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ABSTRACT

The study of non-coding RNA genes has received
increased attention in recent years fuelled by accu-
mulating evidence that larger portions of genomes
than previously acknowledged are transcribed into
RNA molecules of mostly unknown function, as well
as the discovery of novel non-coding RNA types and
functional RNA elements. Here, we demonstrate
that specific properties of graphs that represent
the predicted RNA secondary structure reflect
functional information. We introduce a computa-
tional algorithm and an associated web-based tool
(GraPPLE) for classifying non-coding RNA mole-
cules as functional and, furthermore, into Rfam
families based on their graph properties. Unlike
sequence-similarity-based methods and covariance
models, GraPPLE is demonstrated to be more
robust with regard to increasing sequence diver-
gence, and when combined with existing methods,
leads to a significant improvement of prediction
accuracy. Furthermore, graph properties identified
as most informative are shown to provide an under-
standing as to what particular structural features
render RNA molecules functional. Thus, GraPPLE
may offer a valuable computational filtering tool
to identify potentially interesting RNA molecules
among large candidate datasets.

INTRODUCTION

Non-coding RNA genes (ncRNA) are integral compo-
nents of many biological processes including translation
(tRNA, rRNA), RNA splicing (ribozymes), gene regula-
tion through mRNA hybridisation (miRNA, piRNA),
gene regulation through metabolite binding (riboswitches)
and RNA methylation and pseudouridylation (snoRNA)
(1). Functions such as translation and RNA splicing
have long been considered to be the sole role of ncRNA.
However, new and unexpected functions have been

discovered recently, revealing that RNA molecules
assume highly diverse functions and are more actively
involved in biological processes than previously thought
(2). The intensified study of ncRNA and search for
new functional roles of RNA is further propelled by the
realisation that a larger portion of intergenic space than
previously acknowledged is actually transcribed. For
instance, 85% of the fruit fly genome (3), 62% of the
mouse genome (4) and a staggering 93% of the human
genome (5,6) have been reported as transcribed.
Understanding the functional role of this otherwise see-
mingly wasteful transcription requires the analysis of large
amounts of genomic sequence data. Thus, computational
methods have a great potential to contribute significantly
toward this goal by predicting potentially functional non-
coding regions and their respective function.
The structure of ncRNA is thought to provide insight

into the biological function (7). In the folding process,
characteristic nucleotide base-pairing and stacking inter-
actions play significant roles and are governed by molec-
ular forces acting on and within any molecule in aqueous
solutions (e.g. electrostatic interactions) (8). The adopted
shapes or folds can be highly complex and are capable
of carrying out a variety of molecular functions, such
as binding metabolites and proteins with high specificity
(9–14). RNA is particularly suited for hybridizing with
nucleotide sequences allowing for highly specific targeting
of genes and genomic regions (15–17). Furthermore, it is
conceivable that two ncRNA molecules with completely
different nucleotide compositions would still fold to form
the same structure and have the same function. For exam-
ple, the secondary structure of tRNA has a characteristic
cloverleaf shape; however, the nucleotide composition of
tRNA can vary to the degree that two tRNAs can have
completely different sequences. Thus, methods that incor-
porate ncRNA structural, and not just sequence, informa-
tion are required for an accurate prediction of function.
Due to the importance of RNA structure, several com-

putational RNA folding tools have been developed, such
as: mfold (18), RNAfold (19), vsfold (20), evofold (21) and
sfold (22). The majority of these algorithms work on
an input sequence to determine the folded secondary
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structure that minimizes the free energy by optimizing the
intramolecular base pairing. The input sequence may
come from publicly available repositories, e.g. Rfam (23)
which currently contains 636 138 sequences, grouped in
603 ncRNA families, that are largely computationally
annotated (24).
The listed structure prediction tools are fast and accu-

rate when operating on sequences of less than 200 bp;
however, they are not suitable for longer sequences (25).
The accuracy of the predicted structure has been improved
by algorithms that use multiple sequence alignments to
produce a consensus structure. Another, relatively recent
class of algorithms are designed to fold pseudoknots—
structures where each bonded base pair is not required
to be bounded by another bonded pair of bases that are
closer to the ends of the molecule. An example of a pseu-
doknot is the ‘kissing hairpin’ where the loops of two
hairpins are bound to each other. The problem of folding
pseudoknots was shown to be NP-complete and many
tools do not attempt to fold them (26). There is also an
algorithm that predicts the 3D structure (as opposed to
secondary and pseudoknotted structures) of RNA mole-
cules (27). This method involves using fragments of RNA
whose 3D structure has been experimentally determined as
building blocks to assemble the shape of an investigated
molecule. Any methods developed to predict ncRNA
function are fully reliant on the ability for these tools to
predict the structure accurately.
There are very few tools that deal with the classification

of functional versus non-functional RNA sequences. One
attempt to develop such a tool investigated the idea that
the minimum free energy (MFE) of functional RNA
sequences should be lower than that of random, shuffled
and non-functional genomic sequences (28). In the study,
MFE was identified to be largely unhelpful except in a
later study, which discovered that MFE can be used to
identify miRNA (29). Other studies calculated the thermo-
dynamic stability of multiply aligned structures as a means

of identifying functional RNA (30) and have been applied
to the genomes of Saccharomyces cerevisiae (31) and
Plasmodium falciparum (32).

Assigning unannotated RNA sequences to an Rfam
family is better investigated and there are a wide variety
of ncRNA family specific predictors, most of which focus
on miRNA (33–36). Covariance models, as general pre-
dictors, are used to identify nucleotide pairs which vary
together across multiple alignments and are thus likely
to be bonded in secondary structure (37). Such models
require multiple alignments and are computationally
time consuming, limiting the number and type of
sequences that can be processed.

A large portion of recent RNA-related research applies
concepts developed in graph theory to the analysis of
RNA structure (38–40). A graph is an abstraction of the
relationship among objects, which uses nodes to represent
the objects and edges to represent the relationship between
two objects. There are many ways to represent RNA
structure with graphs (Figure 1), including the bracketed
(where nucleotides a converted to nodes and bonds to
edges), planar tree (where base pairs are converted
to ‘stem’ nodes and loop nucleotides are converted to
‘loop’ nodes, while following the molecule from 50 to 30)
and dual graph representations (where stems are con-
verted to nodes, while loops to edges), each with different
advantages and disadvantages including information
loss and complexity of calculation (38). Graph topology
derived from RNA structure has also been used to assign
Rfam family (41). Although the ability to discriminate
between functional and non-functional genes was not
demonstrated, this approach appears quite successful in
terms of classification.

The structure of a graph can be employed to define
and analyse different properties that could reflect the char-
acteristics of the process or entity modelled by the graph
(Table 1; Supplementary Material, Section 1). A property
can be defined on the level of graph constituents

A B C

Figure 1. Representations of RNA structure using graphs. (A) A typical tRNA structure represented using the bracketed graph representation.
Nucleotides are represented as nodes (open circles) and bonds (both base-base hydrogen bonds and backbone ester bonds) as edges. The secondary
structure of the tRNA is reminiscent in the shape of the graph. This is the chosen graph representation in the current article. The values for the 20
chosen graph properties for this graph are shown in Table 1. (B) The dual-edge graph for the same tRNA is shown. Stems are converted to nodes
and loops to edges. Information about dangling ends is lost in this representation. (C) Planar tree representation uses a special node for the root
(50-/30-end of the structure) depicted here as an open square. Base pairs are converted to ‘stem’ nodes (closed circles) and loop nucleotides are
converted to ‘loop’ nodes (open circles). The tree is built by following the strand from 50 to 30 and the order of children is important. Information
about dangling ends is also lost in this representation.
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(i.e. nodes and edges) or on the level of the graph itself.
Furthermore, computing a property may require limited
or full knowledge of the graph. Based on these two criteria
(level of detail and required knowledge of the graph),
graph-theoretic properties may be classified into local
(using limited knowledge of the graph and referring to a
graph’s constituent), local–global (using full knowledge of
the graph and referring to a graph’s constituent), and
global (using full knowledge of the graph and referring
to the graph itself). Thus, graph representations of RNA
molecules offer a means to capture both local–global and
global structural properties that can be used to deduce the
large- and small-scale structural, and therefore functional,
differences between molecules.

Here, we go another level of abstraction higher than
previous methods and address the question of how a
set of selected graph-theoretic properties derived from
a graph representation for predicted RNA secondary
structures can be used as characteristic features for the
classification of RNA molecules. Among the immense
number of existing graph-theoretic properties, we select
several representatives based on the following three cri-
teria: (i) polynomial-time computation, (ii) relevance
to local and global levels of the graph and (iii) usage in
complex network research. As a means of exploring the
relationship between graph properties and Rfam families,
we attempt to recall the Rfam families of ncRNA
sequences using support vector machines (SVMs) trained
on the selected graph properties. Furthermore, we show
that graph properties can be employed to differentiate
between functional and non-functional sequences as well
as predict a likely function. In this study, a small number
of graph properties are identified as most relevant for the
correct classification of ncRNAs and their interpretation
is demonstrated to shed light on structural properties that
may render RNA molecules functional compared to their
non-functional counterparts.

MATERIALS AND METHODS

The data set

Seed and full RNA sequence alignment datasets were
obtained from Rfam release 9.0 (23) (http://www.sanger.
ac.uk/Software/Rfam) and all redundant identical
sequences were removed using CD-HIT (42) (http://bioin-
formatics.ljcrf.edu/cd-hi/), yielding 52 855 (full) and 18
974 (seed) unique sequences for analysis. These sequences
were split into 210 Rfam and 8 compound families, which
were formed out of several smaller related Rfam families
(CD-box, HACA-box, internal ribosome entry sites,
leader sequences, miRNA, riboswitches, ribozymes and
scaRNA). All RNA sequences were folded into their pre-
dicted secondary structures using RNAfold (19).

Calculating graph properties

The bracketed graph representation was used to represent
the predicted structure (Figure 1). It was calculated by
converting all nucleotides to nodes and all bonds between
nucleotides (both ester and hydrogen) to edges.
From the three different ways in which a property can

be defined and calculated, here we used the summary sta-
tistics for the local–global properties, since they provide
insight not only on the global level of the graph itself, but
also on the level of its nodes and edges. The employed
statistics (mean and variance) allow for a uniform way
of summarizing the distribution of values an investigated
local property may assume. For instance, the node-
betweenness used in our analysis is given by the mean
and variance of the distribution of node-betweenness
values over all nodes of a graph. Similarly, we used bib-
liographic coupling as given by the mean and variance of
bibliographic couplings over all pairs of nodes.
All properties were calculated using the igraph R

package (43) (http://cneurocvs.rmki.kfki.hu/igraph) for
complex networks with our own extensions to the pres-
ently implemented algorithms that facilitate the extraction
of the graph representation and calculation of the neces-
sary summary statistics. We focused on the following
global properties: number of articulation points, diameter,
girth, density and transitivity, together with the local–
global properties (given by the mean and variance):
Burt’s constraint, path length, node betweenness, edge
betweenness, degree, co-citation coupling, bibliographic
coupling, coreness and closeness (a brief definition of all
graph properties used in this study is provided in the
Supplementary Material, Section 1).

SVM training and testing

We used the following procedure for training and testing
all SVMs: First, we produced matched training/testing sets
with randomly selected, but non-overlapping sequences
and matching graph property sets. SVMs were then cre-
ated from the training sets using libSVM software (44).
All graph properties for the training sets were initially
scaled between �1 and 1 to prevent graph properties
with larger numerical ranges from dominating those
with smaller ranges. A 10-fold cross validated grid
search, based on the training set, was used to optimize

Table 1. Graph properties calculated for a typical tRNA depicted in

Figure 1

Number of articulation points 3 Average Burt’s
constraint

0.4234

Average path length 9.577 Variance of Burt’s
constraint

0.0161

Average vertex betweenness 313.1 Average degree 2.514
Variance of vertex betweenness 54817.6 Diameter 22
Average edge betweenness 278.2 Girth 4
Variance of edge betweenness 40784.5 Average coreness 1.959
Average cocitation coupling 0.0555 Variance of coreness 0.0394
Average bibliographic coupling 0.0555 Maximum coreness 2
Average closeness centrality

index
0.1088 Graph density 0.0344

Variance of closeness
centrality index

0.00048 Transitivity 0

We have chosen 20 graph properties to calculate and train the SVMs.
These properties were chosen by considering the following criteria
(i) polynomial-time computation, (ii) relevance to local and global
levels of the graph and (iii) usage in complex network research.
The values shown beside each property are the graph properties as
calculated for the graph shown in Figure 1.
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the initial parameters C (the cost parameter) and g (the
kernel width). In addition, the SVM was trained on the
full training set using the optimised values. The radial
basis function (RBF) kernel was employed as it is able
to identify non-linear relationships between class-labels
and features (graph properties), requires fewer hyper-
parameters, and presents fewer numerical difficulties
than other kernels. The testing sequences were in turn
submitted to test the SVMs, and results are reported in
the Results section. Each SVM was trained 100 times with
different sets of random sequences.
The importance of the graph properties was calculated

using the F-score (45). The F-score is a simple measure
that discriminates between two sets of real numbers.
Given m training vectors, x, and n+ positive and n� neg-
ative instances, then the F-score of the i-th feature is
defined as:
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where xi, x
ðþÞ

i , x
ð�Þ

i are the average of the i-th feature of
the whole, positive and negative data sets, respectively;
x
ðþÞ

k;i is the i-th feature of the k-th positive instance,
and x

ð�Þ

k;i is the i-th feature of the k-th negative instance.
The numerator indicates the discrimination between the
positive and negative sets, and the denominator indicates
the one within each of the two sets. The larger the F-score,
the more likely it is that this feature is more discriminative.
This algorithm is available using fselect which is available
on the libSVM internet site.

Functional versus non-functional RNA sequence prediction

SVMs were trained to differentiate functional from non-
functional RNA using graph properties. Sequences avail-
able from Rfam are considered functional and comprise
the set of all functional sequences (here, mRNA is consid-
ered non-functional). A non-functional set was created
by shuffling each Rfam sequence once while preserving
dinucleotide content using uShuffle (46). A 200 functional
and 200 non-functional sequences were randomly chosen
for the training and testing sets with each family having
an equal chance of being chosen, yielding 400 sequences
for each set. After classification, the important graph
properties were determined by calculating the F-score.

Predictive power of graph properties

We attempted to determine whether graph properties
alone can be used to recall Rfam families. To remove
the influence of sequence similarity and length, we filtered
the training and testing sequences in two ways.
First, to account for sequence similarity, we created

diverging testing and training sets. A distance matrix for
each family was created by an all-against-all comparison
of sequences within a family using the similarity score
provided by CLUSTALW pairwise alignments (47)

(http://www.clustal.org/). Each family was then divided
into diverging training and testing sets, where the greatest
similarity between a member picked from a training set
and a member chosen from the paired testing set would be
less than or equal to a given threshold. We set the initial
threshold to give a maximum similarity between the two
sets of 90 percent identity (%id) to allow the training and
testing sets to become highly similar but not identical.
We then decreased this threshold in steps of 10%id. As
any two completely random RNA sequences are expected
to have 25%id due to random chance, we set the lower
bound to 20%id, thus creating a total of eight sets (20, 30,
40, 50, 60, 70, 80, 90%id).

Second, graph properties were calibrated for the poten-
tial bias introduced by length and GC content (%G+C).
A set of random sequences was generated, in which all
combinations of the lengths 50–1000 nt (in steps of 50)
and the %G+C 10–100% (in steps of 10) were repre-
sented 100 times, producing a matrix for each graph prop-
erty with 10 000 entries. The graph properties of each
sequence were then calibrated by dividing by the entry
with the closest length and %G+C in the corresponding
calibration matrix. The F-score was also used here to
calculate the predictive power of each graph property.

As the maximum similarity between the training
and testing set decreases, the number of available
sequences also decreased and many families became too
small to be used leaving, finally, 18 families for analysis
(Supplementary Material, Section 2). Training sets were
restricted to 50 random members, while testing sets were
restricted to 20 from each family.

The sensitivity (QD) and specificity (QM) of SVM-based
predictions for each individual family were calculated
using the following equations:

QD
i ¼

ziiP
j

zij
2

and

QM
j ¼

zjjP
j

zij
; 3

where Zij is an entry in a confusion matrix, i is an index
for the actual family and j is an index for the predicted
family.

We also investigated the possibility of combining the
results of the SVM with the sequence-based assignment
of Rfam family using BLAST in order to improve accu-
racy. For each sequence, the SVM produces probabilities
(pscoreSVM) that the sequence belongs to each ncRNA
family. The sum of the pscoresSVM totals to 1. Similarly,
for each sequence, we produced an E-value for each family
using BLAST. This E-value was adjusted to the same scale
as the SVM pscore by calculating the inverse E-value as
a fraction of the total inverse E-values:

pscoreBLAST ¼
1=ei
Pn
k¼0

1
ek

; 4
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where ei the E-value obtained for an individual family and
ek is the sum of E-values over all families. The two values
were then combined linearly using a weighting factor, a, as
follows:

pscoreMERGE ¼ ð1� �Þ � pscoreSVM þ �� pscoreBLAST 5

As a result, we obtained for each sequence a merged
p-score for each family that, although not considered a
probability, indicates how likely the sequence belongs to
that family. The family with the highest pscoreMERGE was
assigned to the sequence.

Standalone WUBLAST (48) (http://blast.wustl.edu),
the INFERNAL package (37) (http://infernal.janelia.org)
and HMMER (49) package (http://hmmer.janelia.org/)
were used to provide references to methods which are
expected to perform either poorly and well on the diver-
ging training sets. As the sets diverge, the performance of
sequence comparison based methods, such as WUBLAST,
should degrade, whereas structure based methods would
ideally remain stable. The comparison was performed
using the same training and testing sets. A description of
how these methods were applied can be found in the next
section.

COMPARISON TO OTHER METHODS

To compare our method to existing tools, we a chose rep-
resentative method from each class of classifier presented
in a previous study used to benchmark a number of other
tools (50). We chose WUBLAST from the homology-
based methods, HMMER from the Hidden Markov
Model-based methods and INFERNAL from the covar-
iance model-based methods. Training sets of 50, 100 and
200 seed sequences per Rfam family were generated, which
resulted in 25, 8 and 3 Rfam families of sufficient size for
each training set, respectively. All tools were used with the
default settings following the same procedure described
in the previous section.

For comparison with WUBLAST, each training set
was split into the constituent Rfam families and converted
into blastable databases. The testing set was then blasted
against each database, using an E-value threshold of 100,
resulting in a set of E-values for each sequence that mea-
sures how well it matched each Rfam family. Sequences
were then classified according to the family with the
lowest E-value.

A similar procedure was followed using INFERNAL
and HMMER. Training sets were split into constituent
Rfam families and aligned using MUSCLE (51) (http://
www.drive5.com/muscle). From each family alignment,
covariance and Hidden Markov models were built. The
testing set was then searched using each of the models
and each sequence was scored on how well it matched a
given family. Sequences were classified according to the
best identified matching family.

Performance measures

Prediction performances of classifiers was assessed using
the Matthew’s correlation coefficient (MCC) (Equation 6),
and Receiver Operating Characteristic (ROC) and

associated area under the ROC (AUC) reported in the
Supplementary Material.

MCC¼
TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þ
p ; 6

where TP is the number of true positives, TN the number
of true negatives, FP the number of false positives, and
FN the number of false negatives.

RESULTS

In this work, we developed three approaches to investigate
graph properties and their ability to reflect the functional
information of RNA molecules. In the first approach,
we tested the ability of graph properties to discriminate
between functional and non-functional RNA molecules.
In the second, we removed any bias that may be intro-
duced through sequence similarity, length and GC content
(%G+C) by using calibrated and diverging training
and testing sets to test the predictive power of the graph
properties alone when predicting the Rfam family of an
ncRNA sequence. In the third, we removed the limitations
imposed in the second approach and compared the ability
for the developed method to predict Rfam family to other
established tools.
In the first approach, the classifier based on SVM

and using graph properties as features was able to classify
RNA sequences into functional and non-functional classes
with Matthew’s Correlation Coefficients (MCC) ranging
between 0.61 and 0.98 with an average MCC of 0.87,
and sensitivity and specificity of 0.73, respectively
(Supplementary Material, Section 4). This indicates that
graph properties can be used to identify functional RNA
sequences and performs significantly better than random
assignment (MCC=0). The discriminatory power of each
graph property was then calculated using a measure called
the F-score (see Materials and Methods section)
(Figure 2). This score revealed that the ‘number of artic-
ulation points’ possessed the most discriminatory power
with an average F-score of 0.094 followed by the ‘variance
of coreness’ (0.080), ‘average coreness’ (0.062), ‘average
Burt’s constraint’ (0.062) and ‘average degree’ (0.056).
The F-score decreased significantly for the remainder of
the graph properties along with the minimum free energy
(MFE). ‘Girth’, ‘maximum coreness’ and ‘transitivity’ had
little or no discriminatory power and were included to
provide baseline support for high-scoring graph
properties.
The second approach explored the idea that graph

properties are able to reflect RNA structure and function
in greater detail by attempting to recall the correct
Rfam family without the influence of sequence similarity,
length and %G+C. To control for sequence similarity
we created diverging testing and training sets. To control
for sequence length and %G+C, we performed a calibra-
tion using generated random sequences of various lengths
and %G+C (see Materials and Methods section). SVMs
trained on calibrated graph properties classify RNA
sequences with an average MCC of 0.32 (Figure 3);
i.e. substantially above the expected rate when guessing.
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This value is relatively stable at all eight selected thresh-
olds of sequence divergence as it varies between 0.29 and
0.37, and shows that the method is robust at all levels of
sequence divergence.
To test whether purely sequence-homology-based

methods can correctly identify family members under
conditions of increasing sequence divergence, we ran
WUBLAST on datasets of increasing sequence divergence
as well. When using WUBLAST to classify the sequences
based on sequence similarity, there is a significant drop
in the average MCC from 0.48, obtained for sets with
90% maximum similarity between training and testing
sets, to only 0.08 (20% maximum similarity) (Figure 3).
Thus, sequence-based methods alone appear insufficient
to correctly detect family members that have diverged at
the sequence level. Such remote family members are likely
to be identified by methods relying on structural
aspects such as INFERNAL. Unexpectedly, and similar
to WUBLAST, we observed a drop in the average MCC
from 0.49 to 0.12 as the sets diverge (Figure 3) implying
that within Rfam families, the structures predicted by
RNAfold may not have sufficient similarity to each
other be detected by INFERNAL. HMMER, a method
based on Hidden Markov Models, was also used on the
diverging training and testing sets and performs signifi-
cantly worse at all levels of divergence than the other
methods (Figure 3). While WUBLAST and INFERNAL
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Figure 2. Graph property discriminatory power for functional vs. non-functional classification. The discriminatory power of each graph property was
determined by calculating the F-score (Equation 1) with larger F-scores indicating more relevant properties. The distribution of F-scores is shown for
each graph property as a box plot where the middle bar is the median, the outer edges are the 10 and 90 percentiles and the edges of the box are the
25 and 75 percentiles. Outliers are shown as circles. When classifying functional versus non-function RNA, we find that the ‘number of articulation
points’, ‘variance of coreness’, ‘average coreness’, ‘average Burt’s constraint’ and ‘average degree’ consistently have significantly higher F-scores than
the other graph properties.
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below. In this performance comparison, 18 sufficiently large Rfam
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performed better when applied to very sequence-similar
sequences than our graph-property-based SVM method,
they performed worse at greater sequence divergence with
the SVM method displaying greater robustness with
regard to increasing sequence separation.

In the cases, where the training and testing sets have at
most 20% similarity, the F-scores of the graph properties
signifying their predictive power, fall into four broad cate-
gories (Figure 4). The ‘average Burt’s constraint’, ‘average
degree’ and ‘average coreness’ have the highest F-scores;
i.e. have greatest predictive power, while ‘girth’, ‘max-
imum coreness’ and ‘transitivity’ do not contribute at all
to the SVM. The remaining graph properties fall into two,
roughly equal groups that have average F-scores around
0.6 and 0.4. Thus, the important graph properties
which determine functional versus non-functional RNA
sequences (Figure 2) and those that determine the Rfam
family (Figure 4) differ slightly. While the ‘average Burt’s
constraint’, ‘average degree’ and ‘average coreness’ remain
among the most important, the ‘number of articulation
points’ and the ‘variance of coreness’, which were impor-
tant for functional versus non-functional classification,
are ranked among the least important for assigning
Rfam families.

The SVM method does not work evenly across all
Rfam families (Table 2). When the sets are maximally
divergent, the families SECIS (0.96 sensitivity, 0.58
specificity), Intron gp II (0.72, 0.73), 5S rRNA (0.63,
0.70), tRNA (0.42, 0.83) and MIRNA (0.79, 0.46) all

perform well with high specificity, high sensitivity
or both. IRES, LEADER and SRP are associated with
the worst sensitivity and perform only slightly better
than random assignment of Rfam families; 0.07 versus
0.05 for random predictions.
As the graph-property-based prediction approach

may capture relevant aspects of RNA molecules that are
not properly reflected by sequence similarity searches
alone (as demonstrated by the more robust behaviour of
our graph-based method when tested on diverging
sequence sets; Figure 3), combining both methods may
result in increased prediction performance compared to
each individual approach. By combining a P-value calcu-
lated from the WUBLAST E-value to capture a sequences
based score, and the SVM P-value to reflect graph-proper-
ties in a linear fashion with a properly chosen weighting
factor, a, with a=0.5, MCC values higher than those
produced by each method individually (Figure 5) were
obtained. The average MCC for the combined methods
is 0.446 and ranges from 0.313 in sets that are 20% similar
to 0.567 in sets that are 90% similar.
Although we applied rigorous calibration to the

sequences to identify whether the graph properties them-
selves were responsible for prediction or the influences
from sequence similarities and length, it would be impru-
dent not to use this information when constructing an
SVM intended for actual classification of RNA sequences
outside the testing protocol. Thus, for comparison with
other methods, the third approach used non-calibrated
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Figure 4. Graph property discriminatory power for Rfam family assignment. The discriminatory power as measured by the F-score (see Materials
and Methods section) of each graph property was calculated to identify the important graph properties. When discriminating among the 18 Rfam
families used in this analysis, the most important properties are the ‘average Burt’s constraint’, ‘average degree’ and ‘average coreness’.
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graph properties and imposed no similarity restrictions
between the training and testing sets.

Having established that graph properties have predic-
tive value to correctly distinguish between Rfam families,
we took a third approach that compared the performance
of the graph-property-based SVM method to BLAST,
INFERNAL and HMMER using training sets with 50,
100 and 200 sequences per Rfam family (Supplementary
Material, Section 3). In the previous two approaches
reported above, we used the full sets of Rfam family align-
ments. While this provided the largest possible as well as
most diverse training sets, these sets can also be expected
to include wrongly annotated RNA sequences. Therefore,
for a fair and rigorous comparison to other methods, in
the third approach we only included the seed-alignments
associated with each Rfam family that can be assumed to
constitute curated and more accurate datasets. The size of
the training set and the number of families to be classified
has a significant impact on the performance of the tested
method (Figure 6). The SVM-based method shows perfor-
mance increase from a median MCC of 0.88 for training
sets of size 50 to 0.96 for training sets of size 100 and 0.98
for training sets of size 200. INFERNAL also show an
increase (0.96, 0.99, 0.99), whereas WUBLAST remains
stable (0.97, 0.95, 0.96) and HMMER shows a decrease
(0.97, 0.94; 0.88). The results indicate that SVMs trained
on graph properties are able to perform slightly better
than homology-based methods and slightly worse than

Table 2. Confusion matrix for most divergent calibrated sets
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Figure 5. Linear combination of graph-property-based SVM and
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indicates that both methods capture independent information that
allows more accurate classification when combined. As in Figure 3,
18 Rfam families were considered.
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covariance model-based methods when trained on suffi-
ciently large datasets. The decreasing performance of
Hidden Markov Models with increasing training set size
may be explained by the impact that the increased vari-
ability may have on the transitional probabilities or
decreasing quality of multiple sequence alignments used
to derive the HMM. This illustrates the need for methods
to detect different aspects of conservation than at the
sequence level alone as attempted in this study.

DISCUSSION

Currently, there exist few predictors capable of
assigning function to uncharacterised ncRNA molecules
and even fewer that can predict whether or not an
ncRNA molecule is functional. Available methods are
based on sequence comparison (52), covariance models
(53), graph topology (41) and structural alignments (30).
However, the disadvantages of existing methods limit their
application. Here, we present a novel method for de novo
ncRNA and Rfam family prediction, which is based on a
higher level of structural abstraction by using properties
associated with RNA molecules when treating them as
graphs, thereby addressing some of the problems of the

existing methods, expanding the repertoire of available
methods and, hopefully, contributing to the understand-
ing of the RNA world.
By analysing the manner in which the graph properties

are calculated, we may gain insight into how functional
RNA is formed and what topological features render
functional RNA molecules unique compared to their
non-functional counterparts. Analysing the ‘number
of articulation points’ may serve as an example as it is
relatively easy to interpret. In graphs representing RNA
secondary structure, there are only two situations, where
removing a node in the graph can disconnect the graph:
when a node is removed from the dangling 50- or 30-end, or
when a node is removed from a bridge connecting poten-
tially separable structures (Figure 7). From this study, we
find that graphs with more articulation points are more
likely to represent non-functional structures, indicating
that functional structures minimize the length of the
dangling ends and, in addition, either minimise the
length of the bridges between separable structures or the
number of separable structures. The remaining graph
properties that were determined as important are calcu-
lated using more complex algorithms and a structural
interpretation is more complex (54). Further biological
interpretations of some of the other graph properties can
be found in the Supplementary Material.
When using graph properties, it is important to remove

factors that may obscure the attempt to determine
whether they reflect sufficient information about Rfam
family to make a prediction; otherwise, simpler methods
such as sequence alignment or predictions based on just
the sequence length would suffice. After removing these
confounding factors, the graph properties themselves are
shown to maintain the predictive power. As a result, we
gain insight into structurally important properties for
functional RNA by interpreting the way graph properties
are calculated in a biological context (demonstrated here
with the number of articulation points). The graph prop-
erties also provide sufficient information for Rfam family
prediction on highly divergent sequences. Combined with
the aforementioned sequence properties, the accuracy of
the method improves significantly.
ncRNA exhibits greater conservation on the secondary

structure level than the primary structure (53), as is
demonstrated by the large variety of tRNA molecules,
and thus sequence similarity is a potentially suboptimal
choice of a classification criterion. In many cases, the
sequences are sufficiently dissimilar at the sequence- and
even the secondary-structure (inferred from covariation)
level that neither sequence alignment nor covariance
models are able to recall the function, and yet a classifier
built on the graph properties; i.e. based on a higher level
of abstraction, still manages to perform accurately. This
finding indicates that, to a certain degree, our method is
sequence independent and that there are properties inher-
ent in the structure of ncRNA indicative of function.
Of the many graph representations available, such as

dual graph and planar tree representation, we chose
bracketed graph representation. This representation was
chosen over the others as it is more sensitive to small
changes in the underlying RNA structure due to the
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Figure 6. Comparison of graph-property-based SVMs to other
methods. Four different classes of methods (50) were compared;
SVM- (svm), homology- (hom, using WUBLAST), covariance model-
(cvm, using INFERNAL), and Hidden Markov Model-based (hmm,
HMMER). Performances vary depending upon the size of the training
set. The SVM-based method performs with a median MCC of 0.88
when trained with sets of 50 sequences. The median MCC increases
considerably for training sets with 100 and 200 sequences to 0.96 and
0.98, respectively. With larger training sets, SVMs compare favourably
with the other methods such as homology methods, which had median
MCC values of 0.97, 0.95 and 0.96, covariance models (0.96, 0.99,
0.99), and Hidden Markov Models (0.97, 0.94, 0.88) for the training
sets of increasing sizes. Training sets of different sizes corresponded to
sets of 50, 100 or 200 RNA sequences derived from 28, 8 and 3 Rfam
families, respectively, with at least that many corresponding member
sequences. Sequences were randomly sampled and the procedure was
repeated 100 times.
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greater number of nodes and edges. The graph space
of the other representations is far smaller, potentially
reducing the predictive power of the derived graph proper-
ties. This representation also minimizes information loss
(e.g. dangling ends and, in dual graph representation, the
length of the stems and loops) and is simpler to calculate.
On the other hand, there are several potential disadvan-
tages of our proposed method: (i) usage of sequences
biased toward certain species, (ii) dependence on one fold-
ing algorithm of choice and (iii) usage of secondary struc-
ture prediction, thus neglecting pseudoknots and tertiary
structures. Note that all of the identified issues are exog-
enous to our method, and one can account for them
by conducting comparison tests—a task beyond the
scope of this article.
The sequences available in Rfam are largely bacterial

and viral, and thus the method we have developed will
be biased towards the prediction of purely bacterial and
viral Rfam families or, where the family occurs in several
kingdoms, higher accuracy prediction in bacterial and
viral sequences. When more ncRNA sequences become
available, our method will benefit from being trained
upon a more specific choice of sequences, e.g. purely
plant or animal sequences.
Often the predicted structure of an ncRNA sequence is

quite different from the experimentally determined struc-
ture. As we obtained all secondary structure assignments
using RNAfold (19), our method is reliant on RNAfold
producing consistent predictions. As the tools for RNA
folding prediction improve, we plan to upgrade the folding
algorithms, hopefully yielding higher accuracies and better
understanding of the biological and structural relevance of
graph properties. An immediate possible improvement is
the use of multiple alignments which improves the accu-
racy of the predicted secondary structure (55).
We chose to calculate graph properties from secondary

structure, rather than pseudoknots or predicted 3D RNA

structure, which potentially limits the predictive power
of the graph properties. By using secondary structure,
the maximum degree (number of connected edges) for
any node is limited to three; i.e. two ester bonds and a
hydrogen bond. With pseudoknots and 3D structure, the
possibility for much more complex graphs emerges with
significant consequences on the graph properties. Such
graphs are likely to better reflect functional information,
which is a point for further study.

We expect further improvement through careful selec-
tion of the graph properties as potential discriminatory
features. Of the current graph properties, we would ideally
use only those that are most informative and perhaps
more biologically relevant. There are also many more
properties that can be calculated than the 20 chosen and
experimentation with new graph properties may lead
to improved accuracy and greater insight into ncRNA
functionality. Including properties such as minimal free
energy (which has been shown to be informative for
miRNA), %G+C and perhaps dinucleotide frequencies
in SVM training should provide a significant boost to
the accuracy of the described method.

Many of the existing methods have shortcomings limit-
ing their application. As many ncRNA families show lit-
tle sequence homology, but high degree of structural
conservation, homology-based methods would be unable
to correctly identify all members of the family. Covariance
models, although highly accurate, require long computa-
tion times and neither method are able to discriminate
between functional and non-functional ncRNA sequences.
The method developed in the current article, can cover
more sequences than homology-based methods at quick
speeds typical of SVM-based methods, which provides a
good compromise between the two methods. Our method
was shown to be robust with regard to increasing sequence
divergence and performed at high accuracy levels when
tested on both curated datasets (Rfam seed alignments)
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and data sets based on electronic annotation (Rfam full
alignments). It also exhibits the ability to identify func-
tional RNA sequences. Finally, combining graph proper-
ties with other methods provides a significant boost to
performance.

In conclusion, ncRNA is not simply a primitive form of
molecule as it is active in a wide variety of roles not typical
for proteins. We developed a computational method that
represents a necessary first step for future ncRNA inves-
tigation tools. With a plethora of potential functions still
undiscovered and many more molecules whose functional
role is still unassigned, we believe that higher level struc-
tural abstraction and their respective properties will play a
key role in discovering new ncRNAs and their plausible
biological role.

Availability

The graph-property-based methods developed here
has been made available as a web-based tool called
the GRAph Property based Predictor and Likelihood
Estimator (GraPPLE) at: http://grapple.mpimp-golm.
mpg.de
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Supplementary Data are available at NAR Online.
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