 (0.29) 4.58 (0.20) 

Inflammatory 

macrophages  
105 cells/ml 1.83 (1.52) ** 4.38 (2.72) ** 1.51 (1.53)  

Table 1.  Predicted peak values over 20 days after infection for the three virtual patient cohorts. 

Immunosuppressed VPs were found to have the highest maximal inflammatory macrophage, IL-6, and 

GM-CSF concentrations in addition to the lowest maximal T cell concentrations. In comparison to the 

COVID-19 reference group, cancer virtual patients were predicted to have higher peak IL-6 and GM-

CSF concentrations, increased inflammatory macrophages, and decreased maximal T cells and 

neutrophils. Values indicate means and standard deviations (SD). * indicates a statistically significant 

difference (ANOVA) in maximal biomarker values found in patients from cancer and 

immunosuppressed cohorts versus reference cohort. Statistically significant differences found in 

maximal biomarker values in patients from cancer versus immunosuppressed cohorts are marked by *. 
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Figure 3. Comparison of immune dynamics in virtual patients from COVID-19+ cancer, 

immunosuppressed, reference cohorts and clinical data. A-C) CD8+ T cells dynamics, D-F) IFN 

dynamics, G-I) IL-6 dynamics, J-L) Neutrophils dynamics. Solid curves: mean values within each 

cohort. Shaded areas: standard deviations. Purple triangles: mean clinical values. Purple vertical lines: 

standard deviations from clinical observations (Figure 2 and Supplementary Information). 

High tissue damage and increased occurrence of IFN peak delay characterize severe 

COVID-19 immunosuppressed virtual patients  

To uncover mechanistic differences in immune responses in mild and severe COVID-19 virtual 

patients from vulnerable populations, we compared characteristics (e.g., maximal T cell 

concentrations) across our three virtual patient cohorts using our updated inflammation marker 

(Eq. (2)). In all three cohorts, severe patients (patients with high values of severity marker Ψj) 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 2, 2024. ; https://doi.org/10.1101/2024.08.01.605860doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.605860
http://creativecommons.org/licenses/by-nc/4.0/


 12 

tended to have depleted CD8+ T cells (Figure 4A-4C) with the strongest negative correlation 

(R = -0.88, p-value < 10-8) with the inflammation marker (Ψj) found in the cancer cohort. A 

strong positive correlation (R > 0.9, p-value < 10-8) was observed between inflammation marker 

(Ψj) and maximal IL-6 concentrations (Supplementary Figure 1A-1C), and the maximal 

concentration of inflammatory macrophages (R > 0.85, p-value < 10-8; Supplementary Figure 

1D-1F). In both the cancer and immunosuppressed VPCs, we also found a statistically 

significant weak correlation between severity and peak neutrophils concentrations (R ≈ 0.4, p-

value < 10-8) in addition to the degree of lung tissue damage (R ≈ 0.5, p-value < 10-8) while in 

the COVID-19 reference cohort, no such relationships were established (maximum neutrophils: 

R = 0.064, p-value = 0.288; maximum damaged lung tissue: R = -0.108, p-value = 0.072; see 

Supplementary Figure 1G-1I and 1J-1L). Moderate correlations (R > 0.6, p-value < 10-8) 

between the inflammation marker (Ψj) and peak IFN concentrations were found in both the 

immunosuppressed and COVID-19 reference cohorts (Figure 4E-4F), with severe 

immunosuppressed patients (Ψj > 4) having IFN peak delays more often than patients from 

other cohorts. In the cancer cohort, we only observed a statistically significant but weak 

correlation (R < 0.6, p-value < 10-8) between IFN peak and  Ψj. Together, these findings suggest 

increased immunological dysregulation in cancer and immunosuppressed virtual patients. 

 

Figure 4. Correlations between maximal T cell and peak IFN concentrations and COVID-19 

severity. Maximal T cell concentrations compared to the inflammation marker in patients from the A) 

COVID-19+ cancer cohort, B) COVID-19+ immunosuppressed cohort, and C) COVID-19+ reference 

cohort. Maximal T cell concentrations in all three cohorts were found to be negatively correlated with 

𝛹𝑗. Time to IFN peak concentrations compared to the inflammation marker in patients from the D) 

COVID-19+ cancer cohort, E) COVID-19+ immunosuppressed cohort, and F) COVID-19+ reference 

cohort.  IFN peak times were positively correlated with 𝛹𝑗 in the immunosuppressed and COVID-19 

reference cohorts. Patients were ordered by 𝛹𝑗 values, with the mildest patients having the lowest 𝛹𝑗 

values and the most severe the highest 𝛹𝑗 values.   
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Increased monocyte recruitment rates indicate more innate immune dysregulation in the 

vulnerable groups versus reference patients  

We further explored how differences in parameter values led to altered dynamics by selecting 

virtual patients representing the lowest and highest 10% of inflammation marker values in each 

VPC and comparing their parameter values. These virtual patients correspond to the mildest or 

most severe SARS-CoV-2 infections, respectively. We performed statistical analyses using a 

pairwise non-parametric Wilcoxon test and found increases (p-value < 10-8) in the mean values 

of parameters associated with monocyte-to-macrophage differentiation by IL-6 (𝑝𝑀𝜑𝐼,𝐿
; Figure 

5A) and decreases (p-value < 0.05) in IFN production rates by infected cells (pF,I; Figure 5B) 

in severe patients in all three cohorts. In particular, the values of 𝑝𝑀,𝐼 (monocyte recruitment by 

infected cells; Figure 5C) and 𝜖𝐹,𝐼 (cell-related half-maximal inhibitory (IC50) concentration of 

IFN on the virus production; Figure 5D) were elevated only in the cancer and 

immunosuppressed virtual patients with severe COVID-19 (p-value < 0.05); differences 

between mild and severe virtual patients in the reference cohort were not observed. Values of 

𝜂𝐹,𝑀𝜑𝐼
 (half-maximal stimulatory (EC50) concentration of inflammatory macrophages on the 

IFN production; Figure 5E) were increased in cancer and immunosuppressed severe patients, 

but only in the latter group was the difference statistically significant (p-value < 0.05).  

 

Figure 5. Differences in parameter values between mild and severe patients in each virtual patient 

cohort. Differences in parameters associated with A) monocyte-to-macrophage differentiation by IL-6 
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(𝑝𝑀𝜑𝐼,𝐿
), B) IFN production rate by infected cells (𝑝𝐹,𝐼),  C) monocyte recruitment by infected cells 

(𝑝𝑀,𝐼), D) cell-related IC50 concentration of IFN on virus production (𝜖𝐹,𝐼), and E) EC50 concentration 

of inflammatory macrophages on the IFN production (𝜂𝐹,𝑀𝜑𝐼
). Box plots show the mean values of 

parameters in each cohort. Statistically significant differences in parameters between groups are marked 

by p-values above the box plots. A pairwise non-parametric Wilcoxon test was used to assess statistical 

significance (see Methods). 

We then performed a Kolmogorov-Smirnov test to check for statistically significant differences 

in parameter distributions between the mildest 10% and most severe 10% of virtual patients in 

all three VPCs (Supplementary Figures 2-9). Three parameters from the cancer VPC were found 

to differ from the reference VPC when considering the severe virtual patients (Figure 6A-6C). 

These included the rate of monocyte-to-macrophage differentiation by IL-6 (𝑝𝑀𝜑𝐼,𝐿
), the rate of 

monocyte recruitment by infected cells (𝑝𝑀,𝐼), and the IC50 concentration of IFN on virus 

production (𝜖𝐹,𝐼). We also found statistically different distributions of six parameters between 

the severe immunosuppressed and COVID-19+ reference VPs (Figure 6D-6I), again supporting 

the observation of increased immune dysregulation in these vulnerable populations. To further 

characterize the degree of these immunological differences, we also compared parameter 

distributions between the cancer and immunosuppressed VPCs and found a statistically 

significant difference in only one parameter (𝑝𝑀𝜑𝐼,𝐿
, the monocyte-to-macrophage 

differentiation by IL-6) between mild patients (Supplementary Figure 8) and no statistical 

differences between severe patients in those two groups (Supplementary Figure 9). 

 

Figure 6. Statistical differences in parameter distributions between severe virtual patients. 

Statistically significant parameter distributions were evaluated by comparison to the COVID-19 

reference cohort using a Kolmogorov-Smirnov test at a level of significance of 𝛼=0.05. Comparison of 

the COVID-19 reference to A)-C) severe cancer and D)-I) severe immunosuppressed. The parameter 

being compared is denoted on the horizontal axis. A) and E) 𝑝𝑀𝜑𝐼
,𝐿 (monocyte-to-macrophage 

differentiation by IL-6). B) and F) 𝑝𝑀,𝐼 (monocyte recruitment by infected cells). C) and G) 𝜖𝐹,𝐼 (cell-

related IC50 concentration of IFN on the virus production). D) 𝑝𝐿,𝑀𝜑𝐼
 (IL-6 production by inflammatory 

macrophages). H) 𝑝𝐹,𝐼 (IFN production rates by infected cells). I) 𝜂𝐹,𝑀𝜑𝐼
 (EC50 concentration of 

inflammatory macrophages on the IFN production). Red p-values indicate statistically significant 

differences between parameter distributions. 
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Elevated neutrophils are associated with the highest tissue damage in severe cancer and 

immunosuppressed patients 

Using the adjusted inflammation marker, we also examined the relationship between cytokines, 

cells, and lung tissue damage to distinguish potential severity drivers within each cohort. 

Overall, we found no correlation between model variables, except for a negative correlation 

between maximal IFN and damaged tissue (R ≤ -0.6, p-value < 10-8) in the three cohorts (Figure 

7A-7C). The highest degree of lung tissue damage (marked by red dots) was predicted in the 

most severe cancer and immunosuppressed patients (compared to mild ones), but not in the 

most severe patients in the COVID-19 reference cohort (Figure 7C).  

 

Figure 7. Relationships between maximal IFN and damaged tissue concentrations in virtual 

patients ordered by severity.  A) COVID-19+ patients with cancer. B) COVID-19+ patients with 

immunosuppression. C) COVID-19+ reference patients. In all three cohorts, maximum IFN 

concentrations were negatively correlated with the degree of damaged tissue. In the cancer and 

immunosuppressed cohorts (A and B), the most severe patients (i.e., those with the highest inflammation 

marker values) were found to have the most tissue damage, contrary to virtual patients in the COVID-

19 reference cohort (C). Patients are ordered from the lowest to higest inflammation marker values 𝛹𝑗. 

To uncover potential factors causing those differences, we analyzed the dynamics and the mean 

of maximum predicted values of the top 10% of patients (most severe) and bottom 10% (most 

mild) virtual patients.  Our model predicted a comparable amount of damaged tissue over time 

in the case of severe patients (Supplementary Figure 12). In agreement with findings on lung 

tissue damage (Figure 7), mean values of maximum damaged tissue were found to be increased 

only in severe cancer and immunosuppressed patients (Figure 8B). 
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Figure 8. Relationships between maximum neutrophil concentrations and damaged tissue in mild 

and severe virtual patients. Mean values of A) maximum neutrophils and B) damaged tissue were 

found to be statistically significantly (p-value < 0.05) increased in cancer and immunosuppressed virtual 

patients with severe COVID-19 versus those with mild disease. Statistical tests were performed using a 

pairwise non-parametric Wilcoxon test (see Methods). Statistical differences are marked by p-values 

above the box plots.  

Next, we investigated the dynamics and mean maximum values of other immune populations 

to look for a potential cause of that feature. Mean values of maximum IFN were decreased in 

severe patients versus mild patients in all three cohorts (Supplementary Figure 13B). Further, 

we found that neutrophils were highest in severe immunosuppressed and cancer patients, with 

this trend also observed in maximum tissue damage (increased values in severe cancer and 

immunosuppressed patients, Figure 8B) with respect to neutrophil concentrations (Figure 8A). 

To confirm this, we performed a pairwise non-parametric Wilcoxon test to check for statistical 

differences. Indeed, we found statistically significant differences in maximal damaged tissue 

and neutrophils values between mild and severe patients in the cancer and immunosuppressed 

cohorts (Figure 8), contrary to the reference cohort. While checking for differences in the 

maximum IFN concentrations, statistical tests confirmed the differences between mild and 

severe patients in all three cohorts (Supplementary Figure 13B).  

Cancer virtual patients experience overall higher viral loads 

Finally, our model predicted higher peak viral loads in both severe and mild cancer virtual 

patients as compared to virtual patients in the two other cohorts (Figure 9A). We hypothesized 

that this result was related to depressed initial neutrophil counts (𝑁0) in these virtual patients 

caused by chemotherapy-induced neutropenia40. To test this, we performed a sensitivity 

analysis by varying the initial concentration of neutrophils between 60% and 140% of its 

baseline value (see Methods). Decreasing the initial concentration of neutrophils (𝑁0) resulted 

in higher viral loads and maximum IL-6 and IFN concentrations (Figure 9B), seemingly 

confirming the assumed relationship between initial neutrophil concentrations and viral loads. 
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This suggests that viral load is not the sole driver of severity, which is rather determined through 

a combination of immunological features41. 

 

Figure 9. Cancer virtual patients with decreased initial neutrophil concentrations have higher 

viral load peaks. A) Viral loads in mild a)-c) and severe virtual patients d)-f). B) Sensitivity analysis 

determined that decreasing 𝑁0 (the initial concentration of neutrophils) causes higher peak viral load 

and peak IL-6 and IFN concentrations. 

 

DISCUSSION 

A better understanding of the immune dynamics and potential causes of severe COVID-19 

outcomes in vulnerable groups is essential to improving our understanding of factors driving 

immune responses during COVID-19, helping to lessen morbidity and mortality in these 

patients and to select best treatment courses. For example, patients with active cancers are more 

likely to experience worse COVID-19 disease outcomes as compared to those without 

cancer42,43. Similarly, individuals with immunosuppression triggered by lymphocyte-targeting 

therapies after organ transplantation have been reported to suffer from severe COVID-19 more 
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often than immunosuppression-free patients21.  Here, we used mathematical modelling and 

virtual patient cohorts to predict cellular immune response dynamics in COVID-19 in 

individuals with cancer or immunosuppression. Based on our previously developed 

mathematical model28, we generated virtual patients whose immunological trajectories 

corresponded to clinical observations4,5. By comparing predicted outcomes between virtual 

patients with the lowest and highest inflammation marker values both between and within 

cohorts, we distinguished biomarkers of immune dysregulation and severity, which has 

implications for drug development and clinical practices. 

Our findings suggest that all severe COVID-19 patients, regardless of existing 

immunosuppression or cancer diagnoses, experience CD8+ T cell depletion, higher IL-6 

concentrations, and importantly, delayed type I IFN peaks. Thus, these results further support 

the role of type I interferons in the control of SARS-CoV-2 infection severity44. We also 

observed delayed IFN peaks in some mild cancer and immunosuppressed virtual patients 

(Supplementary Figure 10 and 11). Relatedly, previous studies have found that IFN deficiency 

may be treated by anti-inflammatory therapies that target IL-645. Our model’s predictions 

further underline the major role of IL-6, which was found to be increased even in mild virtual 

patients in the cancer and immunosuppressed VPCs.  

By comparing parameter values between the top and bottom 10% of virtual patients according 

to severity (i.e., severe versus mild), we found significant differences in five of the seven 

parameters used to generate the VPCs. Three of them (monocyte recruitment by infected cells, 

half-maximal stimulatory concentration of IFN production by inflammatory macrophages, and 

half-maximal inhibitory concentration of IFN on the virus production) were noticeably 

increased in severe cancer and immunosuppressed patients (Figure 5), suggesting their roles as 

potential severity indicators in those groups. Comparing the remaining two parameter values 

according to severity revealed differences between and within cohorts. For example, the rate of 

monocyte-to-macrophage differentiation by IL-6 tended to be increased in severe patients and 

was highest in the immunosuppressed and cancer cohorts and lowest in the COVID-19 

reference cohort. This agrees with clinical findings from circulating blood cells those in the 

lungs in severe COVID-19 patients46. Further, IL-6 concentrations are higher in 

immunosuppressed patients4, in agreement with our model predictions. The rate of IFN 

production by infected cells was also predicted to be highest in mild patients in the COVID-19 

reference cohort as compared to the other two cohorts, again showing the significant role of 

IFN in coordinating a sufficient immune defense against SARS-CoV-2 infection. 

Although neutrophils play a crucial role in blocking fungal and bacterial infections47, their 

function in viral infection is not yet fully establlished48. When we decreased the initial 

neutrophil concentration to mimic neutropenia characteristic of cancer patients, our model 

predicted higher peak viral loads in both severe and mild virtual cancer patients (Figure 9A). In 

our model, neutrophils quickly remove free viral particles and cause damage to all cells 

(including infected cells), hence a lower initial concentration of these cells may result in a 

higher number of infected cells leading to increased viral production at the beginning of 

infection. Later, when neutrophil concentrations in cancer virtual patients were predicted to 

reach comparable levels to virtual patients in the other cohorts (around day 7 post-infection), 

we observed a similar trend in the viral load dynamics, namely that its concentration also 

decreased and was comparable to those predicted in the two other cohorts. As a higher viral 

load peak was observed in severe patients, our results suggest that pre-existing neutropenia in 
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cancer patients may be associated with adverse outcomes, consistent with findings from other 

studies15. However, throughout the course of infection, our model predicts that cancer patients 

with severe COVID-19 will nonetheless experience neutrophilia (Figure 8A), in agreement with 

clinical studies like that of Lee et al.37.  

Overall, our study supports the continued investigation of longitudinal immunological 

dynamics in groups vulnerable to COVID-19 by highlighting key mechanistic differences in 

their immune responses. In particular, our results revealed the effect of pre-existing neutropenia 

on viral load in cancer patients, which can result in a more severe course of infection49. 

However, we also found an association between elevated neutrophils and high tissue damage 

in severe COVID-19+ cancer and immunosuppressed patients, which suggests the potential 

danger of neutrophilia even during immunosuppression. This may explain why some studies 

found no connection between neutropenia and severe COVID-1937, and even found decreased 

neutrophils beneficial. However, as other studies identified low neutrophil count as a potential 

risk factor15 in COVID-19, our findings support accounting for neutropenia in treatment 

decisions. Interestingly, when considering full cohorts, we did not find any correlations between 

maximum neutrophil count and damaged tissue. This lack of association is notable given the 

key roles of cell-mediated immunity during infection with SARS-CoV-2. For example, through 

the release of neutrophil extracellular traps and reactive oxygen species, neutrophils can cause 

extensive damage to tissues, so a correlation between maximum neutrophil count and damaged 

tissue would be expected in all patients. Moreover, by adjusting immunological trajectories to 

available CD8+ T cell and IL-6 data, our model predicted elevated pro-inflammatory 

compounds (such as GM-CSF) in both cancer and immunosuppressed patients. Thus, our 

results suggest the consideration of inhibitory therapies, as GM-CSF has been identified as a 

driver of lung tissue damage50, and underline the delicate balance that must be struck to generate 

a robust yet controlled response to SARS-CoV-2. Together, this work puts forward a hypothesis 

for increased severity in both cancer and immunosuppressed patients, whose immunological 

systems are dysregulated either through disease or by immunomodulatory treatments.  

Virtual populations based on mechanistic mathematical models enable the study and prediction 

of immune responses to viruses or vaccination without the need for extensive amounts of 

clinical data, making the approach a promising tool to study emerging infectious diseases and 

a variety of other contexts28,51–54. Nonetheless, our model has limitations. Specifically, certain 

innate immune cells (i.e., natural killer cells55) and cytokines that play an important role in 

fighting SARS-CoV-2  (i.e., IL-1, IL-12, TNF-𝛼56) were not considered in our model. However, 

the major model component IL-6, the main driver of T cell depletion throughout the infection, 

mimics the effects of other cytokines and drugs that inhibits T cell recruitment, suggesting our 

results can be extended to other anti-inflammatory cytokines not included in our model.  

Further, our model did not account for the humoral response provided by B cells and antibodies, 

and thus, it has limited application to vaccination studies. Adding those components would 

enable the identification of other severity-associated factors and significantly improve our 

understanding of the intricate dynamics of the immune response to SARS-CoV-2 and other 

viral infections. Further, the addition of humoral immunity to our model would enable the 

identification of the mechanisms of decreased vaccine efficacy, as reported in many studies11,57, 

in vulnerable groups. 

In summary, our findings corroborate that unregulated immune responses in cancer and 

immunosuppressed patients place them in a high-risk position of experiencing severe COVID-
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19. Furthermore, the approach presented here can be used in complement to experimental and 

clinical studies of COVID-19 and other viral respiratory diseases to comprehensively explore 

immune response kinetics after infection, thereby improving our understanding of the disease 

severity. 
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