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In addition to being a glucose precursor in liver and kidney, l-lactate is now also being recognized as 
an energy substrate in most cells via its oxidation to pyruvate. This oxidation, assumed to occur in the 
cytosol, is catalyzed by l-lactate dehydrogenase with pyruvate subsequently catabolized in the mito-
chondria. However, recently mitochondria were recognized to play a role in l-lactate metabolism: 
the existence of a mitochondrial l-lactate dehydrogenase (m-l-LDH) was suggested by Dianzani 
(1), and later demonstrated by Baba and Sharma (2) to be located in the mitochondrial matrix (3). 
Indeed, l-lactate transport and metabolism was shown in various mitochondria, including skeletal 
muscle (4) rat heart (5), liver (6), brain (7–9), cerebellar granule cells (10), rabbit gastrocnemius (11), 
sperm cells (12), pig liver (13), and even plant (14). Thus, the existence of m-l-LDH, as reviewed by 
Passarella et al. (3), Brooks (15), and Schurr (16), was recognized with its inclusion in the MitoCarta 
(http://www.broadinstitute.org/pubs/MitoCarta/index.htrnl). As expected, in light of the presence of 
the l-LDH in the matrix, the occurrence of carriers for l-lactate has been shown in functional studies 
with purified, coupled mitochondria. These include the l-lactate/H+ symporter and the l-lactate/
pyruvate and l-lactate/oxaloacetate antiporters (3). Surprisingly, the overwhelming evidence for an 
m-l-LDH located inside mitochondria is not universally accepted, with some scientists still being 
skeptic about the existence of m-l-LDH, while others localizing m-l-LDH in the intermembrane 
space (17). It is our opinion that the skepticism could originate due to difficulties in isolating coupled 
mitochondria, not an easy task, in particular with skeletal muscle samples, or not being careful 
enough in selecting reaction media and in using inhibitors at the correct concentration (11). That 
m-l-LDH is localized inside mitochondria will be shown below.

iS l-LACTATE BEinG TRAnSpORTED AnD METABOLiZED  
in CAnCER CELL MiTOCHOnDRiA?

Yes, it is. Although in the 1920s, Warburg found that cancer cells prefer to produce ATP by gly-
colysis with l-lactate production, to the best of our knowledge, the mitochondrial metabolism of 
l-lactate had not been investigated in cancer cells until 2010, when the first evidence for l-lactate 
mitochondrial metabolism in these cells (already reported in 2008 by Gabriella Chieppa in her PhD 
thesis at the University of Molise) was published (18). In this case, to study l-lactate transport and 
metabolism in mitochondria isolated from both normal and cancer prostate cells, spectroscopic and 
polarographic techniques were used, in which either m-l-LDH reaction or oxygen consumption by 
mitochondria, supplied with externally added l-lactate were monitored, respectively (19), rather 
than employing more involved procedures, available in molecular biology, genetics, and chemistry 
laboratories. The former two techniques were chosen since they afford the continuous monitor-
ing of the kinetics of the investigated processes in experiments that last for several minutes where 
mitochondria remain coupled. By contrast, measurements using the latter methods are usually made 
once the processes have already been completed. Accordingly, an increase in the redox state of the 
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intramitochondrial pyridine nucleotides, as shown by fluorimet-
ric measurements, upon the addition of l-lactate to mitochondria 
indicates that l-lactate metabolism occurs inside the organelles 
via an NAD+-dependent m-l-LDH; unfortunately, the occurrence 
of the mitochondrial l-lactate metabolism in cancer cells was not 
quoted in Ferguson et al. (17) possibly because the authors of the 
review consider the spectroscopic and polarographic techniques 
to be “problematic,” despite its widespread use by numerous 
scientists. That theirs is a minority opinion might be exempli-
fied by quoting from a review by Mayevsky and Rogatsky (20), 
which states that “The large numbers of publications by different 
groups testify to the valuable information gathered in various 
experimental conditions. The monitoring of NADH levels in the 
tissue provides the most important information on the metabolic 
state of the mitochondria.” The existence of m-l-LDH can be also 
immunologically confirmed in mitochondria that are proven to 
be free of cytosolic contamination.

Notice that in the case where m-l-LDH is proposed to 
be localized in the intermembrane space, the increase in the 
intramitochondrial pyridine nucleotide fluorescence is explained 
as follows: l-lactate enters the mitochondrial intermembrane 
space where it is oxidized to pyruvate, which in turn crosses the 
mitochondrial inner membrane to be oxidized inside the mito-
chondria via the pyruvate dehydrogenase complex [for review, 
see Ferguson et al. (17)]. Such a mechanism is not supported by 
various experimental findings. For instance, in de Bari et al. (18), it 
was shown that NAD+ reduction proceeds despite the presence of 
arsenite, an inhibitor of pyruvate dehydrogenase, but is inhibited 
by oxamate, an inhibitor of l-LDH. Additional evidence against 
the presence of m-l-LDH in the intermembrane space emerges 
from experimental results showing that l-lactate enters mito-
chondria under conditions where pyruvate is a non-penetrant 
compound (21) or where the pyruvate/H+ symporter is blocked 
by an inhibitor (6). These experimental approaches can be also 
applied to measurements of oxygen consumption (in the presence 
or absence of ADP), proton efflux and membrane potential gen-
eration in the future. By applying the control strength criterion 
with various non-penetrant inhibitors (19) it can be established 
whether or not the rate of the above processes mirrors that of 
l-lactate transport across the mitochondrial membrane. Thus, 
l-lactate transport can be investigated quantitatively, including 
the occurrence of hyperbolic kinetics, pH profile, etc. Moreover, 
comparison made between the inhibition profiles of pyruvate and 
l-lactate-dependent mitochondrial processes through the use of 
compounds that are unable to enter mitochondria allows for a 
distinction between l-lactate and pyruvate carriers.

Briefly, it has also been shown that externally added l-lactate 
can enter both normal and cancer prostate cells and in particular, 
in a carrier-mediated manner, enters their mitochondria, where 
an l-LDH exists and is located in the inner compartment. The 
m-l-LDHs have been demonstrated to differ from the cytosolic 
enzymes that themselves differ from one another. Normal and 
cancer cells show differences with respect to m-l-LDH protein 
level and activity, where both the enzyme expression and activity 
are higher in cancer cells.

In 2011, the existence of monocarboxylate transporter (MCT) 
and LDH proteins in mitochondrial reticula of breast cancer cell 

lines was demonstrated (22). In that case, the expression of both 
MCTs and l-LDH was measured, and their mitochondrial locali-
zation was determined via immunofluorescence, a technique 
that does not allow for the identification of the submitochondrial 
localization.

A broader investigation of l-lactate transport and metabolism 
in cancer cell mitochondria was carried out in human hepatocel-
lular carcinoma (Hep G2) cells (21) in which gluconeogenesis 
takes place (23). Hep G2 cell mitochondria (Hep G2-M) possess 
an m-l-LDH restricted to the inner mitochondrial compartment. 
Cytosolic and mitochondrial l-LDHs were also found to differ 
from one another in their saturation kinetics. The occurrence of 
a carrier-mediated l-lactate transport in these mitochondria has 
also been shown. Importantly, the efflux of various metabolites, 
including pyruvate, oxaloacetate, malate, and citrate, resulting 
from l-lactate addition to mitochondria was first shown, this 
giving a first insight into the role of mitochondrial metabolism 
of l-lactate; accordingly, the occurrence of an l-lactate/pyruvate 
shuttle devoted to the oxidation of the cytosolic NADH was 
also shown. Ultimately, the removal of the oxidation product 
by carrier-mediated transport and mitochondrial metabolism 
overcomes any theoretical thermodynamic difficulty which was 
considered to rule out any l-lactate oxidation in the mitochondria.

These findings strongly suggest that a revision of the dogmatic 
view of glucose metabolism is needed with a special focus on the 
role of l-lactate and m-l-LDH in gluconeogenesis. Hence, the 
Cori cycle (formulated in 1929 as an energy-requiring metabolic 
pathway in animals, where carbon atoms of glucose pass along 
the circular route: muscle glycogen  →  blood lactate  →  liver 
(where gluconeogenesis occurs)  →  blood glucose  →  muscle 
glucose  →  muscle glycogen) demands revision, too. In this 
regard, cellular l-lactate oxidation, which is necessary for the 
production of glucose in the Cori cycle, has been traditionally 
postulated to take place in the cytosol, but is it? The cytosolic-
l-LDH (c-l-LDH) is a reducing enzyme, the final step of the 
glycolytic pathway, which converts pyruvate to l-lactate, and 
thus provides the regeneration of NAD+. This reaction should 
proceed unabated, independently of the presence or absence of 
oxygen, as the standard free-energy ∆G ′( )0  change of pyruvate 
conversion to l-lactate is about −6  kcal/mol. In addition, the 
high affinity of pyruvate to c-l-LDH would explain the fact that 
the normal [l-lactate]/[pyruvate] ratio in blood and other tis-
sues is >10, a value that cannot correspond with the proposal 
of pyruvate as the end product of glycolysis under normal 
conditions. Therefore, the dogmatic portrayal of this reaction as 
bidirectional is misleading and has been accepted to date due to 
the absence of a possible alternative. We contend that l-lactate 
oxidation back to pyruvate does not take place in the cytosol, but 
rather, it occurs in the mitochondria. Indeed, there are only two 
options to prevent l-lactate accumulation in the cytosol, either 
l-lactate is transported out of the cell (under anaerobic condi-
tions) and/or is oxidized via m-l-LDH upon its transport into 
the mitochondrion (under aerobic conditions). Therefore, even 
if we agree with Lu et al. (24) that “the majority of glycolysis-
derived pyruvate is diverted to lactate fermentation,” we cannot 
accept that l-lactate is “kept away from mitochondrial oxidative 
metabolism.”
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Of special interest is the fact that pyruvate cannot enter Hep 
G2-M. In fact, contrary to malate  +  glutamate and l-lactate, 
externally added pyruvate fails to cause either oxygen consump-
tion or membrane potential generation [see Pizzuto et  al. (21) 
for details]. Notice that an impairment of pyruvate transport in 
cancer cells has been reported by Paradies et al. (25). Therefore, 
independently of the theoretical unfeasibility of l-lactate oxida-
tion in the cytosol, as was explained above, the classic Cori cycle 
cannot occur in Hep G2cells. Therefore, we offer a revised Cori 
cycle (Figure 1), which involves both the mitochondrial carriers 
that mediate the l-lactate-dependent traffic and the m-l-LDH, 
which provides pyruvate inside mitochondria. Accordingly, the 
appearance outside mitochondria of oxaloacetate and malate 
derived from l-lactate uptake and metabolism via m-l-LDH, 
pyruvate dehydrogenase, pyruvate carboxylase, and malate 
dehydrogenase and by exchanges, likely due to the l-lactate/
oxaloacetate and l-lactate/malate antiporters, confirms an 
anaplerotic role for l-lactate in gluconeogenesis in which 
mitochondria play a unique role. Importantly, the addition of 
l-lactate to Hep G2-M results in the appearance outside mito-
chondria of citrate, the fatty acid precursor. Accordingly, by 
using high-resolution mass spectrometry, l-lactate uptake into 
mitochondria of HeLa and H460 cells was found and proved 
to result in lipid synthesis; additionally, transmission electron 

microscopy confirmed that LDH is localized to the mitochondria 
(26). Surprisingly, the anaplerotic role of l-lactate mitochondrial 
metabolism has not been considered when cancer metabolism was  
“reexamined” (27).

We believe that the proposed revision of the Cori cycle, neces-
sary for Hep G2 cells, should also be considered in all other types 
of cells where mitochondrial metabolism of l-lactate is active. For 
instance, partial reconstruction of in vitro gluconeogenesis aris-
ing from mitochondrial l-lactate uptake/metabolism was shown 
in the absence of LDH outside mitochondria (6).

The role of the mitochondrial l-lactate metabolism merits 
further focus: given that hydrogen peroxide production in the 
tumor microenvironment fuels the anabolic growth of cancer 
cells (28), a possible role of the putative mitochondrial l-lactate 
oxidase (LOX) which generates hydrogen peroxide in rat liver 
mitochondria (29) should be investigated; the LOX existence 
in Hep G2-M appears to be consistent with the evidence that 
rotenone, which blocks oxygen consumption induced by the 
addition of malate + glutamate fails to inhibit oxygen consump-
tion induced by the addition of l-lactate.

AUTHOR COnTRiBUTiOnS

SP conceived this opinion, shared it and wrote the paper with AS.

FiGURE 1 | Cori cycle revisited in Hep G2 cells. Given that pyruvate cannot enter Hep G2-M, as shown in Pizzuto et al. (21), l-lactate produced in the muscles 
reaches the liver via the blood stream and from the cytosol enters mitochondria; in the matrix l-lactate metabolism gives rise to pyruvate (PYR) via m-L-LDH  and 
then to oxaloacetate (OAA) and malate (MAL) that are exported from the mitochondria to the cytosol via three putative carriers to be used for the l-lactate pyruvate 
shuttle and for gluconeogenesis to occur via a mechanism similar to that already shown by de Bari et al. (6).
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