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Abstract

Background: Cryopreservation of ovarian tissue can be used to preserve the fertility of patients who are about to
receive treatment(s) that could compromise their future ovarian function. Here we evaluate the effectiveness of a
vitrification protocol by carrying out a systematic comparison with a conventional slow-freezing method on human
ovarian tissue.

Methods: Human ovarian samples (mean age 28.0 ± 1.1 years) were processed in parallel for each cryopreservation
procedure: vitrification and slow-freezing. Following warming/thawing, histological observations and a TUNEL assay
in ovarian follicles were performed and compared to unfrozen control.

Results: Both cryopreservation protocols gave comparable histological outcomes. Percentage of intact follicles was
83.6 % following vitrification in a 1.5 M 1,2-propanediol (PrOH), 1.5 M ethylene glycol (EG) and 0.5 M raffinose
solution, 80.7 % after slow-freezing in 1.5 M PrOH and 0.025 M raffinose, and 99.6 % in fresh tissue. Follicle density
was unchanged by vitrification (0.6 follicles/mm2) or slow-freezing (0.5 follicles/mm2) compared to fresh tissue (0.7
follicles/mm2). Percentage of follicles with DNA fragmentation was not statistically different in vitrified (20.8 %) or
slow-frozen (31.3 %) tissues compared to the unfrozen control (35.0 %). There was no difference in proportion of stroma
cells with DNA fragmentation in vitrified (6.4 %) and slow-frozen (3.7 %) tissues compared to unfrozen tissue (4.2 %).

Conclusions: This vitrification protocol enables good preservation of ovarian quality post-warming. The evaluation of
endocrine function after vitrification need to be perform in a higher cohort to evaluate if this protocol may offer
a relevant alternative to conventional slow-freezing for the cryopreservation of human ovarian tissue.

Keywords: Cryopreservation, Human ovarian tissue, Vitrification, Conventional slow-freezing, Follicle morphology,
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Background
Cryopreservation of ovarian tissue followed by auto-
transplantation is a promising method for fertility pres-
ervation in girls and young women at risk of premature
ovarian insufficency as a result of anti-cancer treatment
when ovarian stimulation is not possible [1, 2]. Cryo-
preservation of ovarian tissue can be performed by slow-
freezing or vitrification. Slow-freezing has resulted in 37
live births worldwide after orthotopic transplantation [3, 4].
However, two major issues with slow-cooling protocols are
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that they are time-consuming and often require costly
equipment. We recently addressed the first issue by devel-
oping a serum-free 1,2-propanediol (PrOH), raffinose-
based solution supplemented with antioxidants that gave
promising results in terms ovarian integrity and functional-
ity, even when used in combination with a faster cooling
program than the usual one [5, 6]. Over the last decade,
numerous studies have investigated vitrification as an alter-
native to conventional slow-freezing for ovarian tissue [7],
and different vitrification solutions and methods, mostly
adapted from blastocyst and oocyte vitrification, have been
applied. Live offspring have been born from vitrified mouse
ovarian preantral follicles matured in vitro, and orthotopic
autografting of vitrified/warmed sheep hemi-ovaries has
led to the birth of four lambs [8–10]. In humans, two live
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births were recently reported after ovarian tissue vitrifica-
tion followed by in vitro activation of dormant follicles in
patients with primary ovarian insufficiency [11]. The issue
of whether vitrification is superior to slow-freezing for
cryopreserving human ovarian tissue remains unresolved.
Rahimi et al. observed a higher percentage of apoptotic
cells in vitrified human ovarian tissues after grafting com-
pared to slow-frozen tissues [12], and Oktem et al. showed
higher primordial follicle density and viability after slow-
freezing compared to vitrification [13]. However, other
studies have failed to find any difference between these two
cryopreservation procedures in terms of the proportion of
morphologically intact follicles and proportion of apoptotic
cells [14, 15]. These discrepant conclusions likely reflect ei-
ther heterogeneity in the cryopreservation protocols ap-
plied, which ovarian components may be particularly
sensitive to, and/or disparities in the methods employed to
evaluate ovarian tissue quality. Limited access to donated
ovarian tissue places limits to comparative studies between
vitrification and slow-freezing methods, and few studies
have compared the effects of these two methods on ovarian
tissue from the same patient. Here we investigated follicle
integrity following vitrification with a novel PrOH, ethylene
glycol (EG) and raffinose-based procedure. The efficiency
of this vitrification procedure was evaluated by carrying
out a systematic comparison with our earlier PrOH and
raffinose-based slow-freezing protocol.

Methods
Unless otherwise indicated, all products were purchased
from Sigma-Aldrich (France).

Ovarian tissue collection
This study was approved by the regional research ethics
committee (Comité Consultatif des Personnes se Prêtant
à la Recherche Biomédicale d’Auvergne, Project AU 419,
Ovarian tissue co
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tissue were assessed in parallel and compared against unfrozen controls (n
07/03/2001). From 1 October 1 2013 to 1 May 2014,
ovarian cortical samples from 5 patients were collected
during endoscopic surgery for benign cysts, after signed
informed consent. Mean age of the women was 28.0 ±
1.1 (SD) years. For each patient, a piece of ovarian cortex
overlying the cyst was excised with scissors and without
electrocoagulation. The specimens were immediately
immersed in the holding “medium A” at 4 °C and trans-
ported to the laboratory on ice, as previously described
[16]. “Medium A” was composed of: NaCl (94.7 mM),
KCl (4.8 mM), MgSO4 (0.8 mM), NaH2PO4 (1.0 mM),
NaHCO3 (25.0 mM), CaCl2 (1.8 mM), sodium lactate
(21.3 mM), sodium pyruvate (0.3 mM), D-glucose
(5.5 mM), L-glutamine (25.0 mM), taurine (0.5 mM),
and 0.5 % of human serum albumin (Vitrolife Sweden
AB, Sweden). The cortex was cut into fifteen to twenty
1 × 1 × 5-mm slices. For each patient, 5 tissue pieces
were processed for light microscopy and TUNEL assay
(unfrozen control), and the remaining specimens were
randomly divided into vitrification and slow-freezing
groups. Samples from any one patient were processed
for each cryopreservation procedure at the same time,
warmed/thawed and analyzed in parallel (Fig. 1).

Vitrification/warming procedure
Our vitrification procedure consisted of three incubation
steps in solutions with increasing concentrations of per-
meable cryoprotectants (CPAs) dissolved in “Medium A”
supplemented with 0.5 % HSA, HEPES (21.8 mM) and
glycine (50.0 mM). Ovarian slices were sequentially
immersed for 5 min in the solution at 25 % CPAs
[0.37 M PrOH, 0.37 M EG], 5 min at 50 % CPAs
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room temperature, while at the higher CPA concentrations,
the samples were incubated at +4 °C. The slices were then
dropped directly into liquid nitrogen, together with 20 μL
of 100 % vitrification solution as previously described [17].
Afterwards, the vitrified tissue was transferred to a pre-
cooled 1.8 mL sterile cryovial (Nunc, Fisher Bioblock
Scientific, France) and stored in liquid nitrogen.
For the warming procedure, cryovials were immersed

in a 37 °C water bath for 2 min and the CPAs were di-
luted by transferring the ovarian pieces through decreas-
ing concentrations of vitrification solution (50 % and
25 %) at 37 °C. Each step of dilution protocol lasted
5 min. Each slice was then washed twice in “Medium A” +
0.5 % HSA for 5 min at 37 °C.

Slow-freezing procedure
The cryopreservation medium B consisted of “Medium
A” supplemented with 0.5 % HSA, HEPES (21.8 mM),
glycine (50.0 mM), PrOH (3.0 M) and raffinose (0.05 M).
“Medium B” was added in three steps to “medium A” con-
taining the ovarian slices, to a final concentration of 1:1
(v/v) under gentle agitation [1.5 M PrOH and 0.025 M raf-
finose]. After 15 min of equilibration at 4 °C, each slice
was transferred to a sterile cryovial containing 1.5 mL of
cryoprotective solution and loaded into a programmable
freezer (Minicool 40 PC, Air Liquide, France) held at 4 °C.
The cooling rate was −2 °C/min from 4 °C to −11 °C, at
which point temperature nucleation was induced by semi-
automatic seeding. The temperature was then lowered
to −40 °C at −2 °C/min and from −40 °C to −150 °C
at −10 °C/min. Finally, the cryovials were plunged into
liquid nitrogen for storage.
For the thawing procedure, cryovials were immersed

in a 37 °C water bath for 2 min and the cryoprotective
solution containing the ovarian slices was diluted in two
5-min steps with the basal “medium A” + 0.5 % HSA, at
37 °C. Each slice was then washed twice in “medium A” +
0.5 % HSA for 5 min at 37 °C.

Histological examination
Fresh as well as warmed/thawed ovarian fragments were
fixed overnight in alcohol/formalin/acetic acid at 4 °C,
then paraffin-embedded and cut into 4 μm serial sec-
tions. Eight consecutive sections were mounted per slide
and every second slide was deparaffinized, hydrated and
stained with hematoxylin and eosin. The sections were
observed by light microscopy at ×400 magnification to
establish the development stage of the follicles according
to Gougeon’s criteria: primordial (flattened granulosa
cells (GCs)), intermediary (mixture of flattened and cu-
boidal GCs), primary (single layer of cuboidal GCs) and
secondary (two or more layers of GCs) [18]. In the result
section, primordial and intermediary follicles have been
pooled into one group and termed as “resting follicles”.
Follicle morphology was evaluated on the basis of
previously-described parameters [19]. Follicles were clas-
sified as intact if there were no overt signs of oocyte and
GC degeneration. The basement membrane of the fol-
licle had to be intact and attached to the GC layer and
the oocyte had to be in contact with its surrounding
GCs. The follicles were regarded as degenerated if they
contained an intact oocyte but showed more than 50 %
of the following signs: detachment of the oocyte from
surrounding GCs and/or vacuolization of ooplasm and/
or partially-degenerated GCs and/or detachment of the
basal membrane.
To estimate follicular density, the histological sections

were digitized via a Matrox Meteor MC/4 card (Samba
technologies, France) coupled to a Sony 3CCD DXC
950P color camera (Sony Corp., Japan). The area of the
sections was determined by delineation of the tissue
boundary using IPS 32 version 4.27 software (Samba
Technologies). Follicle density in the ovarian cortex was
calculated as total number of follicles divided by area of
the cortex analyzed (mm2).

Measurement of DNA fragmentation
DNA fragmentation in the follicles was detected using
the In situ Cell Death Detection Kit (Roche, France) ac-
cording to the manufacturer’s protocol. After rehydra-
tion and permeabilization, the sections were incubated
with a labeling solution containing dUTP and enzyme
solution (Terminal deoxynucleotidyltransferase, Tdt) for
1 h at 37 °C. After counterstaining with Hoechst 33258
(Invitrogen, France), the tissue sections were observed
by fluorescence microscopy. A negative control was car-
ried out by omitting Tdt from the reaction mixture. A
positive control was performed by applying DNAse
treatment. Follicles with positive TUNEL staining of the
oocyte and/or ≥ 50 % of the GCs were considered as
positive. The proportion of TUNEL-positive stroma cells
was evaluated on three fields at ×400 magnification per
section. Images were captured using a Nikon DSFI-1
digital camera (Nikon, Japan).

Statistical analysis
All data were summarized using frequency counts and
percentages. For the statistical analysis, a generalized
linear mixed model was built with patient as random
factor. Comparisons between groups (unfrozen, vitrifi-
cation and slow-freezing) were corrected for simultan-
eous hypothesis testing according to Tukey-Kramer. A
p-value < 0.05 was considered statistically significant.

Results
Follicle distribution and morphology
In total, 249 follicles were analyzed in fresh tissue proc-
essed before cryopreservation, 482 after vitrification and
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374 after slow-freezing (n = 5 patients). After vitrification,
follicle density (0.6 follicles/mm2) was well maintained
and not statistically different to fresh (0.7 follicles/mm2)
or slow-cooled (0.5 follicles/mm2) tissues (p > 0.05). The
results are shown in Table 1. In the fresh group, 81.5 % of
these follicles were classified as resting, 15.7 % as primary
and 2.8 % as secondary. After vitrification, 96.9 % of folli-
cles were classified as resting, 2.3 % as primary and 0.8 %
as secondary. In the slow-freezing group, 97.6 % of folli-
cles were classified as resting and 2.3 % as primary after
thawing. Comparative analysis showed that the unfrozen
group had a statistically higher number of follicles in pro-
gressed stages (primary and secondary) compared to the
vitrification and slow-freezing groups. However, there was
no significant difference in distribution of follicles of dif-
ferent developmental stages between the two cryopreser-
vation groups (p > 0.05) (Table 1). In unfrozen tissue
(Fig. 2a), follicles displayed close adherence between oo-
cyte and GCs. The oocytes had a homogenous cytoplasm,
and no vacuolization was observed. Stromal cells had
spindle-shaped nuclei and no interstitial edema was
present. In the vitrified follicles (Fig. 2b), the close contact
between oocyte and GCs was well maintained. The vitri-
fied follicles showed intact nuclear and cellular mem-
branes and a uniform oocyte cytoplasm. Quality of the
stroma was compact, morphologically normal, and com-
parable to that in unfrozen control. In the slow-freezing
group, partial or total detachment of the basal membrane
was the main morphological alteration observed in folli-
cles (Fig. 2c, black arrows). The surrounding stroma
showed empty spaces and disorganized architecture
(Fig. 2c, black stars). Overall analysis of follicle morph-
ology showed that 83.6 % and 80.7 % of follicles remained
morphologically intact in the vitrification and slow-
freezing groups, respectively, and there were no significant
differences between these groups (Fig. 2). However, the
proportions of morphologically intact resting follicles were
significantly reduced both after vitrification (84 %) and
slow-freezing (80.3 %) compared to fresh tissue (100 %)
(both p < 0.01).

Assessment of DNA fragmentation
In situ DNA fragmentation was assessed in the follicles
using the TUNEL assay. For this measurement, a total of
Table 1 - Impact of cryopreservation protocol (vitrification versus slo
developmental stage

Number of resting follicles (%)

Group Total number of follicles Total Intact

Unfrozen 249 203 (81.5 %) 203 (100 %)

Vitrification 482 467*** (96.9 %) 392*** (84 %)

Slow-freezing 374 365*** (97.6 %) 293*** (80.3 %)

Data are expressed as numbers and proportions [n (%)]. *0.01 < p < 0.05, **0.001 < p
155 follicles were analyzed: 62 before cryopreservation,
64 after vitrification, and 29 after slow-freezing. Pairwise
comparisons showed no significant difference in propor-
tion of follicles with DNA fragmentation in cryopre-
served (vitrification: 20.8 %; slow-freezing: 31.3 %) versus
fresh tissues (35 %) (p > 0.05 respectively). Moreover, no
statistical difference was found between the two cryo-
preservation groups (p > 0.05) (Fig. 3 left panel). DNA
fragmentation was assessed in 1536 fresh, 1032 warmed
and 1076 thawed stroma cells. We found no significant
increase in percentage of stroma cells with DNA frag-
mentation both after vitrification (6.4 %) and slow-
freezing (3.7 %) compated to unfrozen control (4.2 %)
(p > 0.05 respectively). Although stoma cells in warmed
tissue tended to show increased DNA fragmentation, the
vitrification and slow-freezing groups were not statisti-
cally significantly different (p > 0.05) (Fig. 3 right panel).

Discussion
Vitrification is a rapid and simple technique which has
recently shown real prospects for the cryopreservation
of heterogeneous biologic tissues such as ovarian cortex
[20]. In order to minimize cryoprotectant toxicity with-
out affecting vitrification properties, relatively low con-
centrations of different cryoprotectants can be combined
[21]. Here we chose a combination of PrOH and EG as
CPAs based on successful results of oocyte and embryo
vitrification [22]. Moreover, a recent study reported bet-
ter results on mouse ovarian tissue with the combination
[20 % EG (v/v) + 20 % PrOH (v/v)] than with combina-
tions [20 % EG (v/v) + 20 % DMSO (v/v)] or [20 % PrOH
(v/v) + 20 % DMSO (v/v)] in terms of preserving follicle
integrity and functionality [23]. Raffinose was used as
non-penetrating cryoprotectant in order to increase
water withdrawal from cells and decrease cryoprotectant
exposure time [24]. de la Peña et al. reported successful
vitrification of preantral follicles from mice using a cryo-
protective solution supplemented with 6 M EG and
0.3 M raffinose [8]. There is currently still no commer-
cialized carrier system suitable for vitrification of human
ovarian tissue in medical practice. To achieve ultra-rapid
cooling, we used the “direct dropping” technique [17].
The minimal volume of vitrification solution surround-
ing the samples could maximize the cooling rate and
w-freezing) on morphology of ovarian follicles according to

Number of primary follicles (%) Number of secondary follicles (%)

Total Intact Total Intact

39 (15.7 %) 38 (97.4 %) 7 (2.8 %) 7 (100 %)

11** (2.3 %) 9 (81.8 %) 4* (0.8 %) 2 (50 %)

9** (2.4 %) 9 (100 %) 0* (0 %) _

< 0.01, ***p < 0.001 compared to the unfrozen control
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Fig. 2 Histologic assessment of unfrozen, vitrified and slowly frozen human ovarian follicles. Sequentially hematoxylin and eosin stained human
ovarian tissues from the unfrozen control (a), vitrification (b) and slow-freezing (c) groups. Tissues from the three groups are mainly composed of
follicles at resting and primary stages. Well-preserved follicles exhibited intact nuclear and cellular membranes, uniform ooplasm and a prominent
nucleus of the oocyte. Note two degraded follicles (black arrows) in the tissue cryopreserved according to the slow-freezing method (c), showing
over 50 % oocyte detachment from surrounding GCs. Surrounding stroma in unfrozen tissue (a) and vitrified (b) tissues was compact, and stromal
cells had spindle-shaped nuclei. Note increased numbers of pycnotic cells (black stars) and empty areas in the stromal tissue after slow-freezing
(c). Scale bar = 20 μm
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reduce the toxicity of the vitrification solution with less-
concentrated cryoprotectants. After vitrification of human
ovarian cortex using this carrier-less system, Amorim et al.
reported a significantly higher proportion of morpho-
logically intact follicles compared to solid surface vitri-
fication (SSV) and plastic straw methods [25].
The results of our study show that vitrification pre-

serves follicle and stroma morphology as well as the
slow-freezing method. Our data are in agreement with
previous reports where systematic comparisons between
the two cryopreservation procedures were carried out
on human ovarian tissue [19, 15]. Histomorphometric
analysis showed that follicular densities were comparable
between warmed and thawed tissues. Our vitrification
protocol did not increase the percentages of follicles and
stroma cells with DNA fragmentation after warming.
Ovarian cortex was thus vitrified without the subsequent
a

a

a

b b b

Fig. 3 DNA fragmentation in follicles. Histograms presenting
proportion of TUNEL-positive follicles (left panel) and stroma cells
per high power field before (white plots) and after cryopreservation
using vitrification (black hatched plots) versus slow freezing methods
(black plots) (n = 5 patients). Pairwise comparisons between unfrozen,
vitrification and slow-freezing groups were performed using a
Tukey-Kramer test. a,b No difference among the three groups
(ap > 0.05, bp > 0.05)
irreversible DNA damage potentially arising from apop-
tosis and/or oxidative stress activation [12, 26]. In a pre-
vious study, Xiao et al. reported a significant increase in
TUNEL-assessed DNA fragmentation in human follicles
and stroma cells after vitrification by direct contact of
ovarian cortex with liquid nitrogen [27]. Supplementa-
tion of the collection and vitrification medium with tau-
rine and L-glutamine, which have been found to play an
antioxidant role by reducing cryopreservation-induced
oxidative stress, might explain the superiority of our vit-
rification procedure over the above-mentioned report
[28, 29, 6]. Taken together, our findings indicate that hu-
man ovarian tissue maintains similar quality after vitrifi-
cation or slow-freezing.Due to limited access to samples
of human ovarian tissue, only 5 patients were enrolled in
the present study. However, the originality of our study
lies in the fact that the vitrification and slow-freezing
protocols were systematically compared by analyzing
ovarian tissue obtained from the same patient. Although
the total number of follicles recovered from these sam-
ples was significantly higher than in other studies that
have included 10 to 15 patients more, it would be pru-
dent to complete our study with a higher number of pa-
tients [19, 14]. We recently developed a low-attachment
3D culture system that has yielded encouraging results
in terms of developmental capacity of cryopreserved hu-
man follicles [6]. It would therefore be of great interest
to use this new in vitro model to gain deeper insights
into the impact of the vitrification procedure on ovarian
function. From this standpoint, an evaluation of 17β-
oestradiol and progesterone production in culture would
be required as an indicator of follicular growth and sec-
ondary follicle viability. Although reported as the most
successful vitrification method, the “direct dropping”
technique used in this study presupposes direct contact
with liquid nitrogen, which is a potential source of mi-
crobial contamination [30]. Since the manufacturers
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have not yet come up with a closed system suitable for
ovarian tissue, application of our vitrification procedure
in clinical practice requires the use of sterilized liquid ni-
trogen. Despite its technical constraints (costly, time-
intensive…), UV-sterilization of liquid nitrogen remains
the main way to guarantee “safe vitrification” in medical
practice.

Conclusions
This study shows that human ovarian tissue retains a
comparable morphological appearance whether after vit-
rification or slow-freezing. These promising results raise
prospects for using this vitrification protocol in routine
practice as a relevant alternative to slow-freezing for
cryopreserving human ovarian tissue.
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