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ABSTRACT: This study explores the innovative use of machine
learning (ML) to identify novel tryptase inhibitors from a library of
FDA-approved drugs, with subsequent confirmation via molecular
docking and experimental validation. Tryptase, a significant
mediator in inflammatory and allergic responses, presents a
therapeutic target for various inflammatory diseases. However,
the development of effective tryptase inhibitors has been
challenging due to the enzyme’s complex activation and regulation
mechanisms. Utilizing a machine learning model, we screened an
extensive FDA-approved drug library to identify potential tryptase
inhibitors. The predicted compounds were then subjected to
molecular docking to assess their binding affinity and conformation
within the tryptase active site. Experimental validation was
performed using RBL-2H3 cells, a rat basophilic leukemia cell line, where the efficacy of these compounds was evaluated based
on their ability to inhibit tryptase activity and suppress β-hexosaminidase activity and histamine release. Our results demonstrated
that several FDA-approved drugs, including landiolol, laninamivir, and cidofovir, significantly inhibited tryptase activity. Their
efficacy was comparable to that of the FDA-approved mast cell stabilizer nedocromil and the investigational agent APC-366. These
findings not only underscore the potential of ML in accelerating drug repurposing but also highlight the feasibility of this approach in
identifying effective tryptase inhibitors. This research contributes to the field of drug discovery, offering a novel pathway to expedite
the development of therapeutics for tryptase-related pathologies.

■ INTRODUCTION
Mast cells are central to the body’s immune response to
external antigens and are predominantly found in vascularized
tissues such as the mucosal and epithelial layers of the
gastrointestinal tract, skin, and respiratory tract.1−3 These cells,
when activated by various stimuli, release a range of
inflammatory mediators from their cytoplasmic granules.4

This release can lead to the development of various
inflammatory disorders, including asthma, atopic dermatitis,
and severe anaphylactic shock.5−7 Among the diverse
molecules stored in these granules are histamine, heparin,
cytokines, and a spectrum of proteases, with tryptase being the
most abundant protease present in human mast cells.8

Tryptase, a member of the trypsin family of proteases, is a
tetrameric enzyme. It is composed of four catalytic subunits
that together form a distinctive ring-like structure, with the
active sites facing an oval-shaped central pore.9 This unique
structural arrangement is crucial for its biological function. The
role of tryptase in inflammatory and allergic responses has been
extensively documented, highlighting its significance as a
potential therapeutic target for a variety of inflammatory
diseases.10−12 Its involvement in biological processes such as

fibrosis, angiogenesis, and immune response modulation
further emphasizes its clinical importance.5,13 Despite the
critical role of tryptase in these processes, the development of
effective inhibitors has been a complex challenge, mainly due
to the intricate mechanisms governing its activation and
regulation.13 Addressing this challenge requires a nuanced
understanding of tryptase’s structure and function, as well as
innovative approaches to inhibit its activity.
Given the complexity and resource-intensive nature of

developing new drugs, drug repurposing, also known as drug
repositioning, emerges as a promising strategy.14,15 Drug
repurposing involves identifying new therapeutic applications
for already approved drugs beyond their original intended
uses.16 This approach can significantly accelerate the drug
development process, augmenting the value of existing drugs

Received: May 24, 2024
Revised: August 23, 2024
Accepted: August 29, 2024
Published: September 4, 2024

Articlehttp://pubs.acs.org/journal/acsodf

© 2024 The Authors. Published by
American Chemical Society

38820
https://doi.org/10.1021/acsomega.4c04886

ACS Omega 2024, 9, 38820−38831

This article is licensed under CC-BY-NC-ND 4.0

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muhammad+Yasir"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jinyoung+Park"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eun-Taek+Han"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Won+Sun+Park"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jin-Hee+Han"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wanjoo+Chun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.4c04886&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c04886?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c04886?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c04886?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c04886?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c04886?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/9/37?ref=pdf
https://pubs.acs.org/toc/acsodf/9/37?ref=pdf
https://pubs.acs.org/toc/acsodf/9/37?ref=pdf
https://pubs.acs.org/toc/acsodf/9/37?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.4c04886?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


and potentially offering new treatment avenues for diseases
that currently lack effective therapies.17,18 Importantly, in the
context of tryptase inhibitors, drug repurposing can provide
new treatments for inflammatory diseases, aligning with the
need for efficient and rapid therapeutic development. This
approach holds significant potential in addressing unmet
medical needs related to tryptase-related conditions.
Computational study, or computer-aided drug design

(CADD), is now a crucial component in drug discovery and
development.19−21 CADD utilizes computational methods and
software for rapid and efficient screening of large compound
libraries, offering a more time- and cost-effective alternative to
traditional experimental approaches.22,23 This approach
dramatically reduces the need for synthesizing and exper-
imentally testing numerous compounds, allowing for the
virtual screening of thousands of compounds.
Machine learning (ML), a subset of artificial intelligence, is

another transformative force in drug development.24 It enables
computers to learn from data, predict outcomes, and make
decisions autonomously.25 ML excels in analyzing vast and
complex data sets, identifying new drug targets, predicting drug
efficacy, and optimizing drug properties. Within the sphere of
machine learning techniques utilized in drug discovery, the
Random Forest regression algorithm stands out for its efficacy
and reliability.26−28 This algorithm operates by constructing a
multitude of decision trees during training and outputting the
mean prediction of the individual trees. This ensemble
approach makes it exceptionally good at handling large data
sets with numerous input variables, a common scenario in drug
development. Random Forest is particularly adept at
identifying complex, nonlinear relationships within data,
making it suitable for predicting drug efficacy and toxicity.

Its robustness against overfitting, even with relatively small
data sets, is a significant advantage in the early stages of drug
discovery.29,30 Moreover, the algorithm provides insights into
feature importance, enabling researchers to identify key
molecular descriptors and biological properties that are most
predictive of a drug’s performance.31

In this study, we employed an ML-based model, trained
using a reference library of known tryptase inhibitors, to screen
an FDA-approved drug library to identify potential tryptase
inhibitors. The candidate compounds were further analyzed
using molecular docking. Subsequent biological examination
was conducted to validate these candidates. This approach,
leveraging drug repositioning, has the potential to yield novel
tryptase inhibitors, contributing significantly to the field of
inflammatory disease treatment.

■ RESULTS AND DISCUSSION
Figure 1 illustrates the workflow that integrates machine
learning algorithms, molecular docking experiments, and
experimental validation approaches for drug repurposing of
novel tryptase inhibitors. The study followed a seven-step
process: (1) Extraction of molecular features from the
reference data set using RDKit, (2) Training of machine
learning algorithm, (3) Screening of an FDA-approved drug
library to identify lead compounds, (4) Retrieval of tryptase
3D structure and preparation of ligands, (5) Conducting
molecular docking for ligand-protein complexes, (6) Exper-
imental validation of candidates through cell culture studies,
(7) Analysis of results to assess the performance of
repositioning of FDA-approved drug candidates as novel
tryptase inhibitors.

Figure 1. Workflow diagram of the predicted research study.

Figure 2. (A) Correlation of experimental pIC50 values with predicted pIC50 values with the regression model. (B) Illustration of the feature
importance values.
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■ MACHINE LEARNING REGRESSION ANALYSIS OF
THE TRYPTASE REFERENCE DATA SET

Utilizing the RDKit toolkit, nine distinct molecular descriptors
were computed for a data set of 168 compounds, known as the
tryptase reference data set. This data set was subsequently
partitioned into a training set and a test set, with the training
set comprising 80% of the data, and the remaining 20% split
evenly between two test sets (8:1:1). The training set was then
subjected to Random Forest Regression to develop a predictive
model. The model’s performance was assessed by applying it to
the test set of the tryptase reference data set. In Figure 2A, a
visual representation is provided that illustrates the relationship
between the experimentally determined pIC50 values and

those predicted by a custom-built regression model. The
assessment of this regression model’s accuracy was conducted
by computing the Mean Squared Error (MSE) and the
regression coefficient, utilizing the scikit-learn library. The
analysis yielded an MSE of 0.806 and a regression coefficient of
0.83. Considering the inherent variability in pIC50 values,
which stem from diverse experimental methodologies, these
metrics were deemed acceptable.

■ MOLECULAR DESCRIPTOR’S CONTRIBUTION IN
REGRESSION PREDICTION

To gain insight into the influence of individual descriptors on
the regression model, the Random Forest Regression tool was

Table 1. Comprehensive Details Regarding Drugs That Were Predicted by the Random Forest Regression Model to Possess
High Potential for Tryptase Inhibition

No. Name MW LogP HBA HBD CSP3 R-Boundsa Ringsb TPSA A-Ringsc predicted pIC50

1 Meropenem trihydrate 437.18 −2.78 11 9 0.71 5 3 204.68 0 8.926
2 Doripenem hydrate 438.12 −2.43 11 8 0.73 7 3 193.56 0 8.896
3 D-Amygdalin 457.16 −3.11 12 7 0.65 7 3 202.32 1 8.855
4 Zanamivir 332.13 −3.58 11 9 0.58 6 1 198.22 0 8.707
5 Cidofovir dihydrate 315.08 −3.31 11 9 0.50 6 1 210.90 1 8.652
6 Aztreonam 435.05 −1.17 13 5 0.46 7 2 201.58 1 8.621
7 Aliskiren 551.39 3.29 9 6 0.73 19 1 146.13 1 8.606
8 Citicoline 488.11 −2.23 15 5 0.71 10 2 215.72 1 8.569
9 Cefminox sodium 541.05 −6.17 14 4 0.56 11 3 205.69 1 8.566
10 Laninamivir octanoate 472.25 −0.22 12 7 0.71 14 1 195.79 0 8.561
11 Omacetaxine mepesuccinate 545.26 2.58 10 2 0.66 9 5 123.99 1 8.559
12 Oleuropein 540.18 −0.63 13 6 0.52 9 3 201.67 1 8.557
13 Argatroban monohydrate 526.26 0.09 12 9 0.61 9 3 209.21 1 8.547
14 Gilteritinib 552.35 2.70 11 4 0.62 9 5 121.11 2 8.524
15 Cinitapride tartrate 552.24 1.00 14 7 0.56 10 3 225.79 1 8.470
16 Paeoniflorin 480.16 −1.36 11 5 0.70 6 8 164.37 1 8.461
17 Naringin 580.18 −1.17 14 8 0.52 6 5 225.06 2 8.456
18 Tofacitinib citrate 504.20 0.30 14 5 0.50 8 3 221.04 2 8.422
19 Citicoline sodium 510.09 −5.86 15 4 0.71 10 2 218.55 1 8.400
20 Acotiamide hydrochloride hydrate 540.20 0.91 12 9 0.48 10 2 207.52 2 8.393
21 Argatroban 508.25 0.91 11 7 0.61 9 3 177.71 1 8.361
22 Puromycin 2HCl 543.18 0.05 12 5 0.45 8 4 160.88 3 8.355
23 Chloroquine phosphate 515.14 2.95 11 7 0.50 8 2 183.68 2 8.349
24 Gadodiamide hydrate 574.10 −7.37 13 2 0.69 16 0 188.31 0 8.347
25 Harpagoside 494.18 −1.20 11 6 0.54 6 4 175.37 1 8.345
26 Darunavir 547.24 2.38 10 4 0.52 11 4 140.42 2 8.334
27 Terbutaline sulfate 548.24 2.39 12 10 0.50 6 2 220.04 2 8.331
28 Fludarabine phosphate 365.05 −1.72 12 6 0.50 4 3 186.07 2 8.330
29 Ribociclib succinate 552.28 2.73 13 4 0.48 8 5 165.81 3 8.324
30 Vardenafil hydrochloride trihydrate 578.23 0.02 13 7 0.52 8 4 207.40 3 8.322
31 Doripenem 420.11 −1.60 10 6 0.73 7 3 162.06 0 8.307
32 Naringin dihydrochalcone 582.19 −1.35 14 9 0.52 9 4 236.06 2 8.277
33 Enalaprilat dihydrate 384.19 −0.52 9 7 0.50 8 2 169.94 1 8.273
34 Landiolol hydrochloride 545.25 1.11 11 3 0.68 13 3 127.82 1 8.259
35 Iopamidol 776.85 −1.01 11 8 0.47 10 1 188.45 1 8.251
36 Harringtonine 531.25 2.19 10 2 0.64 8 5 123.99 1 8.248
37 Medihaler-ISO 556.23 −0.04 14 14 0.45 8 2 283.04 2 8.231
38 Ioversol 806.86 −2.02 12 8 0.50 12 1 199.89 1 8.223
39 Iohexol 820.88 −1.63 12 8 0.53 12 1 199.89 1 8.223
40 Atosiban 993.44 −3.04 23 14 0.63 18 3 365.67 1 8.223
41 Carbetocin (acetate) 1047.51 −2.41 25 14 0.62 18 3 399.81 1 8.222
42 Gadodiamide 592.11 −8.19 14 4 0.69 16 0 219.81 0 8.221
43 Doxorubicin 543.17 0.00 12 7 0.44 5 5 206.07 2 8.220
44 Oxytocin acetate 1066.46 −3.52 26 17 0.60 17 3 436.83 1 8.202

aNumber of rotatable bonds. bNumber of rings. cNumber of aromatic rings.
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employed to determine the importance of each feature. Feature
importance serves as an indicator of the extent to which each
descriptor affects the model’s predictive accuracy. Descriptors
with greater importance scores are deemed to have a more
significant effect on the pIC50 prediction, whereas those with
lower scores are considered to have a lesser impact. Among
nine molecular descriptors evaluated, including molecular
weight, LogP value, counts of hydrogen bond donors and
acceptors, the proportion of sp3 hybridized carbon atoms
(CSP3), the number of aromatic bonds, ring count, topological
polar surface area (TPSA), and the number of aromatic rings,
the CSP3 descriptor emerged as the most influential in
predicting pIC50 values. Following closely in importance were
the TPSA and molecular weight descriptors (Figure 2B).

■ PREDICTION OF PIC50 VALUES OF
FDA-APPROVED DRUG LIBRARY DATA SET

Following the development of the regression model using the
tryptase reference data set, the prediction of the pIC50 value of
an FDA-approved drug library data set was carried out. The
molecular descriptors of 3,105 drugs were computed utilizing
the RDKit toolkit. The regression model was utilized to predict
pIC50 values by applying the data set of molecular features
from the FDA-approved drug library. The predictions for FDA-
approved drugs ranged from 4.676 M to 8.926. Drugs
predicted to have high pIC50 values, specifically those above
8.2, are detailed in Table 1. To delve deeper into the
effectiveness of these compounds in inhibiting tryptase,
molecular docking studies and molecular dynamics (MD)
simulations were conducted with the compounds having
predicted pIC50 values of greater than 8.0, which corresponds
to 10 nM in IC50 values. Considering the absence of any FDA-
approved tryptase inhibitors, APC-366, a compound currently
under investigation as a tryptase inhibitor, was used as a
positive reference in computational and experimental evalua-
tions.

■ STRUCTURAL ANALYSIS OF THE TRYPTASE
PROTEIN

Tryptase holds the distinction of being the most abundant
serine proteinase derived from secretory granules within mast
cells. Its presence has been utilized as a marker for mast cell
activation.32 It is made up of 245 amino acids forming a single
chain (PDBID: 2GDD). The protein exhibits a complex
structure involving loops, α-helices, and β-sheets, contributing
to its overall conformation. Furthermore, a VADAR 1.8
structural study revealed that tryptase is made up of 8% α-
helices, 45% β-sheets, 46% coils, and 30% turns. Based on the
Ramachandran plots, 94.6% of amino acids were situated
within the favored region, while 100% of residues fall within
the allowed zone of dihedral angles phi (φ) and psi (ψ)
(Figure S1).

■ THE BINDING POCKET ANALYSIS
The functional attributes of a binding pocket are influenced
not only by its geometry and position within a protein but also
by the particular amino acid residues that encircle it.33 In this
study, the binding pocket residues were identified using the
Discovery Studio ligand interaction approach, and compared
to already available data (PBID: 2GDD) revealing Val35,
Phe41, Cys58, Lys60, Leu64, Asp189, Gln192, Gln195,
Ser214, Trp215, Gly219, and Gly226 as the active site amino
acid residues. The cocrystallized ligand was utilized to
construct the binding sphere, focusing on our selected binding
pocket residues the sphere was contracted. Therefore, the
sphere’s dimensions were adjusted to X = 13.4387, Y =
57.5649, and Z = 70.0616, with a fixed radius of 11.3075.
These parameters were set to investigate the interaction of
screened compounds against the tryptase active site (Figure 3).

■ MOLECULAR DOCKING ANALYSIS
The CDocker module within Discovery Studio was employed
to forecast negative energy values, specifically CDocker energy
and CDocker interaction energy. CDocker energy encapsulates
the overall docking energy, which is derived from the 3D
structural and physiochemical attributes of both the ligand and
the protein. In contrast, CDocker interaction energy focuses

Figure 3. (A) This panel shows the spatial positioning of the tryptase active site. The enzyme’s structure is represented as a ribbon in aquamarine,
with the binding site surface highlighted in coral. (B) This panel focuses on the key residues within the active region of tryptase, crucial for ligand
binding. Notably, the catalytic triad, consisting of His57, Asp102, and Ser195, is highlighted to emphasize its role in the enzyme’s activity.
Additional crucial amino acids for ligand binding, including Gly193, Ser195, Asp194, Ser214, Ser190, and Asp189, are also emphasized.
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exclusively on the energy related to the interactions between
the ligand and the receptor. This encompasses the contribu-
tions from various intermolecular forces, such as van der Waals
forces, electrostatic complementarity, and hydrogen bonding,
all of which contribute to the binding affinity. CDocker
Interaction Energy provides a granular understanding of the
strength and character of the individual interactions between
the ligand and the receptor.34 During the docking analysis of
all screened compounds with tryptase, each compound
underwent individual scrutiny and scoring based on minimal
docking energy values. This comprehensive evaluation aimed
to identify compounds with favorable binding characteristics
and promising interactions within the active site of tryptase
(Table 2). The results revealed that several screened drugs
demonstrate more negative docking energy scores as compared

to the reference APC-366, emphasizing the potential
superiority of the identified ligands. All the docket compounds
are sorted according to the lowest docking energy values.
Furthermore, these compounds already have known activities
instead of tryptase and could be a possible inhibitor of tryptase
too.

■ SELECTION OF HIGHLY PREDICTED DRUGS
From the tryptase inhibitors identified through molecular
docking analysis, the top seven drugs along with the reference
compound APC-366 (Figure 4) were chosen for in-depth
investigation. This included analyses of binding modes and
experimental evaluation. Enalapril, a prodrug of enalaprilat, was
also included in this selection. Although it did not rank highly
in the predictive analysis, its selection was influenced by the

Table 2. Overall Docking Energy and Interaction Energy Values (in kcal/mol) of Complexes and the Targets of These Drugs

Drugs
CDocker energy
(kcal/mol)

CDocker interaction energy
(kcal/mol) Target/action

Gadodiamide −66.491 −38.111 contrast agent used in MRI scan
Landiolol −52.838 −61.482 beta1 adrenergic receptor antagonist, antihypertensive
Argatroban −49.084 −48.664 thrombin inhibitor, anticoagulant
Aliskiren −47.394 −61.147 renin inhibitor, antihypertensive
Medihaler-ISO −44.864 −37.333 isoproterenol, beta-receptor agonist, asthma
Laninamivir octanoate −43.290 −51.591 neuraminidase (NA) inhibitor, anti-influenza virus
Enalaprilat −40.231 −39.708 angiotensin-converting enzyme inhibitor, antihypertensive
Cidofovir dihydrate −39.702 −40.036 inhibitor of human herpesviruses, antiviral
Citicoline −37.610 −51.855 cytidine-5′-diphosphocholine, dietary supplement
Iopamidol −35.248 −50.141 iodinated contrast agent
Imidazolidinyl urea −35.072 −44.732 antimicrobial preservative in cosmetics
Uridine 5′-triphosphate −34.573 −40.722 UTP
Adenosine-5′-triphosphate −32.161 −51.503 ATP
Calcium D-Panthotenate −28.740 −30.830 treatment of deficiency of pantothenic acid
APC_366 −27.447 −41.574 selective inhibitor of mast cell tryptase (investigational)
Puromycin 2HCl −26.928 −49.088 aminonucleoside antibiotic
Vardenafil hydrochloride −26.385 −43.237 phosphodiesterase 5 inhibitor, erectile dysfunction
Adenosine-5′-diphosphate −25.095 −38.643 ADP
Fludarabine phosphate −24.216 −36.459 purine analogue and antineoplastic agent, anticancer
Ioversol −22.914 −45.552 iodinated contrast agent
Adenosine 5′-monophosphate −22.303 −36.508 AMP
Doxorubicin −21.817 −44.790 anthracycline group of chemotherapeutic agent
Chloroquine −21.094 −36.407 antimalarial
Gilteritinib −21.007 −55.575 FLT3 (receptor tyrosine kinase) inhibitor, antileukemia
APC_2059 −20.488 −78.151 selective inhibitor of mast cell tryptase (investigational)

Figure 4. Structures of highly predicted tryptase inhibitors from molecular docking with the reference compound of APC-366.
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practical consideration of enalaprilat’s limited availability for
experimental analysis. Laninamivir, known for inhibiting
influenza neuraminidase, also appears to block tryptase,
suggesting dual action that may enhance its antiviral effects.
While neuraminidase inhibitors like laninamivir prevent virus
spread by stopping the release of new viruses from cells,
tryptase, released from mast cells, activates influenza
hemagglutinin. This is significant, although some deadly
influenza strains activate hemagglutinin differently. Our
hypothesis about laninamivir’s dual inhibition remains
speculative, based on in vitro results, and requires further
exploration to understand its full antiviral potential.

■ BINDING INTERACTION ANALYSIS
The binding interaction analysis was conducted to discern the
specific interactions and their types with the active region
amino acid residues of the tryptase protein. This analysis aimed
to determine whether the ligands bound effectively within the
active binding pocket. Additionally, the identification of
hydrogen bonds and salt bridges was part of this approach.
The results indicated that APC-366, aliskiren, citocoline,

cidofovir, enalaprilat, landiolol, and laninamivir successfully
bound to the active binding pocket of the target protein,
demonstrating favorable interactions as shown in Figure 5.
The APC-366 ligand−receptor complex demonstrates five

hydrogen bonds with His57, Lys60, Cys58, Cys42, and Phe41.
The oxygen atom of the ligand made a hydrogen bond with
Lys60 with a bonding distance of 2.04 Å. A hydrogen atom of
ligand formed two hydrogen bonds against His57 and Cys58
with bond lengths of 2.46 and 2.84 Å. Furthermore, another
hydrogen atom formed two hydrogen bonds against Phe41 and
Cys42 with bonding distances of 2.53 and 2.80 Å respectively.
The aliskiren docking interaction analysis to the target protein
exhibited that the ligand bind in the active region of the
tryptase and manifested four hydrogen bonds with the active
region amino acids. The four different hydrogen atoms of the
ligand formed hydrogen bonds against Cys58, Cys42, and
Phe41 with bonding distances of 2.06 Å, 2.06 Å, 2.27 Å, and
2.14 Å respectively.
The citocoline compound docked to tryptase demonstrated

five hydrogen bonds against four different amino acids Lys60,
His 57, Cys58, and Gly193. The two oxygen atoms of the

Figure 5. The 3D interactions between the ligand and the active region amino acids of tryptase. The hydrogen bond interaction and interacting
amino acids are colored red, the salt bridges and salt bridge forming amino acids are colored cyan, and the other interacting amino acids are colored
black.
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ligand form 2 hydrogen bonds with the same Lys60 with
bonding distances of 1.74 Å, and 1.86 Å. Furthermore, two
other oxygen atoms of ligand formed hydrogen bonds against
His57 and Gly193 with bond lengths of 2.15 and 2.32 Å
respectively. Moreover, the hydrogen atom of the ligand forms
a hydrogen bond against Cys58 with a bond length of 1.98 Å.
The cidofovir compound docked to tryptase depicted three
hydrogen bonds and one salt bridge against the target protein.
Two oxygen atoms of ligand formed two hydrogen bonds
against Phe41 and Ser195 with bond lengths of 2.08 and 2.16
Å respectively. Furthermore, another hydrogen atom of the
ligand formed a hydrogen bond against the binding pocket
residues Cys58 with a bonding distance of 2.14 Å. Moreover,
an oxygen atom of ligand formed a salt bridge against Lys60
with a bonding distance of 1.83 Å.
The enalaprilat-tryptase docked complex demonstrated

three hydrogen bonds in the docking interaction analysis.
Two different oxygen atoms of ligand formed two hydrogen
bonds with different amino acid residues of binding pocket
Ala97 and Lys60 with bond lengths of 2.25 and 2.35 Å
respectively. Furthermore, a hydrogen atom of ligand formed a
hydrogen bond against His57 with a bonding distance of 1.87
Å. Landiolol with a molecular weight of 509.6 g/mol occupied
the extensive space in the active binding pocket of tryptase and
exhibited four hydrogen bonds against the active region amino
acids of the target protein. Three hydrogen atoms of landiolol
formed hydrogen bonds against Ser195, Gln192, and Gly216
with bonding distances of 2.43 Å, 2.38 Å, and 2.43 Å
respectively. Moreover, the oxygen atom of landiolol formed a
hydrogen bond against Gly216 with a bonding distance of 2.43
Å. Laninamivir binds in the active region of tryptase and forms
four hydrogen bonds against the active region of the target
protein. The hydrogen atom of the ligand formed a hydrogen
bond against Gly60 with a bond length of 1.79 Å. Furthermore,
two hydrogen atoms formed two hydrogen bonds with the
same amino acid residue His57 with bonding distances of 2.26

and 2.12 Å. Moreover, an oxygen atom of the ligand establishes
a hydrogen bond with the aforementioned His57, with a
bonding distance of 3.05 Å.

■ EXPERIMENTAL VALIDATION
RBL-2H3 cell line, derived from rat basophilic leukemia cells,
possess key characteristics with mast cells, notably the capacity
to degranulate and release inflammatory mediators such as
histamine and cytokines upon specific stimulation. This makes
RBL-2H3 cells an optimal model for studying mast cell
activation, signaling pathways, and the effects of various agents
on mast cell functionality.35,36 To induce mast cell activation,
we exposed RBL-2H3 cells to known mast cell activators;
phorbol myristate acetate (PMA) and calcium ionophore
A23187. The effectiveness of activation was quantitatively
assessed by measuring two primary markers of mast cell
degranulation: the activity of β-hexosaminidase and the release
of histamine. These markers are indicative of the degranulation
process and the inflammatory response of mast cells.
Additionally, in our experiments, we included nedocromil, an
FDA-approved mast cell stabilizing agent, as a reference
compound. The exact mechanism of action of nedocromil is
not fully understood, but its established role in mast cell
stabilization makes it a suitable reference. This was particularly
pertinent given that APC-366 is an investigational tryptase
inhibitor and there are currently no FDA-approved tryptase
inhibitors available. Highly predicted drugs demonstrated
significant suppression of both β-hexosaminidase activity
(Figure 6A) and histamine release (Figure 6B) in RBL-2H3
cells challenged with PMA/A23187. These effects were
observed to be similar in extent to those achieved by APC-
366 and nedocromil. Most notably, the highly predicted drugs
also significantly inhibited tryptase activity to the same extent
as APC-366 and nedocromil (Figure 6C). Notably, tryptase
inhibitors significantly reduced the release of histamine and β-
hexosaminidase, in addition to inhibiting tryptase activity.

Figure 6. Inhibition of PMA/A23187-induced β-hexosaminidase activity (A), histamine release (B), and tryptase activity (C) in RBL-2H3 cells.
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Previous studies have demonstrated that tryptase inhibitors,
such as APC366-also used in our study-effectively decrease not
only tryptase activity but also other markers of mast cell
activation.37,38 These findings suggest that tryptase may
amplify mast cell activation, and its inhibition can consequently
attenuate the overall mast cell response. However, additional
research is needed to elucidate the specific mechanisms by
which tryptase influences the degranulation process during
mast cell activation. Nedocromil demonstrated a reduction in
tryptase activity, which is likely attributable to its mast cell
stabilizing properties, leading to decreased tryptase release, as
opposed to a direct inhibitory effect on tryptase. This contrasts
with other tested compounds that directly inhibited released
tryptase during the mast cell activation process. These results
are particularly significant as they suggest that these highly
predicted drugs have the potential to serve as novel tryptase
inhibitors.

■ STRUCTURAL EVALUATION AND SIMILARITY
COMPARISON

To evaluate the structural resemblance among the drugs that
were highly predicted by both experimental and computational
data, the Tanimoto similarity measure was applied using
RDKit. This metric is crucial for comparing the similarity and
diversity among compounds. The Tanimoto coefficient ranges
from 0 to 1, where 0 indicates no similarity and 1 indicates
complete similarity. Although there is no universally accepted
threshold for similarity, a Tanimoto coefficient of 0.4 generally
signifies a moderate level of similarity. This means the
compounds share certain features but also possess significant
differences (Figure S2A, and S2B)). With a Tanimoto
similarity value around 0.4 certain drug groups were identified:
APC-366, agatroban, and enalaprilat formed one group;
laninamir and agatroban another; and citocholine, agatroban,
and cidofovir yet another. Despite these groupings, no
overarching similarity was found across all highly predicted
drugs (Table S1).
Despite the limited overall similarity of the highly predicted

drugs to APC-366, the possibility of shared specific structural
features is still present. To investigate this further, the
Maximum Common Substructure (MCS) algorithm was
employed within RDKit, with a threshold of 0.5 set for the
analysis. This led to the identification of common sub-
structures among APC-366, agatroban, aliskiren, enalapril, and
enalaprilat, which were highlighted in green color (Figure
S2A). Notably, APC0366, argatroban, enalapril, and enalaprilat
shared an N-(3-phenylproppyl) methylamine group in their
structures, a feature absent in other drugs. This suggests that
inhibitory activity against tryptase may involve factors beyond
structural motifs, potentially including spatial arrangement or
specific conformations. Additionally, similarity maps generated
using RDKit’s fingerprints assessed if the highly predicted
drugs shared structural motifs with APC-366 (Figure S2B).
The similarity maps revealed the extent to which APC-366’s
structural motif was present in the chemical structures of the
highly predicted drugs. The insights gained from both MCS
and similarity map analyses are instrumental in guiding further
optimization of the drugs.

■ METHODOLOGY
Tryptase Inhibitor Reference Data Set and FDA-

Approved Drug Library. The reference data set of human

tryptase inhibitor consists of 168 compounds, each with
experimentally determined IC50 values. This data set was
sourced from the ChEMBL database (https://www.ebi.ac.uk/
chemb l ) , s p e c i fi c a l l y unde r t h e ChEMBL ID
CHEMBL2095193. ChEMBL is a manually curated database
known for its collection of bioactive molecules with drug-like
properties. In the data set, all molecules are represented as
canonicalized SMILES strings and IC50 values. For more
efficient data representation and analysis, the IC50 values were
converted to pIC50 values. The pIC50, which is the negative
logarithm of the IC, ranges from 4.48 to 9.40. This
corresponds to an IC range from 33,000 nM to 0.4 nM.
Furthermore, an FDA-approved drug library was obtained
from Selleck Chemicals (https://www.selleckchem.com). This
library is comprised of 3,105 compounds. These FDA-
approved drug molecules were initially in SDF (structure-
data file) format and were converted to SMILES strings using
RDKit.

Molecular Descriptor Generation Using RDKit. To
evaluate the molecular properties of compounds, the RDKit
(https://www.rdkit.org) platform was utilized. This open-
source cheminformatics and machine learning framework,
developed in Python, is adept at handling small molecule data.
It offers a suite of features for processing and interpreting
chemical structures, including tools for generating molecular
descriptors, chemical features, and visualizing chemical data.39

Therefore, the RDKit was employed to compute a set of nine
molecular descriptors for both a tryptase reference data set and
an FDA-approved drug library. These descriptors encompassed
a range of molecular properties such as molecular weight, LogP
value, number of hydrogen bond donors and acceptors, the
proportion of sp3 hybridized carbon, the total number of
aromatic bonds, ring count, topological polar surface area
(TPSA), and the count of aromatic rings.

Machine Learning Architecture. The analysis of the
tryptase reference data set incorporated machine learning
techniques via scikit-learn (https://scikit-learn.org), a Python-
based, open-source library designed for efficient and
straightforward data analysis and mining. This library
encompasses various algorithms for tasks such as regression,
classification, clustering, dimensionality reduction, and model
selection.40 For this study, The data set was split into a training
set and a test set in an 8:2 proportion. The molecular
descriptors within the test set underwent training using the
Random Forest Regression algorithm from the scikit-learn
toolkit. Random Forest Regression, an ensemble learning
approach, aggregates the outputs of numerous decision trees to
enhance the model’s precision and reliability (https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html). Upon completion of the train-
ing phase with the training data set, the model’s accuracy was
evaluated using the test data set, focusing on metrics like mean
squared error and the regression coefficient. Additionally, the
relative influence of each descriptor was quantified through
feature importance values.41,42 To predict pIC50 values for the
FDA-approved drug data set, we calculated its molecular
descriptors using RDkit as with the tryptase reference data set
and then applied these molecular descriptors to the Random
Forest Regression model.

Tryptase Structure Retrieval. Human beta 2 tryptase
(TPSB2) exists in a tetrameric form, composed of four
identical subunits. The 3D structure of tryptase protein was
examined using the A subunit from the crystal structure
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identified as PDBID: 2GDD, which has a resolution of 2.35 Å,
from the Protein Data Bank (PDB) (https://www.rcsb.org/
structure/2GDD). To refine the structure for the analyses,
energy minimization was employed using UCSF Chimera
software. The tryptase protein, composed of α-helices, β-
sheets, and turns, underwent a quantitative analysis of its
structure using the VADAR (http://vadar.wishartlab.com/)
Internet server.43 Additionally, the Ramachandran plots were
generated using Discovery Studio.44 Moreover, the same tool
was utilized to investigate the 3D structure of the protein.

Prediction of Active Binding Site. The placement of a
ligand within the protein’s holo-structure is a strong indicator
of the targeted protein’s binding pocket.45,46 The tryptase
inhibitor complex was obtained from the PDB (PDB ID:
2GDD). To ensure the precision of binding site selection,
interacting amino acids were chosen using the ligand
interaction feature of Discovery Studio. As a result, the
cocrystallized ligand was selected, and the binding sphere was
established using the current selection method within the
define binding site window of Discovery Studio. Subsequently,
the binding sphere was reduced to be confined to the chosen
amino acids.

Molecular Docking. Molecular docking stands as one of
the most extensively employed methods for assessing the
interactions and conformations of ligands with target
proteins.47,48 Certainly, scoring algorithms in molecular
docking enable the estimation of association strength or
binding affinity between two molecules by assessing their
preferred orientation. This predictive capability enhances our
understanding of molecular interactions and aids in identifying
potential ligands for target proteins.33 The protein underwent
preparation steps before molecular docking, involving the
removal of water molecules and the cocrystallized ligand by
UCSF Chimera. Additionally, hydrogen atoms were added to
the protein using Discovery Studio’s protein preparation
approach. Ligand preparations for both screened and reference
compounds were conducted, involving tautomer generation,
ionization adjustments, and addressing bad valencies through
Discovery Studio’s ligands preparation module. Subsequently,
the CDOCKER module of Discovery Studio was utilized to
carry out molecular docking of the screened FDA candidate
compounds against tryptase, with default orientation and
conformation settings at 10/10. Each chosen compound
underwent molecular docking against tryptase, and the top
hits were selected based on the lowest binding energy values
(in kcal/mol) to identify the best-docked complexes.

Binding Interaction Analysis. The top docked com-
plexes, along with APC-366 as a reference drug, were subjected
to three-dimensional (3D) graphical analysis using UCSF
Chimera49 and Discovery Studio. This analysis aimed to
comprehensively study the interactions between ligands and
the target protein, providing insights into the spatial arrange-
ment and binding characteristics of the compounds within the
protein’s active site.

Experimental Reagents and Cell Culture. Cidofovir
dihydrate was acquired from GLPBIO (#GC13936, MON-
TCLAIR, USA). All other chemicals required for the
experiment were procured from Sigma-Aldrich, located in St.
Louis, MO, USA. The RBL-2H3 cells were acquired from the
Korea cell line bank (KCLB), with the catalog number 22256
(RBL-2H3). The RBL-2H3 cells were cultured in RPMI 1640
medium (Hyclon Laboratories), supplemented with 10% heat-
inactivated fetal bovine serum and 100 U/ml of penicillin-

streptomycin (Gibco). The cells were maintained at 37 °C in
an atmosphere containing 5% CO2.

β-Hexosaminidase (β-HEX) Activity and Histamine
Release Assay. To assess the impact of chemicals on
degranulation, we quantified the levels of β-HEX activity and
histamine release. This enzyme is found within the granules of
mast cells and is commonly used as a marker for granule
content.50 RBL-2H3 cells were grown in 12-well plates for a
duration of 24 h. The medium was then discarded, and the
cells were treated with 0.1 μM of inhibitors diluted in PIPES
buffer for 1 h at 37 °C. Following this pretreatment, the cells
were washed twice with PIPES buffer and subsequently
stimulated with 50 nM of PMA and 1 μM of A23187 for 30
min at 37 °C. A 20 μL aliquot of the supernatant was then
allowed to react with 80 μL of substrate buffer (containing 2
mM 4-p-nitrophenyl-N-acetyl-β-D-glucosaminide in 0.05 M
sodium citrate buffer, pH 4.5) for 30 min at 37 °C. The
reaction was halted by the addition of 200 μL of stop buffer
(0.1 M NaHCO3, pH 10). The absorbance was measured at
405 nm using a microplate spectrophotometer (SpectraMax
M5, Molecular Devices, USA). The concentration of histamine
was determined using the o-phthalaldehyde (OPT) spectro-
fluorometric method.51 To each well’s 0.5 mL of supernatant,
0.1 mL of 1 M NaOH and 25 μL of OPT (1% weight/volume
in methanol) were added. The mixture was then incubated for
4 min at room temperature. The reaction was terminated by
adding 50 μL of 3 M HCl. The absorbance was measured at
excitation and emission wavelengths of 360 and 450 nm,
respectively, using a microplate spectrophotometer (Spectra-
Max M5, Molecular Devices, USA).

Tryptase Inhibition Activity Assay. Tryptase activity was
measured using the Tryptase Activity Assay kit from
Tribioscience (#TBS2101, Tribioscience, USA) following the
manufacturer’s instructions. To prepare cellular tryptase, RBL-
2H3 cells were detached from the culture plate. After
detaching the cells, wash them and adjust the cell
concentration to 1.0 × 107 cells/mL with 1X assay buffer.
The suspended cells were incubated in the presence of the 0.1
μM of inhibitors for 1 h and then stimulated with 50 nM of
PMA and 1 μM of A23187 for 30 min at 37 °C in a 5% CO2
incubator. The cell suspension was centrifuged at 700 X g, and
the supernatant was carefully collected. For the tryptase
inhibition activity assay, the assay mixture was made by adding
50 μL of supernatant to 130 μL of assay buffer. The
colorimetric reaction was initiated by adding 20 μL of the
tryptase substrate. The reactions were observed at 405 nm in
kinetic mode for a duration of 60 min at 37 °C using a
microplate spectrophotometer (Molecular Devices, San Jose,
CA, USA). Each assay was conducted in triplicate.

Statistical Analysis. All values presented in the figures are
depicted as the mean ± standard deviation (SD), derived from
a minimum of three independent experiments. Statistical
significance was determined using a two-tailed Student’s t test.
Data with p-values less than 0.05 were considered statistically
significant. Single (*) and double (**) asterisks indicate
statistical significance at p < 0.05 and p < 0.01, respectively.

■ CONCLUSION
The increasing duration and cost of drug development
necessitate the exploration of emerging techniques to stream-
line this process. Machine learning (ML) has emerged as a
particularly effective tool in identifying lead compounds with
high potential for successful drug development. Our study
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demonstrates the distinct advantages of ML-based screening in
terms of efficiency and high throughput performance in drug
design.
In our research, compounds predicted by ML to be effective

were selected from FDA-approved drugs. These compounds
were shown to fit well within the active region of tryptase,
effectively blocking its active site in computational models.
Further validation was provided through biological assessment
of these compounds. The activities of these highly predicted
drugs were comparable to the reference compound APC-366,
underscoring their potential efficacy as tryptase inhibitors.
Although numerous tryptase inhibitors have been previously
reported, it is important to note that these are largely in
investigational stages and have not yet received FDA approval.
Notably, the fact that these compounds are already FDA-
approved adds feasibility and safety to their potential use.
Therefore, our study concludes that ML-based drug screening,
particularly in the context of drug repurposing, presents a
promising approach for the development of novel tryptase
inhibitors, offering a significant contribution to the field of
drug discovery.
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