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Intron retention (IR) occurswhen an intron is transcribed into pre-mRNAand remains in thefinalmRNA. An
increasing body of literature has demonstrated a major role for IR in numerous biological functions and in
disease. Here we give an overview of the different computational approaches for detecting IR events from
sequencing data.We show that these are based on different biological and computational assumptions that
may lead to dramatically different results. We describe the various approaches for mitigating errors in
detecting intron retention and for discovering IR signatures between different conditions.
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1. Introduction

Amongst the three major types of alternative splicing (AS) that
include exon skipping/inclusion, alternative 50 and 30 splice-site
selection and intron retention (IR), the latter has until recently
been regarded as an oddity in mammals; IR was often added to
the list for no other intent than to be exhaustive. However, recent
discoveries about the role IR can play in fine-tuning gene expres-
sion [1–3] as well as the observation of characteristic IR patterns
[4–9] highlight the value of investigating IR in transcriptomic stud-
ies. Numerous reports have demonstrated a regulatory role for IR
in hematopoiesis [1,2], neuronal differentiation [10], germ cell dif-
ferentiation [11] and CD4+ T cell activation [12] amongst others. In
addition, a recent analysis of 1812 cancer patient samples showed
that over 18% of splicing-associated single nucleotide variants
caused IR and most of these events affected tumor suppressor
genes [13]. Finally, the analysis of 2573 samples showed that IR
occurs in all tissues analyzed and can affect over 80% of all coding
genes [4]. Measuring IR can help decipher gene-level variations
and inter-connections between transcriptional loads, structural
variations and phenotypes [14,15].

IR has been to demonstrated to downregulate gene expression
in numerous systems by triggering the nonsense mediated mRNA
decay (NMD) pathway. NMD recognizes transcripts with prema-
ture stop codons (PTC) that could potentially generate C-terminal
truncated proteins and degrades them. This surveillance mecha-
nism can thus rapidly degrade IR transcripts if they harbor a PTC.
Given that introns are much longer than exons and under less
selective pressure to conserve open reading frames, the probability
that an IR event harbors a PTC is high and IR transcripts are thus
good candidates for degradation via NMD. Initially, transcriptomic
and bioinformatic analyses of NMD concluded that it was not cou-
pled with mRNA splicing and that most PTC containing transcripts
do not have major functional roles [16], thus relegating NMD to the
role of scavenger [17]. The same team however recently revised
their view on the functional importance of NMD [3] and the cur-
rent consensus is that it couples with IR (and other forms of AS)
to regulate gene expression in numerous systems [1,3,18–20].
The importance of NMD is further underscored by the fact that
deletion of its core components result in embryonic lethality [21].

RNA-seq data is well suited for resolving local exon connectivity
because sequencing reads are sufficiently long to cover exon-exon
junctions. It is also well suited for measuring global gene expres-
sion because the high number of reads that map to genes generally
enables the use of powerful statistical models. Detecting and mea-
suring IR with RNA-seq is more complex. The technical biases that
are known to distort gene expression levels (eg: GC content, ampli-
fication biases) and other types of splicing, also affect IR measure-
ment. In addition, measurement of intronic expression is
challenged by numerous factors. Within introns, highly expressed
features such as small nucleolar RNAs, microRNAs or unannotated
exons may erroneously inflate count-based measures of intronic
expression. Conversely, low complexity regions, common in
introns, prevent unique mapping of reads. Because retained introns
are generally expressed at a fraction of their flanking exons, uncor-
rected biases can massively disrupt IR estimation.

Transcriptome-wide evaluation of IR by computational means is
still a budding field of investigation. In many studies, IR was
assessed via custom and briefly detailed procedures, which is prob-
ably due, in part, to the fact that few dedicated and comprehensive
tools have been published so far. In the following, we give a survey
of the technical biases that confound IR detection and available
computational methods to tackle IR screening. We emphasize
three crucial steps which are: the preparation and quality control
of the sequencing data and the reference transcriptome; generat-
ing metrics that reflect the biological signal of IR transcripts and
using a model to discover condition-specific IR events.
2. IR detection

2.1. Filtering sequencing data

Unlike sequencing reads that map to exon-exon junctions, reads
that map to introns can originate from DNA contamination caused
by ineffective DNase treatment or from pre-mature mRNA. One
method to detect DNA contamination is to measure reads across
splice sites and check that the majority of introns display high
splicing efficiency (above 90%) [22]. Another approach, imple-
mented in [4] is to verify that the ratio of the number of reads that
map to intergenic regions to the number that maps to coding
regions is less than 10%. Another source of bias is that intronic
reads may originate from nascent and pre-mature RNAs [23]. So
as to lessen signals due to unprocessed transcripts and overlapping
antisense transcripts, it is recommended to use Poly-A enriched
RNA-seq (or cytoplasmic fractionation) and strand-specific proto-
cols [4].

Regarding library size, IR occurs at relatively low frequency in
mammals, and introns tend to be substantially longer than exons.
Determining an optimal library size obviously depends on many
experiment-specific factors and on the IR effect size considered
as biologically significant, 35 millions mapped reads for a one-
versus-one experiment was suggested as an optimum for detection
of differential intron usage (based on a resampling approach, [24]).
In order to bypass intronic alignment biases, it has been suggested
to consider only splice junction reads or similarly to focus only on a
window centered on splice sites. Nonetheless, those junction-only
analyses are likely to be more affected by splicing variations in
flanking exons and lead to even more unstable estimates. Accord-
ingly, previous studies pointed out that they require higher
sequencing-depth (at least 70 million reads per sample, ideally
more than 150 million reads) [23].
2.2. Defining reference intronic sequences

Sequencing reads that map to intronic intervals may originate
from several different sources such as overlapping genes. These
confound measurements of the magnitude of true IR. It is therefore
crucial to correctly define the intronic intervals that will be used to
measure IR. Here, two main approaches have been adopted (cf:
Fig. 1), each calling for precautions for interpretation and specific
processing to avoid false positive detection.
2.2.1. The all-introns view
A first possibility is to analyze all intronic intervals present in at

least one annotated transcript model [4]. Although this allows to
screen the largest set of candidates, this comes at the expense of
having to deal with peaks of intronic alignments caused by
expressed alternative exons and redundant IR calls due to overlap-
ping introns.
2.2.2. The measurable introns view
Measurable (or independant) introns are (parts of) introns that

do not overlap with any annotated exon [24,26,27,30]. They are
obtained by subtracting merged exons from genes. This comes
with the advantage to simplify the analysis of introns flanked by
exons with known alternative donor sites, but ignores introns fully
overlapped by annotated exons.



Fig. 1. Defining intronic intervals to be analyzed. Comprehensiveness of transcript annotation and the selection of reference intronic sequences have a major impact on IR
detection. In the example, we consider a gene having three possible isoforms (A, B and C). Exons are represented as plain rectangles and introns as thick black lines. If only
Isoforms B and C were annotated, the starred interval (*) would not be defined as an intron and most likely not detected as retained. Colored boxes indicate whether the
annotated introns match the ‘‘all introns” or ‘‘independent/measurable intron” criteria used by current algorithms.
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2.3. Overcoming sequencing and alignment artifacts

Even when appropriate sequencing protocols have been used,
several sources of confusion remain that can only be overcome
with computational means. These are detailed below and in Fig. 2.

2.3.1. Overlapping features
First, the sequencing protocol may capture molecules overlap-

ping or mapping within introns, such as small nucleolar RNAs,
micro RNAs, unannotated exons or alternative 50 and 30 splice-
sites. They form characteristic peaks of reads within intronic
regions that may induce false IR detections and result in inaccurate
quantification if not properly identified and filtered.

2.3.2. Repeated regions
Relatively to exons, introns are long and poorly conserved, often

contain low mappability regions (eg: duplicated regions like trans-
posons [31–33] or repeated regions such as microsatellites [34]
which impair correct IR level estimations.

2.3.3. Low coverage of flanking exons
Thirdly, sequencing and alignment artifacts may occur in flank-

ing exons. For example, GC rich exons are under-covered and very
Fig. 2. Potential sources of bias and confusion: a very unfortunate gene. Only intron 3 is
peak in alignments, which can artificially inflate the estimation of IR. Intronic alignments
is hampered by multiple biases. First, the presence of a low mappability region (repea
alignments in that region. Secondly, high GC content in the 50 exon explains the lack of e
based on them. Thirdly, due to its long length, it tends to be more sparsely covered. (For in
the web version of this article.)
small exons are more difficult to map. This may perturb or inflate
IR measures, especially those that only measure reads directly sur-
rounding the intron. They may also lead to missed IR events as the
junctions are weakly supported.

2.3.4. 30 Coverage bias
PolyA-enriched RNA-seq data usually display a marked 30 cover-

age bias, so that most 30 introns are likely to be more covered and
thus more easily captured than 50 ones. This should be kept in mind
for any inference regarding any positional bias of intron retention.

In practice, the prevailing strategy for classifying introns relies
essentially on user-defined thresholds. Here, we summarize the
different strategies used by IR detection tools, and indicate the
parameter values suggested by their respective authors when they
exist (Fig. 3 and Table 1).

2.4. Implemented strategies to pinpoint reliable IR events

Although numerous computational methods have been devel-
oped to estimate splicing efficiency and to model sequencing
errors that may affect their estimation, we have decided to list here
those approaches that specifically cater to the difficulties of detect-
ing IR.
retained in this example. In intron 1: expression of an overlapping feature causes a
in intron 2 originate from an unanottated exon. Intron 3 is retained but it’s detection
ted A sequence in red) would result either in a gap or in high uncertainty in read
xon-exon junctions and 30 exon-intron reads and may affect filtering and IR metrics
terpretation of the references to colour in this figure legend, the reader is referred to



Fig. 3. Standard implementation of computational detection of IR events.
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Table 1
Computational tools available to perform IR detection and their main features.

Year Publication Language Intron definition IR measure Low mappability
correction

Unknown overlapping events
detection

MISO [25] 2010 Nature Methods Python Independent introns PSI No No
KMA [26] 2015 arXiv Python and R Measurable introns PSI No Coverage analysis (Probabilistic test)
iRead [27] 2017 bioRXiv Python Independent introns FPKM No Coverage Analysis (Shannon entropy)
IRFinder [4] 2017 Genome Biology C++ All Introns IRratio Yes Coverage Analysis (Detection of

outlier regions)
IntEREest [24] 2018 BMC Bioinformatics R Independent introns PSI or FPKM Optional No
ASDT [28] 2018 ATM Perl No (Reference-free) No No Yes
JUM [29] 2018 PNAS Perl No (Reference-free) No No Yes
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Keep Me Around (KMA) [26] uses the measurable introns
approach. Transcripts are quantified using eXpress [35] or Kallisto
[36,37] and a PSI value is computed to evaluate IR levels (cf: Quan-
tifying IR levels).

Spurious intronic signals are spotted by finding the longest
alignment gap in an intron and calculating the probability of
observing such a long gap given the intron’s expression and if
the distribution were uniform.

The authors selected introns with at least three uniquely
mapped reads, cumulated TPM values for non-IR transcripts
greater than 1 and introns with zero-coverage regions longer than
20% of the intron length [38].

IRFinder [4] makes the choice to screen all introns derived from
the annotation. Introns that overlap with any known exon or RNA
molecule are marked in the output.

A procedure is implemented to identify lowmappability regions
and exclude them and their reads from the subsequent calculation.
Potential other artifacts are handled by discarding bases with out-
lier read depth value compared to the average intron depth.

The IRratio and several other complementary metrics are then
computed to evaluate support for IR.

Suggested parameters values for IRFinder are: IRratio > 0.1, and
at least 3 reads supporting intron exclusion on both sides.

In iRead [27], reference introns are provided by the user.
Suspect cases are likened to non-uniform coverage. Read cover-

age uniformity is quantified by the Shannon’s entropy of read dis-
tribution along the intron and low entropy is associated to a non-
uniform read coverage in the intron.

By default, iRead will select intron having FPKM > 3, at least one
exon-intron junction read and the normalized entropy-score > 0.9.

IntEREst [24] computes FPKM and PSI values for independent
introns. Optionally, low mappability regions can be excluded from
the calculations. No specific guidelines are provided to select IR
events, but data are formatted for some methods for performing
differential analysis.

It is worth emphasizing that each approach makes use of pre-
fixed threshold values for all intronic regions. Most of these values
are defined according to the coverage profile expected for (well-
behaved) short length medium-coverage introns, and are maybe
the most straightforward way to guard from the bulk of artefactual
detections. However, introns form a highly heterogeneous set of
regions, hugely differing in length, inner and flanking coverage
and sequence feature. For example, on genes having sparse cover-
age, chances to observe counts on a very small pre-specified area of
the genome are quite low. Therefore, filters on the number of junc-
tion reads are likely to exclude most of their introns from further
analysis. Very long introns are especially problematic and in prac-
tice these regions have little chance to be covered at their full-
extent, and well generally fail on the hard cutoffs set by these algo-
rithms. It is thus clear that no universal threshold can be conve-
nient in all cases, and that any rigid thresholding is likely to
introduce a severe selection bias. We thus argue that a sensible
choice for the various parameters must be intron-specific and
encourage the development and use of models that account explic-
itly for sequence features and coverage variations.

3. Quantifying IR levels

Though essential, devising a computable and robust metric that
reflects ‘‘splicing efficiency” or oppositely the level of IR can be dif-
ficult. Three types of alignments should be taken into account [18].
Intronic reads and reads that span the flanking exons are informa-
tive of the level of IR. In addition, all the remaining alignments, can
indicate how reliable the sequencing data is and what degree of
confidence we may have in each IR event. The most commonly
used ratios to quantify IR are the percentage spliced in and the
IR-ratio, both described below.

3.1. Percentage spliced-in

Alternative splicing event frequencies are commonly quantified
by the percentage spliced-in (PSI) ratio [29]. An intronic version
has been suggested [19] as the number of reads supporting the
retention of the intron against the number of reads supporting
its exclusion. In practice, a transcript-level quantification is per-
formed using an annotation of IR-free isoforms augmented with
independent introns (taken as dummy transcripts). The PSI for a
given intron can be formulated as:

PSI ¼ IntronTPM
IntronTPM þP

transcriptsTPM

where the sum is performed across all annotated transcripts of the
same gene not retaining an intron.

3.2. IR ratio

This metric is to reflect splicing efficiency as the portion of
informative reads which come from a transcript retaining the
intron, that is:

IRratio ¼ IntronicAbundance
IntronicAbundanceþ NormalSplicingAbundance

where Intronic abundance is measured by the median [4] or average
[39] intron depth. The abundance of normal splicing is taken as the
number of reads spliced across the intron.

These ratios tend to show high fluctuations and their behavior
is difficult to model. This may explain why, so far, no approach
has been developed to estimate dispersions and confidence inter-
vals. Importantly, this hinders the identification of robust and
reproducible patterns based on their observed values. Although
these metrics can be employed, as a proxy for splicing efficiency,
to call manifest IR events, additional statistics are required to infer
intra- and cross-sample variation levels.



Table 2
Available computational methods to perform IR differential analysis.

Method Year Language IR-specific IR measure Normalization For library
size

Control for gene
expression

Modeling of
biological
variability

Statistical Framework

edgeR-IR* 2010 R No/Yes** Intron bin count TMM (ref) No/Yes** Yes Generalized Linear Model
DESeq2-IR* 2014 R No/Yes** Intron bin count Variance estimation and

rescaling (ref)
No/Yes** Yes Generalized Linear Model

DEXSeq-IR* 2012 R No/Yes** Intron bin count Variance estimation and
rescaling (ref)

Yes Yes Generalized Linear Model

iDiffIR 2018 Python Yes Average per base
read coverage

TMM (ref) Yes Yes LogFC statistic and Z-test

* These refer to IR-tuned versions of existing software, and may require custom pre-processing.
** After IR-specific tuning.
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One of the major difficulties for quantifying splicing efficiency is
due to the fact that the exons flanking an intron may connect not
only to each other but with other exons from the same gene to
form different isoforms. This hampers the estimation of the portion
of reads to attribute to the transcripts in which the intron is
spliced. The two measures presented above (PSI and IRratio)
address this problem differently. So as to overcome global varia-
tions in gene coverage caused by alternative exon usage, the strat-
egy behind the IRratio is to only make use of the junction-crossing
reads that hit any one of the two exons flanking the intron. The
maximum value between the left and right quantities is then taken
as a means to mitigate against the existence of multiple isoforms
that connect to the flanking exons. However, the number of junc-
tion reads tend to be highly dispersed with high coverage, and to
take zero values when the coverage is low. This may incidentally
affect estimation accuracy. On the other hand, by using informa-
tion across the whole transcript to evaluate the gene coverage,
the PSI estimator might be more resistant to these local variations.
Nonetheless, it would be of interest to assess the quality of the PSI
estimates on genes which undergo manifold alternative splicing
events [40,41].

4. Cross-sample comparison

Inferring differences in IR between conditions necessitates a
statistical framework to combine biological replicates, assess dis-
persion of IR level estimates and control the false positive rate.
Moreover, sample read abundances need to be normalized to
account for variations in library size [42]. Moreover, the coverage
depth of an intron is correlated to its gene coverage; sample com-
parison thus necessitates strategies to control for differences in
gene expression [23].

To our knowledge, currently four implemented frameworks ful-
fill these requirements (cf: Table 2). In regards of their statistical
methodology, we split them into three families of approaches.

4.1. Intron-bin count-based methods

The first two approaches re-use existing methods that were pri-
marily devised either for gene expression [43,44] or exon usage
[30,45] analyses, after some reworking of the data to adapt them
to IR. They are count-based. To adjust for differences in library size,
a gene-wise normalization factor is determined and applied to all
(exon and intron) bins, as in usual gene expression differential
analyses.

The authors of ASpli1 suggest to adjust each intron bin counts B_
{i}, in each sample s, by biological condition through:
1 https://www.bioconductor.org/packages/release/bioc/html/ASpli.html.
Bi

GCondition
� G

�

where G_{Condition} is the average gene count in condition and bar
{G} the average gene count across all samples. Classical testing pro-
cedures (either of edgeR or DESeq2) are then applied to these
adjusted counts to infer a set of differential introns.

In the DEXSeq-IR method, for each intron, two count bins are
considered: the intron bin and the union of all the remaining bins.
The average bin count is modeled via a negative binomial general-
ized linear model with interaction term.

In more details, for an intron indexed by i in a sample j:

log2 meanIntron
ijl

� �
¼ bSample

ij þ lbIntron
i þ bIntronxCondition

iC

where l = 1 for the intron bin and 0 otherwise.
The sample parameter b_{Sample} adjusts internally for the

gene expression level and differences in intron usage between con-
ditions is inferred by testing whether the interaction term is signif-
icantly different from zero2.

As described previously, so as to limit spurious noise in intronic
read counts, it may be worth refining further intron bin counts by
removing reads that map to artifact-prone intervals. Several detec-
tion softwares already output these corrected read counts [4,24].

4.2. Average intron coverage method

The third and most recent approach, iDiffIR (implemented but
not yet published, https://bitbucket.org/comp_bio/idiffir, [39,46])
is primarily designed for IR.

IR levels are quantified, from genomic unique alignments, by
the average per base read coverage (over the intron interval). To
account for library size, TMM normalization [47] is applied, sepa-
rately, for intron and exon per base read counts. Per base counts
are further normalized to force overall gene coverage to be equal
across conditions.

The test statistic is a corrected log fold change between the
average read coverage in each of the conditions compared:

logFC Ið Þ ¼ log2
aþmean I1ð Þ
aþmean I2ð Þ

� �

The correction parameter a is a pseudo-count whose value is
chosen to minimize the log fold-change and control large values
caused by lowly covered introns.

The biological intuition of splicing efficiency translates quantita-
tively as the proportion of emitted transcripts which retain an
intron. However, owing to short read size and rarity of IR events,
this frequency cannot be reliably estimated from RNA-seq data.
2 https://www.bioconductor.org/packages/release/bioc/vignettes/DEXSeq/inst/doc/
DEXSeq.html.

https://bitbucket.org/comp_bio/idiffir
https://www.bioconductor.org/packages/release/bioc/html/ASpli.html
https://www.bioconductor.org/packages/release/bioc/vignettes/DEXSeq/inst/doc/DEXSeq.html
https://www.bioconductor.org/packages/release/bioc/vignettes/DEXSeq/inst/doc/DEXSeq.html
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Metrics that can actually be computed (eg: PSI, IRratio) would only
be proxys, and their properties and meaning are still poorly under-
stood. Importantly, it is not sure whether intronic expression can
be compared based on these metrics. All the problems discussed
previously in the measurement of IR levels will have direct reper-
cussions on the detection of alternate IR levels between samples.
Ironically, despite numerous efforts to quantify IR events, the cases
best suited to most of these approaches remains introns with high
coverage and short length, exon-like introns.
5. Discussion

The recent interest in expressed introns has led to a flourishing
number of examples of regulation through intron retention. The
accurate detection of retained introns and precise measurement
of intronic expression are crucial to these studies. Numerous fac-
tors impede the detection of IR from next generation sequencing
data. Introns are much longer than exons and thus have a much
higher probability of containing overlapping features that may
confound the estimation of intronic expression. In addition, introns
are enriched in low complexity and repeat sequences that may pre-
vent sequencing data from being uniquely mapped. These factors
must be accounted for when detecting IR events. Most computa-
tional approaches however will introduce a selection bias as only
introns with sufficient coverage can be detected and the statistical
power required to detect differences between conditions increases
with coverage depth and the read count [48,49]. As a result of this
bias, gene enrichment tests of genes derived from IR signatures
[50] are heavily skewed towards the more expressed genes and
towards introns that do not contain these confounding features.

Despite the recent results that demonstrate a crucial role for IR,
very few IR events have been validated in the wetlab and amongst
these an even smaller portion have been investigated for their
functional impact. As a consequence, no reliable benchmark of IR
detection or differential intronic expression has been published.
This lack of reliable controls is however temporary because long
read technologies capable of sequencing entire IR transcripts help
resolve most of the detection problems. However, due to their
low coverage, these technologies are far from allowing a compre-
hensive detection of IR events and even further from allowing a
reliable quantification of IR levels between different tissues.
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