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Abstract

Classification of proteins into families based on remote homology often helps prediction of their biological function. Here
we describe prediction of protein cargo receptors involved in vesicle formation and protein trafficking. Hidden Markov
model profile-to-profile searches in protein databases using endoplasmic reticulum lumen protein retaining receptors
(KDEL, Erd2) as query reveal a large and diverse family of proteins with seven transmembrane helices and common topology
and, most likely, similar function. Their coding genes exist in all eukaryota and in several prokaryota. Some are responsible
for metabolic diseases (cystinosis, congenital disorder of glycosylation), others are candidate genes for genetic disorders
(cleft lip and palate, certain forms of cancer) or solute uptake and efflux (SWEETs) and many have not yet been assigned a
function. Comparison with the properties of KDEL receptors suggests that the family members could be involved in protein
trafficking and serve as cargo receptors. This prediction sheds new light on a range of biologically, medically and
agronomically important proteins and could open the way to discovering the function of many genes not yet annotated.
Experimental testing is suggested.
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Introduction

One of the best described sorting machineries delivering

specialised proteins to their appropriate subcellular locations is

the early secretory pathway [1]. The system sends freshly

synthesised proteins from the endoplasmic reticulum (ER) to the

Golgi apparatus (GA) and returns escaped proteins back to ER.

The proteins to be delivered contain sorting recognition signals

specific for their receptors that incorporate them into transporting

complexes coat proteins II and I (COPII and COPI) and package

them in transporting vesicles. Several sorting receptors (or cargo

receptors) have been characterised in this system. They are all

membrane embedded proteins with transmembrane (TM) helical

segments varying in number from a single helix to a multipass

helix bundles leaving one terminus in the lumen and the other in

the cytoplasm with loops of varying lengths between the TM

segments in both the cytoplasm and the lumen.

The sorting proteins with the highest known number of TM

helices (7) named Erd2 or KDEL receptors are responsible for the

retrograde transport from GA to ER. They package proteins with

a KDEL amino acid sequence (or variations thereof) that have

escaped from ER to GA and return them as a part of the COPI

complex. The difference in pH between ER and GA lumen

regulates the dissociation/association of the cargo from its

receptor. Human cells contain three closely related Erd receptors

(numbered 1 to 3). The predicted receptor topology has been

confirmed experimentally [2]. The 7 TM helix bundle presents its

N-terminus (a single amino acid) to the lumen and the C-

terminus (about 15 amino acids) containing the cargo recognising

sequence to the cytoplasm. The connecting loops exposed

alternately to cytoplasm and lumen are also short (under 20

amino acids).

The mechanism of cargo-receptor-COPI-vesicle formation is

relatively well understood (Fig. 1) [3]. It is regulated by a GTPase

ARF1 that cycles between GTP and GDP loaded states. The GTP

state is promoted by a guanine exchange factor (GEF). GTP-

ARF1 exposes its myristoyl chain which anchors ARF1 to the

membrane and recruits the receptor with its cargo and the COPI

complex. ARF1 GTPase activity is subsequently promoted by a

GTPase activating protein ARFGAP1 and ARF1 returns to its

GDP state, sequesters the myristoyl chain and leaves the budding

vesicle. Vesicle coating with COPII (anterogade transport from

ER to GA) and clathrin (endocytosis) are based on a similar

regulatory principle using ARF-like GTPases to control the

association of the coat complex with the receptors and membranes

[4].

It can be expected that a great variety of cargo receptors may

exist to accommodate the diversity of various cargos. In the

present report, an extensive search for homologues of KDEL

receptors uncovers a large and diverse family named PQ-loop

proteins. Discussion of those family members that have been

previously investigated experimentally leads to a suggestion that

PQ-loop proteins might function as cargo receptors in vesicle

transport.
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Results and Discussion

The amino acid sequences of the three aligned human KDEL

receptors were used for profile-to-sequence (PSI-BLAST [5],

HMMER3 [6]) and profile-to-profile [7] hidden Markov model

(HMM) searches. PSI-BLAST identified KDEL receptors in many

other species. No additional proteins that could not be annotated

as KDEL receptors were found. PSI-BLAST recovered sequences

were used for building an HMM profile for HMMER3 searches.

No additional significant hit was found. HHpred searches using

the aligned sequences of all previous PSI-BLAST hits as query

were performed on the profiles from the InterPro collection [8]

and on profiles built with proteins from proteomes of several

species (human, yeast, Drosophila melanogaster, Caenorhabiditis elegans,

Arabidopsis thaliana, yeast and several prokaryota) as implemented in

MPI toolkit server [9]. Hits were accepted for further analysis if

the E-value was smaller then 10-5. In addition, the sequences from

the individual proteomes were accepted only if the hit matched all

7 TM helices of the query profile (exceptions discussed below).

The HHpred searches were repeated with all human and yeast

accepted sequences, with the 3 lowest scoring accepted proteins

from the other proteomes and with the InterPro profiles that

covered more then just one group of orthologous proteins. The

repeated searches provided essentially identical hits as the initial

ones, the only difference being the E values.

HHpred searches identified 12 human, 8 Drosophila melanogaster,

16 Caenorhabiditis elegans, 24 Arabidopsis thaliana, 8 yeast and 24

prokaryotic proteins (isoforms and splice variants are not included).

The human and yeast proteins are listed in Table 1 and Table 2,

(e.g. all human and all yeast proteins in Table 1 and Table 2). the

results for other species are available on request. Despite a very

conservative inclusion threshold, these collections of sequences are

probably exhaustive (final search date November 2011). All other

hits received either a much lower E value (2 orders of magnitude) or

did not cover all 7 TM helices. Examples of prokaryotic hits are for

instance the archeal protein B1L4Q1 (Korarchaeum cryptofilum) and

the bacterial protein B2JBF6 (Nostoc punctiforme).

The searches thus revealed a large, well-defined, self-contained

and diverse gene/protein family. Many of its members are

described in the curated database Swiss-Prot (e.g. all human and

all yeast proteins in Table 1 and Table 2). They had been

therefore subjected to an expert annotation. As several of them are

listed as PQ-loop repeat containing (see below), the whole set will

be referred to in the present report as PQ-loop family with the

individual members PQ-loop proteins/genes. Most are predicted

to be membrane proteins with 7 TM helices and a common

topology. The prediction had been confirmed experimentally for

KDEL receptors [2], Cystinosin [10] and for all yeast proteins

[11]. Figure 2 illustrates the common topology of the family.

Sequence alignment (Fig. 3 shows human proteins as an

example) allows the position and the number of TM helices (red in

Fig. 3) to be established more precisely then for individual

sequences. It also delineates the lengths and position of the non-

membrane loops and N- and C-terminal domains. For instance,

the positions and number of the helices in PQL1, 2 and 3 proteins

were impossible to predict with confidence on individual

sequences and no consensus had been reached in the literature

for MPDU1. The sequences are very diverse. No amino acid is

conserved absolutely and the conservation pattern is essentially

invisible to the eye. The most common motif appears to be a

doublet of proline and glutamine (PQ, indicated in Figs. 2 and 3).

The conservation of the PQ doublet is higher in the C-terminal

part is better conserved in the C-terminal part but even here there

are exceptions. There are two highly conserved columns with basic

amino acids and one with serine. These amino acids (highlighted

in Figs. 2 and 3) have yet to be assigned functional properties. The

conservation (and the PQ-loop family membership) resides almost

exclusively in the helical TM part and the loops between helices 1–

2 and 5–6. Many PQ-loop orthologues have large N-terminal and

C-terminal extra-membrane domains and extended loops between

helices, which are specific only to them and show no homology to

other PQ-loop paralogues. They are however well conserved in

the orthologues and thus indicate potential functional regions.

HHpred searches also recognised several profiles from the

InterPro collection [8]: PQ-loop, MtN3_slv, CTNS, UPF0041,

ER_lumen_receptor, pthr12226, pthr10585, PIRSF023381,

pthr21347, TIGR00951. The first three are partially overlapping

profiles that the query usually hits twice (Figs. 2 and 3). They are

indeed annotated as repeats and had been developed indepen-

dently using the most conserved parts of the seed proteins. The

PQ-loop profile spans two TM helices with their connecting loop

being the best conserved part of the region. It often contains the

amino acid doublet PQ, hence the name [12]. MtN3_slv

encompasses a very similar region built initially with the sequences

expressed in salivary glands in Drosophila embryo and also

contains many sequences of proteins expressed in developing

nodules of plants. CTNS SMART [13] profile is the shortest

profile (,30 amino acids) with the broadest specificity covering the

tips of two helices and the connecting loop with the frequent PQ

doublet. It had been developed by searching databases using the

most conserved region of cystinosin. All these InterPro features are

schematically indicated on the topology scheme (Fig. 2) and the

alignment (Fig. 3). None recognises all PQ-loop proteins. In

contrast, the present searches recognise all InterPro CTNSR,

PQLR and MtN3_slv annotated proteins. The InterPro descrip-

tions do not contribute to the functional annotation of the family

members. In fact, the annotations in the InterPro database are

rather misleading; they only mechanically transfer some arbitrarily

Figure 1. Cargo-vesicle transport. a) assembly and coating, b) coated vesicle membrane, c) uncoating.
doi:10.1371/journal.pone.0030876.g001

Family of Putative Vesicle Trafficking Receptors
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chosen properties of the better annotated family members to the

whole family (e. g. lipid A Biosynthesis N-terminal domain,

drosophila saliva domain, sequence involved in root nodule

development).

The remaining InterPro profiles had been constructed using

alignments of orthologous proteins. They are therefore narrower

in specificity and cover nearly the whole sequence including the

non-helical parts. They are consequently specific for subsets of the

sequences recognised in the individual proteomes and confirm the

HHpred searches performed in the present report. For instance

ER_lumen_receptor profile had been developed for KDEL

receptors and recognises human and yeast ERD2 sequences from

Table 1 and Table 2 as well as their C.elegans and D.melanogaster

orthologues.

HHpred searches also provided many significant hits over just

half of the query (3 TM helices). Most were alternative alignments

of the proteins already identified or even of the query itself. It

appears that PQ-loop proteins display a very strong profile

homology between their N- and C-terminal parts delineated by the

3 N- and the 3 C-terminal helices. This is an extension of the

previous observation that the PQ-loop sequences contain two

repeats; the duplication in fact encompasses the whole helical body

including the interleaving loops. The finding strengthens the

suggestion [12] that PQ-loop genes evolved through gene

duplication. The profound divergence of the N- and C- termini

indicates that this event may have happened early in their

evolution, probably before the divergence of the whole family.

Alternatively, PQ-loop genes may have emerged by gene fusion

of two shorter homologous but already diverged sequences. Such

short proteins do indeed exist: the searches provided very

significant hits (E,10216) to proteins shorter then a typical

PQ-loop protein whose sequences covered just half of the query

and in which 3 TM helices could be recognised. The human

proteins are listed as the last three entries in Table 1. Many

further hits in other species included eukaryotic proteins as well

as the InterPro profile UPF0041 (developed for proteins of

unknown function). In the case of prokaryota (e.g. archeal

A9A2D4 or Q8PVK4 and bacterial B2IZ35 or Q04MF2), these

hits were more frequent than the hits to proteins covering all

7TM part. These shorter proteins could fold in a similar 7TM

Table 1. Human PQ-loop proteins.

UniProt ID Swiss-Prot ID Protein Gene name Length

P24390 ERD21_HUMAN ER lumen protein retaining receptor 1 (KDEL receptor 1) KDELR1 212

P33947 ERD22_HUMAN ER lumen protein retaining receptor 2 (KDEL receptor 2) KDELR2 212

O43731 ERD23_HUMAN ER lumen protein retaining receptor 3 (KDEL receptor 3) KDELR3 214

O60931 CTNS_HUMAN Cystinosin CTNS 367

O75352 MPU1_HUMAN Mannose-P-dolichol utilization defect 1 protein MPDU1 247

Q9BRV3 SWET1 _HUMAN Sugar transporter SWEET1, RAG1-activating protein 1 (Stromal cell protein) SLC50A1 RAG1AP1 221

O96005 CLPT1_HUMAN Cleft lip and palate transmembrane protein 1 CLPTM1 669

Q96KA5 CLP1L_HUMAN Cleft lip and palate transmembrane protein 1-like protein (Cisplatin
resistance-related protein 9)

CLPTM1L 538

Q2T9K0 TMM44_HUMAN Transmembrane protein 44 TMEM44 475

Q8N2U9 PQLC1_HUMAN PQ-loop repeat-containing protein 1 PQLC1 271

Q6ZP29 PQLC2_HUMAN PQ-loop repeat-containing protein 2 PQLC2 291

Q8N755 PQLC3_HUMAN PQ-loop repeat-containing protein 3 PQLC3 202

O95563* BR44_HUMAN Brain protein 44 protein BRP44 127

Q9Y5U8* BR44L_HUMAN Brain protein 44-like protein BRP44L 109

A1A4F0* CC055_HUMAN Putative uncharacterized protein C3orf55 C3orf55 135

*Short sequences homologous to both N- and C-terminal part of the other proteins in the table.
doi:10.1371/journal.pone.0030876.t001

Table 2. Yeast PQ-loop proteins.

UniProt ID Swiss-Prot ID Protein name Gene name Length

Q12010 YO092_YEAST Uncharacterized membrane protein YOL092W YOL092W 308

Q03193 YD090_YEAST Uncharacterized membrane protein YDR090C YDR090C 310

P38279 RTC2_YEAST Restriction of telomere capping protein 2 RTC2, YBR147W 296

P17261 ERS1_YEAST Cystine transporter (ERD suppressor) ERS1, YCR075C 260

Q06328 YD352_YEAST Vacuolar integral membrane protein YDR352W YDR352W 317

P18414 ERD2_YEAST ER lumen protein retaining receptor (HDEL receptor) ERD2, YBL040C 219

P25565 YCA2_YEAST Putative uncharacterized protein YCL002C YCL002C, YCL2C 251

Q03687 YMP0_YEAST Uncharacterized membrane protein YMR010W YMR010W 405

doi:10.1371/journal.pone.0030876.t002
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membrane structure and exercise a similar function as the PQ-

loop proteins if they formed dimers or heterodimers. Their

inclusion in the PQ-loop family can be justified if formation of

dimers is established experimentally.

PQ-loop genes must have emerged early in evolution. They can

be found in all eukaryota. Prokaryota also possess them but not as

a rule. ERD2, CTNS, MPDU1 and RAG1AP1/SWEET1 have well-

established orthologues in many eukaryota including plants. The

Figure 2. Schematic illustration of the topology of PQ-loop proteins. Helices are shown in red, the termini and connecting loops in black.
Arrows indicate the approximate boundaries of the InterPro annotated regions in human proteins: CTNSR (yellow), PQLR (green), MtN3_saliva (blue).
The most conserved amino acids are indicated in violet boxes. For the exact sequence positions of these features see Fig. 3 in which the same colour
scheme is used.
doi:10.1371/journal.pone.0030876.g002

Figure 3. Sequence alignment of human PQ-loop proteins. The non-homologuous N- and C-termini are omitted. Swiss-Prot IDs without the
species indication (cf. Table 1) are used. The positions of various sequence features are indicated by coloured bars: Predicted consensus positions of
the tramsmembrane helices (TM_H) are indicated in red. Position of the InterPro annotations for Cystinosin, PQL1 and R1AP1 respectively: Cystinosin
repeat (CTNSR, yellow), PQ-loop repeat (PQLR, green), MtN3_saliva (MtN3_s, blue). The positions of highly conserved amino acids are highlighted in
violet.
doi:10.1371/journal.pone.0030876.g003

Family of Putative Vesicle Trafficking Receptors
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phylogenic tree of proteins from human and model organisms

proteins (Fig. 4) indicates that the majority of human genes have

clear orthologues (e.g. CTNS, MPDU1, CLPTM1 and

CLPTM1L). Some genes expanded in just certain organisms,

e.g. one chordata gene RAG1AP1 expanded in 17 SWEET

orthologues in Arabidopsis, 22 in rice, 7 in C.elegans and 2 in

D.melanogaster. TMEM44 appears to be the youngest gene present

only in the vertebrate genomes.

Many of the PQ-loop genes had been grouped together

previously at least partially. Pfam database [14] lists them as a

clan. Some were identified while searching for distant homologues

of bacterial rhodopsins [15]. CTNS [16] and MPDU1 [17] are

associated with an important phenotype and their impairment

leads to serious genetic diseases that prompted intense research.

Sequence variants in the proximity of CLPTM1L are associated

with the risk of many types of cancer [18]. CLPTM1 is a candidate

gene for cleft lip with or without cleft palate malformation [19,20].

KDEL receptors apart, the molecular mechanism of their function

is not clear even for the most studied ones (cystinosin, MPDU1).

The function of most of the others remains to be discovered. The

largest group, plant PQ-loop set of genes SWEETs or nodulin

MtN3 [21], remained enigmatic until they were hit recently in a

high throughput search for a specific physiological function [22].

The search for 7TM proteins in prokaryota missed them

completely [23].

Putative function of PQ-loop proteins
The following brief review of the functional properties of the

experimentally investigated PQ-loop proteins examines the

possibility that their function is related to protein trafficking.

Nothing is known about the prokaryotic PQ-loop proteins,

however vesicle formation in prokaryota exists [24] and an

evolutionary link between vesicle formation in eukaryota and

prokaryota has been established [25].

PQ-loop genes have never been considered, to the best of our

knowledge, as being functionally related. Their common 7TM

structure and topology and homology to the well-known protein

trafficking receptors strongly suggest that they might all be cargo

receptors. The subcellular location of several PQ-loop proteins is

known from high throughput studies and/or focussed experiments

and compiled in the Swiss-Prot database. They are found

predominantly in membranes of organelles such as ER and GA

(ERD2, MPDU1, R1AP1), mitochondria (yeast RTC2), lysosomes

(cystinosins), vacuoles (yeast ERS1 and YO092), chloroplasts

(A.thaliana Q9C9M9) and not in the cell membrane. Preliminary

unpublished results indicate that TMEM44 is located in ER and

probably also in cytoplasmic vesicles (personal communication,

Robert Semple). The location of the proteins is consistent with

their putative sorting function. Grouping them together based on

their common structural features and evolutionary relationship

may help to cast light on their function and help design new

experiments.

Cystinosin. Cystinosin is a key protein required for clearing

cystine from lysosomes. Its point mutational defects cause

cystinosis, a recessive autosomal disorder of cystine clearance

leading to renal failure [16]. It is generally thought that cystinosin

is a cystine transporter. It has been shown that when cystinosin

was forced to insert into the cytoplasmic membrane, it enabled

cystine transport [26]. The dependence of its function on pH

suggested that it was an H+ driven sympoter coupling its function

with the vacuolar (H+)-ATPase [26]. The sequence however bears

no similarity to any known transporter and no associated ATPase

has been reported. Yeast contains a homologue Ers1 from the PQ-

loop family (Table 2). Human cystinosin and yeast Ers1 are mutual

first BLAST hits and, as seen from Fig. 4, they might be functional

orthologues. To date there is no evidence that Ers1 facilitates

cystine transport. Although Ers1 is not a vital protein under

normal conditions, its loss of function results in sensitivity to an

antibiotic Hygromycin B [27]. Mutants with deleted Ers1 can be

rescued with human CTNS. Ers1 localises in the vacuole (yeast

equivalent of lysosome) and in the punctate pattern (endosome),

the compartment transporting molecules from outside the cell

membrane to the vacuole. A high copy suppressor of deleted Ers1,

protein Meh1 (alias EGO1), that interacts with a GTPase Gtr1

was identified [27]. These two proteins have been shown

subsequently [28,29] to be members of a multiprotein complex

(named Ego/Gse, reviewed in a more general functional context in

[30], sorting its cargo from membrane to lysosome. The complex

is reminiscent of the vesicle protein coats (Fig. 1) COPI and COPII

sorting proteins between ER and GA. In such a system, Ers1 and

Cystinosin would not serve directly as membrane transporters but

rather as receptor proteins bringing their cargo to lysosome via

endosome. Preliminary results [31] indicate that cystinosin has a

role to play in the vesicular trafficking and membrane fusion.

Cystinosin is not confined just to the lysosomes;it has been

observed to move from phagosome to lysosome in C.elegans [32]. It

is worth noting that Ers1 was originally cloned as Erd1 suppressor

[33]. Erd proteins 1 and 2 were the first ER retention receptors for

ER lumenal soluble proteins in yeast [34] (7 TM KDEL receptors

- HDEL in yeast - are from the Erd2 family). The difference in pH

between the endosome and the lysosome would be responsible for

the dissociation of the cargo from its receptor as in, for instance,

HDEL receptors. Interestingly, the rescue function of cystinosin in

yeast worked with truncated cystinosin, lacking the 120 amino acid

lumenal N-terminus. Ers1 contains only a very short lumenal

portion. It is conceivable that cystinosin developed into a

specialized receptor from a general cargo receptor such as Ers1.

As the known cargo receptors carry proteins rather then

metabolites, it would seem probable that cystinosin carries a

transporter rather then cystine itself. Indeed, the Ego/Gse

complex sorts amino acid transporters into lysosomes [29].

Cystinosis patients develop Fanconi syndrome caused by

defective reabsorption of various solutes by the renal proximal

tubule, e.g. phosphate, bicarbonate, amino acids and glucose [35].

The pathology is not suppressed by the cystinosis drug cysteamine

that only facilitates clearance of cystine from lysosomes [35]. It has

been demonstrated recently [36] that proximal tubule cells in

which the Cystinosin gene has been knocked down show

significant reduction of the major Na+/Pi contransporters in the

apical membrane. It is tempting to suggest that Fanconi syndrome

in cystinosis could be due to the defective sorting of various solute

contransporters to their correct place of action because of the

defective sorting receptor Cystinosin.

Mannose-P-dolichol utilization defect 1 protein. The

function of MPDU1 is unknown. It is needed in all known

classes of monosaccharide-P-dolichol-dependent glycosyltransferase

reactions in mammals, i.e. mannosylation and glucosylation of

lipid-linked oligosaccharides, the mannosylation of glycosylphos-

phatidylinositols, the C-mannosylation of tryptophanyl residues, and

protein O-mannosylation [37]. Mutations in this gene are the cause

of congenital disorder of glycosylation (CDG) type 1F, a severe

disease linked to defects in protein N-glycosylation [17]. The growth

of the oligosaccharide chain before it is transferred to the right

protein depends on the stepwise action of 17 well-described

membrane-embedded glycosyl transferases. The mutation of any

of them can lead to CDG and patients with a mutation in 13 of them

have been observed. MPDU1 and RFT1 are two additional genes

behind CDG whose function is not clear. The growing

Family of Putative Vesicle Trafficking Receptors
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oligosaccharide chain is attached to the ER membrane by a lipid

carrier, dolichol. The synthesis is carried out first outside and

subsequently inside ER. Dolichol needs therefore to be flipped to

expose the oligosaccharide chain to the lumen. RFT1 is proposed to

be the missing flippase that is needed to transfer the growing chain

from outside to inside ER [38] but this notion is not accepted

generally [39]. An unpublished bioinformatics analysis outside the

scope of the present paper but applying the same methods shows

that RFT1 is in fact a 12 TM transporter related to multidrug and

toxin extrusion proteins. Other known flippases are indeed lipid

transporters [40]. A recent paper shows that there are actually at

least three different flippases in ER responsible for flipping dolichol-

linked saccharides [41]. MPDU1 could thus be the sorting carrier

bringing/retaining these flippases (and perhaps other proteins) in

ER.
RAG1-activating protein 1, RAG1AP1. RAG1AP1

(recently renamed SWEET1 [22]) regulates the trafficking of an

ion channel TRPV2 (responsible for extreme temperature sensing)

from the perinuclear structures (ER or GA) to the cell membrane

[42] in mammalian cells. TRPV2 and RAG1AP1 associate

physically during protein synthesis and regulate TRPV2 cell-

surface presentation but RAG1AP1 itself never appears in the

cellular membrane. Overexpression of RAG1AP1 increases cell

surface levels of TRPV2 significantly. Although not recognised as

a PQ-loop protein or even as a 7TM protein, it has been shown to

be a specific protein receptor transporter of TRPV2 in vesicles

from the place of its synthesis to the cell membrane.
SWEETs. Several members of a large group of plant PQ-loop

proteins named SWEETs (at least 6 out of 17 in Arabidopsis, 2 out

of over 20 in rice) when overexpressed in human or yeast cells

support cell membrane uptake and ER efflux of sugars [22].

Similarly, as for cystine clearance by Cystinosin [26], the simplest

explanation is that SWEETs are sugar transporters. They were

therefore assigned the function of bidirectional uniporters

(facilitators, solute carriers) [22]. Their membership in the PQ-

loop family leads however to an alternative interpretation of the

experimental data: SWEETs interact with sugar (and possibly

other) transporters and carry them to the right compartment, i.e.

they function as cargo receptors trafficking transporters to their

site of function. Indeed, the only mammalian orthologue of plant

SWEETs, RAG1AP1 (alias SWEET1), has been shown

experimentally to be an ion channel carrier ([42], see above).
Testing whether PQ-loop proteins are cargo receptors

participating in vesicle trafficking. Determining the

organelle location of PQ-loop proteins would be the first step

towards identifying their function. They could be identified in two

or more different compartments. As sorting depends crucially on

ARF-like, GTPase activating protein-like and guanine exchange

factor-like proteins (Fig. 1), useful tools would be nonhydrolysable

GTP analogues (e.g. Guanosine gamma thio-phosphate, 59-

Guanylyl imidodiphosphate), which lock activated ARF on the

membrane and the antibiotic Brefeldin A, which inhibits

activation and thus recruitment of the vesicle coating complex to

the membrane. There are at least 32 genes for ARF proteins and

more than 135 related GTPases in the human genome and few

have been assigned a function. The position of the orthologue

specific loops and C- and N-terminal domains can be predicted

(Fig. 2) and their ablation or mutation can give useful clues for the

function. It should also be possible to identify the cargo(s) in

protein-protein interaction studies.

Conclusions
PQ-loop proteins, as members of one family, are likely to

exercise similar function. The protein cargo function is firmly

established for KDELR and RAG1AP1/SWEET1. The review of

the literature indicates that the experimental data obtained for

Cystinosin, MPDU1 and plant SWEETs are consistent with the

sorting function of these proteins although they are currently

annotated as metabolite (or solute) carriers. Experiments to test

their participation in vesicle trafficking could be designed. If

positive, identification of their cargo could throw new light on two

debilitating congenital diseases. The phenotype of several genes in

Table 1 indicates that PQ-loop proteins in general are responsible

for important functions. Unravelling their common molecular

properties and mode of action could bring important theoretical,

practical and medicinal progress.

Materials and Methods

Sequences were extracted from UniProt database and are

labelled with their UniProt or Swiss-Prot IDs. Only those absent

from UniProt are from NR protein NCBI database and are

labelled with their NCBI IDs. Gene names are printed in italics

and protein names in plain text. Homology searches were

performed by PSI-BLAST [5] (inclusion threshold E,0.001) and

HMMer3 [6] on both UniProt and NR protein NCBI databases.

Profile-to-profile searches were conducted using HHPred algo-

rithm [7] as implemented in MPItoolkit [9]. Sequences with

amino acid identity higher then 40% were aligned with T-coffee

[43]; those with lower homology were aligned using profile-to-

profile methods PROMALS [44] and Psi-coffee [45]. Minor

differences in the multiple sequence alignments obtained with

PROMALS, Psi-coffee and PSI-BLAST were reconciled using the

consistency method of T-coffee software. The multiple sequence

alignments were analysed and displayed with GeneDoc [46].

Secondary structure was predicted using the consensus method

Jpred 3 [47]. TM helices and their topology were predicted

combining HMM profiles and homology using PolyPhobius [48].

The phylogenic relationship was analysed using the Phylogeny.fr

suite with the approximate likelihood ratio test for branches set to

SH-like [49].
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