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A proteomic network approach across the ALS-FTD
disease spectrum resolves clinical phenotypes and
genetic vulnerability in human brain
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Abstract

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia
(FTD) are neurodegenerative diseases with overlap in clinical
presentation, neuropathology, and genetic underpinnings. The
molecular basis for the overlap of these disorders is not well estab-
lished. We performed a comparative unbiased mass spectrometry-
based proteomic analysis of frontal cortical tissues from post-
mortem cases clinically defined as ALS, FTD, ALS and FTD (ALS/FTD),
and controls. We also included a subset of patients with the
C9orf72 expansion mutation, the most common genetic cause of
both ALS and FTD. Our systems-level analysis of the brain
proteome integrated both differential expression and co-expres-
sion approaches to assess the relationship of these differences to
clinical and pathological phenotypes. Weighted co-expression
network analysis revealed 15 modules of co-expressed proteins,
eight of which were significantly different across the ALS-FTD
disease spectrum. These included modules associated with RNA
binding proteins, synaptic transmission, and inflammation with
cell-type specificity that showed correlation with TDP-43 pathol-
ogy and cognitive dysfunction. Modules were also examined for
their overlap with TDP-43 protein–protein interactions, revealing
one module enriched with RNA-binding proteins and other causal
ALS genes that increased in FTD/ALS and FTD cases. A module
enriched with astrocyte and microglia proteins was significantly
increased in ALS cases carrying the C9orf72 mutation compared to
sporadic ALS cases, suggesting that the genetic expansion is asso-
ciated with inflammation in the brain even without clinical
evidence of dementia. Together, these findings highlight the utility
of integrative systems-level proteomic approaches to resolve clini-
cal phenotypes and genetic mechanisms underlying the ALS-FTD
disease spectrum in human brain.
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Introduction

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia

(FTD) are clinically distinct neurodegenerative diseases that are

connected by genetic and pathological overlap (Fecto & Siddique,

2011; Ferrari et al, 2011; Achi & Rudnicki, 2012). ALS patients

present with muscle weakness and spasticity associated with

degeneration of motor neurons in the motor cortex, brainstem,

and spinal cord that ultimately leads to death. In contrast,

patients with FTD display cognitive dysfunction associated with

degeneration of neurons in the frontal and temporal lobes of the

brain. Despite being clinically distinct, 15% of individuals

presenting with FTD also have ALS, whereas 30% of individuals

with ALS will develop FTD (Lomen-Hoerth, 2011). This implies

that these two neurodegenerative diseases are part of a shared

clinical spectrum.

In addition to their clinical overlap, most cases of ALS and

FTD display pathological accumulation of TAR-DNA binding

protein (TDP-43), a ubiquitously expressed nuclear DNA/RNA

binding protein that is cleaved, phosphorylated, and aggregated in

the cytoplasm in disease (Neumann et al, 2006). Ninety-seven

percent of ALS cases display phosphorylated TDP-43 pathology in

the brain and/or spinal cord, while 50% of FTD cases display

this pathology throughout the brain (Radford et al, 2015), defin-

ing these diseases as TDP proteinopathies. Many individuals with

ALS and FTD also share a positive family history of disease (Fong

et al, 2012). The largest proportion of inherited cases (40% ALS

and 25% FTD) are caused by hexanucleotide G4C2 repeat
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expansions in the C9orf72 gene, which notably were identified

from families with co-occurring ALS and FTD (ALS/FTD)

(DeJesus-Hernandez et al, 2011; Renton et al, 2011; Majounie

et al, 2012; Radford et al, 2015). Although the function of the

C9orf72 protein is not yet known, there are several theories

regarding how the C9orf72 mutation leads to ALS and FTD

(Zhang et al, 2012; Farg et al, 2014). For example, loss of

C9orf72 protein expression is thought to inhibit autophagy and

promote neuroinflammation (Farg et al, 2014; Webster et al,

2016), whereas expression of C9orf72 gene products could cause

toxicity via nuclear sense and antisense repeat-containing RNAs

that sequester RNA binding proteins (abnormal RNA metabolism)

or by non-canonical repeat-associated non-ATG (RAN) translation

of dipeptide repeat proteins that aggregate and block nuclear

pores (Gitler & Tsuiji, 2016). Notably, this genetic mutation

bridges these two diseases that clinical and pathological overlaps

have previously connected. However, the underlying molecular

basis of the ALS-FTD clinical and pathological spectrum is not

well established. It is also unclear why patients with the same

C9orf72 genetic expansion get either or both of these disparate

diseases. Using our knowledge of the shared clinical, pathological,

and genetic features characterizing ALS and FTD, a systems-level

proteomic analysis of both sporadic and genetic (C9orf72) cases

comprising the ALS-FTD spectrum was conducted to determine

common and distinct pathways that contribute to the onset and

development of dementia.

Co-expression network analysis has been used to define modules

of co-expressed genes or proteins linked to specific cell types, orga-

nelles, and biological pathways (Miller et al, 2008; Oldham, 2014;

Seyfried et al, 2017). Assessing co-expression of proteins within

samples and relating co-expression modules to clinical and patho-

logical endophenotypes can be defined utilizing weighted co-expres-

sion network analysis (WGCNA), where the most centrally

connected proteins in a module often act as key drivers (Zhang &

Horvath, 2005; Oldham et al, 2008). We recently reported the first

large-scale proteomic and transcriptomic multinetwork analysis in

human postmortem brain from both asymptomatic and symp-

tomatic Alzheimer’s disease (AD) (Seyfried et al, 2017). This work

revealed that several protein-driven processes related to cognitive

decline are distinct from networks in human AD transcriptome.

Moreover, analysis of the proteome is particularly relevant since

neurodegenerative diseases are collectively viewed as proteinopa-

thies defined by their association with the aggregation and accumu-

lation of misfolded proteins (Golde et al, 2013).

Here, we report the first unbiased proteomic analysis of post-

mortem cortical tissues from clinically characterized ALS, FTD,

ALS/FTD, and healthy disease controls. A subset of C9orf72

expansion-positive (C9Pos) cases was also included. WGCNA

revealed 15 modules of co-expressed proteins, eight of which

were significantly different across the ALS-FTD disease spectrum.

These included modules associated with RNA binding proteins,

synaptic transmission, inflammation, and cell-type specificity

(neuronal, microglial, and astrocytic) that showed strong correla-

tion with TDP-43 pathology and cognitive dysfunction. Compared

to sporadic ALS patients, C9Pos ALS cases showed increased

levels for a protein module associated with astrocytic and micro-

glial markers, which supports a hypothesis that links the C9orf72

mutation to neuroinflammation.

Results

Proteomic signature of human brain classifies cases by
clinical phenotypes

This study offers an in-depth analysis of protein changes in the

frontal cortex of patients across the ALS-FTD disease spectrum,

which resulted in the final quantification of 2,612 protein groups

mapping to 2,536 unique gene symbols across all samples (Datasets

EV1 and EV2). Our goal was to compare ALS patients with and

without clinical dementia, so our experimental case selection

grouped samples based on clinical phenotype. As FTD is clinically

heterogeneous, we limited that group to include only individuals

with the pathological diagnosis of frontotemporal lobar degenera-

tion with TDP-43 inclusions (FTLD-TDP), which accounts for the

majority of overlap with ALS and FTD (Neumann et al, 2009). The

frontal cortex was chosen because it was a likely site for discrimi-

nating proteomic differences in ALS patients with and without

dementia, and represents an area in which TDP-43 pathological

burden has been mapped in FTD patients (Brettschneider et al,

2014). In our analytic pipeline, protein expression values are

adjusted for age, sex, and postmortem interval (PMI) covariance

prior to downstream differential or co-expression analyses

(Fig EV1). Differential expression by ANOVA comparisons of each

of the groups yielded subsets of significantly altered proteins across

controls and disease groups (Dataset EV2). The number of signifi-

cantly altered proteins increased sequentially when comparing

controls to ALS, ALS-FTD, and FTD, respectively, which is likely

due to the presence of clinical dementia and an increase in associ-

ated pathological burden in the frontal cortex (Fig 1A). For super-

vised clustering analysis, we selected 165 proteins that had at least

two ANOVA Tukey pairwise comparisons of high significance

(P < 0.01) among the six possible comparisons across the clinical

groups. The over-represented gene ontology (GO) terms within

these 165 information rich proteins included cytoplasmic vesicle

part, clathrin coat, and plasma membrane (Dataset EV3). Using

these differentially expressed protein signatures of disease, multidi-

mensional scaling (MDS) was used to stratify the relatedness of indi-

vidual cases, which revealed that clinical phenotypes indeed

associate with proteomic signatures, as samples segregated into

clusters representing clinical groups (Fig 1B). Also, ALS/FTD cases

distributed between the ALS and the FTD clusters, supporting an

underlying molecular and biological spectrum designated by protein

expression that defines the clinical spectrum. Thus, this analysis

highlights that protein signatures of ALS-FTD clinical phenotypes

are related to differences in molecular pathways in the frontal

cortex.

Protein co-expression network analysis

Protein co-expression networks reflect relationships between protein

pathways, cell types, and physically interacting proteins within

modules. Network analyses revealed 15 modules of strongly co-

expressed groups of proteins (Fig 2 and Dataset EV2). Each module

is defined by an eigenprotein, the most representative weighted

protein expression pattern across samples for a group of co-

expressed proteins (Seyfried et al, 2017). Eight of these 15 modules,

identified by numbers that correspond to a color, ordered 1–15, with
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M1 (largest, 548 proteins) to M15 (smallest, 21 proteins), showed

different patterns of co-expression across the four clinical groups.

As expected, functional annotation of frontal cortex modules classi-

fied the proteome with specific gene ontologies and brain cell types

among other biological sources of co-expression (Gaiteri et al,

2014). Of the significant modules, four (M2, M6, M9, and M10)

showed increased expression in FTD cases compared to ALS and

control cases (Fig 2A). These modules were enriched for RNA splic-

ing (M2), response to biotic stimuli (M6), zinc ion binding (M9),

and homeostatic processes (M10) (Dataset EV3). One of the signifi-

cant modules, M15, enriched for blood microparticles and circulat-

ing immunoglobulin complexes, showed increased protein

expression in all disease groups compared to controls, consistent

with a common mechanism of blood–brain barrier breakdown in

neurodegenerative diseases (Carvey et al, 2009; Seyfried et al,

2017) (Fig 2A). The remaining three significant modules (M1, M3,

and M8) showed a decrease in protein expression in FTD cases

compared to control and ALS cases; M1 and M8 were enriched in

synaptic and neuronal proteins, while M3 was enriched with mito-

chondrial proteins (Fig 2A and Dataset EV3). Moreover, several

modules showed significant correlation with clinical and pathologi-

cal sample traits. Pathological sample traits characterize TDP-43

pathology, which is represented by the abundance of phosphory-

lated TDP-43 cytoplasmic inclusions in the frontal cortex (defined

by the pTDP score) or label-free protein quantification (LFQ) of

TDP-43 by mass spectrometry (Fig EV2); for example, M5, a module

enriched with extracellular matrix and astrocyte proteins correlated

closely to clinical and pathological traits (Fig 3A), M14, a module

enriched with microtubule proteins and displaying dynactin as a

hub protein, and optineurin, genes previously implicated in ALS
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Figure 1. Segregation of ALS and FTD clinical phenotypes by proteomic signatures.

A Venn diagram showing a total of 442 unique proteins determined to be significantly altered by ANOVA followed by Tukey’s post hoc test (P ≤ 0.01) among three
pairwise comparisons (i) ALS, (ii) ALS/FTD, and (iii) FTD versus control cases.

B Supervised hierarchical clustering of 165 significant proteins altered in the frontal cortex across clinical phenotypes (Control, ALS, ALS-FTD, and FTD) was used as
input for multidimensional scaling (MDS) analysis. Each dimension on the plot explains a larger proportion of variance of the dataset. Clinical groups are indicated by
colors (orange—control, light blue—ALS, dark blue—FTD/ALS, and pink—FTD). Segregation of cases based on clinical grouping is indicated by colored ovals.

▸Figure 2. Integrated protein co-expression and differential expression across the ALS-FTD disease continuum.

A Eigenproteins, which correspond to the first principal component of a given module and serve as a summary expression profile for all proteins within a module, are
shown for 10 of the 15 modules generated by WGCNA. Box plots depict mean (horizontal bars) and variance (25th to 75th percentiles), with whiskers extending to the
last non-outlier measurements, are shown for all four groups (control, ALS, ALS/FTD, and FTD), and representative Gene Ontology (GO) terms are listed above each
eigenprotein. Hub proteins for each of these modules are also highlighted. Significance was determined by comparisons of quantified proteins within individual cases
across the clinical groups to the module eigenprotein using one-way nonparametric ANOVA Kruskal–Wallis with P-values listed above plots. Outlier cases are shown
as open circles beyond the error bars.

B Stacked bar plots represent analysis of differential expression (pairwise comparison between disease group and control) and enrichment of differentially expressed
proteins within co-expression modules. Modules are listed along the x-axis, and the height of the bar along the y-axis indicates the proportion of differentially
expressed module members, while the color indicates the fold change (red is increased, and blue is decreased) according to the scale shown.
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and FTD (Fecto & Siddique, 2011), correlated with pathological

TDP-43 scores and total TDP-43 levels. Additionally, M7, enriched

with proteins involved in protein transport, correlated with TDP-43

pathology (Fig 3A).

As expected for the frontal cortex of ALS cases, where TDP-43

pathology is typically not found, and no cognitive decline pheno-

type exists, module eigenprotein expression for ALS patients with-

out dementia was similar to controls. There was little overlap

between controls and either FTD or ALS/FTD. Notably, we found

differences in eigenprotein expression between ALS/FTD and FTD

alone; namely, the eigenprotein expression for many of the

modules representing the ALS/FTD group was intermediate

between that of the strictly ALS and strictly FTD clinical groups,

supporting the existence of a molecular spectrum of disease.

Mapping of differentially expressed proteins to co-expression

modules in cases with ALS/FTD and FTD further supports an

underlying molecular continuum (Fig 2B). There was an enrich-

ment of differentially expressed proteins altered in pairwise

comparisons between ALS/FTD and FTD patients and controls

that were negatively correlated to neuronal modules (M1 and

M8) and positively correlated to M2, M6, M9, and M10 modules.

Additionally, the proteomic network generated in this study was

compared to a previously generated proteomic network created

from frontal cortex samples of control, ALS, AD, and PD cases

from the Emory Brain Bank (Seyfried et al, 2017). Protein

modules in both networks were highly preserved (Fig EV3A), and

over-representation analysis revealed that all 15 modules gener-

ated in the current study had at least one cognate module within

the previously generated Emory brain protein network

(Fig EV3B). The consistency between these independent datasets

provides confidence in the networks generated in this study, and

an opportunity to expose meaningful relationships along the
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Figure 3. Protein co-expression organizes the proteome into modules associated with brain cell types and clinicopathological traits.

A WGCNA cluster dendrogram grouped proteins (n = 2,613) measured across the frontal cortex into distinct protein modules (M1–M15) defined by dendrogram branch
cutting. Modules are clustered based on relatedness defined by correlation of protein co-expression eigenproteins (indicated by position in color bar). Listed in the
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B Cell-type enrichment analysis was performed using a one-tailed Fisher’s exact test against lists of proteins previously generated from acutely isolated neurons,
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ALS-FTD disease spectrum by relating clinical and pathological

sample traits to modules.

Protein co-expression classifies the proteome into modules
associated with brain cell types

Co-expression organizes the proteome by placing proteins as nodes

within a network with edges that define the connectivity, correla-

tion, of nodes to one another (Gibbs et al, 2013). Many biological

networks have an inherent hierarchical structure that allows nodes

to be organized into a small number of highly interconnected

modules (Parikshak et al, 2015). Intramodular connectivity creates

a rank for proteins within a module, which allows identification of

proteins that are module hubs; these are enriched for potential key

drivers (Parikshak et al, 2015). Several modules were enriched for

microglial and astrocytic proteins (M2, M10, M6, M5, and M13),

while others were enriched for neuronal proteins (M1 and M8), or

oligodendrocyte-specific proteins (M12 and M4) (Fig 3B), consistent

with previous studies (Oldham et al, 2008; Miller et al, 2013;

Seyfried et al, 2017). Modules of co-expressed proteins enrich with

markers of specific brain cell types, and so changes in protein co-

expression that relate to clinical phenotypes along the ALS-FTD

disease spectrum may reflect changes in abundance, and/or activa-

tion of specific cell types (Seyfried et al, 2017). Module gene ontol-

ogy enrichment also typically mirrors the cell-type enrichment

analysis results (Dataset EV3). For example, the M6 module was

enriched for proteins involved in responding to biotic stimuli consis-

tent with the cell-type enrichment of astrocytic and microglial

proteins with known roles in neuroinflammation. Modules enriched

for gene ontologies associated with “synapse-part (GO:0044456)”

and “neuronal differentiation (GO:0030182)”, M1 and M8, respec-

tively, are also enriched for neuronal-specific proteins. Microglial

and astrocytic modules (M2, M6, M5, and M13) were positively

correlated to pathological TDP-43 rating and clinical grouping, while

neuronal modules (M1 and M8) were negatively correlated to these

traits (Fig 3A). M4, enriched with oligodendrocyte proteins, also

correlated moderately to ALS-FTD clinical grouping (Fig 3A).

Together, this suggests cell-type-specific processes undergo changes

in ALS/FTD that manifest as clinical and pathological endopheno-

types, some of which are similar to changes occurring with AD

(De Strooper & Karran, 2016; Seyfried et al, 2017).

Module relevance to TDP-43 pathology and clinical grouping

The M2 and M6 modules, enriched for RNA binding proteins and

inflammatory proteins, respectively, were strongly positively corre-

lated to TDP-43 pathological burden, total TDP-43 levels and clinical

grouping. TDP-43 mapped to M2, a module of co-expressed proteins

increased significantly in ALS/FTD and FTD compared to controls.

Notably, this module also included significant enrichment of micro-

glial proteins (hypergeometric overlap P < 0.001), suggesting a strong

co-expression between RNA binding protein dysfunction and micro-

glial inflammation in the ALS-FTD spectrum that was not apparent for

other neurodegenerative cohorts (Seyfried et al, 2017). As expected,

immunohistochemical analysis of pTDP pathology showed a signifi-

cant increase in FTD cases compared to ALS and control cases, which

mirrors overall TDP-43 protein abundance in the frontal cortex of

these brains (Fig EV2). Previous work has suggested that the

C-terminal peptide accumulation of TDP-43 is associated with poten-

tial toxicity of pathological TDP-43 (Zhang et al, 2009). Indeed, we

observed an increase in C-terminal TDP-43 when analyzing peptide

level differences (Fig EV2). Thus, the correlation of inflammatory

proteins and RNA binding proteins in the M6 and M2 modules,

respectively, to clinical and pathological traits, may represent a molec-

ular pathophysiological connection between TDP-43 proteinopathy,

related post-translational modifications, and consequent changes in

the brain proteome occurring along the ALS-FTD disease spectrum.

Modules associated with inflammation are enriched with TDP-43
interactors and have causal links to ALS

Modules associated with TDP-43 pathology and clinical phenotypes

described above could either play a causal role in FTD or be

secondary to the disease process. While postmortem protein expres-

sion does not directly assess causality of these modules by them-

selves, integrating multiple “omic” data sources can prioritize those

modules that are most central to FTD and ALS pathogenesis. One

such approach for module prioritization is to assess the enrichment

of known TDP-43 protein–protein interactions (PPIs) within each

respective module generated across the ALS-FTD spectrum of cases.

For example, the M2 and M6 modules were significantly enriched

for proteins previously identified (Freibaum et al, 2010) in studies

exploring TDP-43 PPIs (Fig 4A). Furthermore, the protein products

for several genes that have been causally linked to ALS (Taylor

et al, 2016) are found within the M2 module, including HNRNPA1,

MATR3, and PFN1 and TDP-43 itself (Fig 4B), whereas HSPB1 (in

M6) has been linked to hereditary motor neuropathy, a form of

motor neuron disease (James & Talbot, 2006; Rossor et al, 2011).

Additionally, the M8 module, enriched with synaptic proteins,

showed enrichment with TDP-43 PPIs, yet lacked any genes causally

linked to ALS or FTD. The strong enrichment of TDP-43 interactors

and other causal genes for ALS within M2 and M6 modules further

reinforces their association with the ALS/FTD spectrum and

suggests that proteins within these modules have critical roles in

mechanisms that drive TDP-43 aggregation and other cellular-driven

pathological processes (i.e., neuroinflammation).

Astrocyte and microglial markers associated with
neuroinflammation are increased across the ALS-FTD spectrum

The M6 module was significantly enriched for TDP-43 PPIs, and

positively correlated to pathological TDP-43 burden and clinical

dementia. This module includes hepatic and glial cell adhesion

molecule (HEPACAM), membrane-organizing extension spike

protein moesin (MSN), ezrin (EZR), glial fibrillary acidic protein

(GFAP), and peroxiredoxin 6 (PRDX6). HEPACAM, an astrocyte-

specific protein (Zhang et al, 2014), is involved in regulating cell

motility and cell-matrix interactions, while moesin and ezrin are

members of a family of proteins which function as cross linkers

between plasma membranes and actin-based cytoskeleton, also

regulating motility (Ivetic & Ridley, 2004). Many of the proteins in

the M6 module are expressed in glial cell types (astrocytes and

microglia), and overrepresent members of the gene ontology

“response to biotic stimuli,” thus defining what we characterize as

the inflammatory module (Fig 5A). Module eigenprotein expression

revealed M6 as a module increased in FTD compared to controls
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and ALS. The WGCNA measure of intramodular connectivity (kME),

defined as the Pearson correlation between the expression pattern of

a protein and the module eigenprotein (which summarizes the char-

acteristic expression pattern of proteins within a module), quantifies

the extent to which individual proteins mirror this pattern (Seidel

et al, 2017). High relative kME can be used to identify individual

proteins that best represent a module; typically, these hubs of

modules are markers of predominant cell types (Parikshak et al,
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Figure 4. Modules with causal links to ALS are associated with inflammation and enriched with TDP-43 protein–protein interactions (PPIs).

A Enrichment of TDP-43 PPIs is displayed in this heatmap with results from TDP-43 PPI from BIOGRID and those from published global analysis of TDP-43 interacting
proteins (Freibaum et al, 2010), with protein co-expression modules listed across the horizontal axis. Colors on heat map indicate enrichment (red) or no significant
over-representation (white) for gene membership. Numbers displayed on the heatmaps represent positive signed �log10(BH-adjusted P-values).

B M2 (blue nodes) and M6 (red nodes) modules represented by proteins with high co-expression (gray lines) and TDP-43 PPIs (yellow lines). Several genes that have
been previously linked to ALS-FTD are also highlighted by their colored module membership (inset).
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2015). Two astrocytic proteins (GFAP, HEPACAM) and two micro-

glial proteins (MSN and TPP1) with high kME were confirmed to be

increased in abundance in frontal cortex homogenates from FTD

cases compared to that of control and ALS cases by Western blot

analysis (Figs 5B and EV4A and B). To assess cellular localization, a

representative ALS and ALS/FTD case was immunostained with

antibodies against GFAP, HEPACAM, and MSN and TPP1, which

displayed astrocytic and microglial cellular populations, respec-

tively, consistent with the specific cell-type expression of these

protein markers (Fig EV4C). Although qualitative, the relative

increase in tissue immunoreactivity seen for GFAP, HEPACAM,

MSN, and TPP1 in the ALS/FTD case likely reflects changes in the

abundance of astrocytes and microglia measured by mass spectrom-

etry and confirmed by Western blotting. Thus, we found increased

inflammation within the frontal cortex in FTD cases, but not ALS,

which correlates with TDP-43 abundance, suggesting a potential

role of glial cells in disease pathogenesis and progression related to

TDP proteinopathy.

Co-expression defines C9orf72 specific changes in ALS brain
related to neuroinflammation

To elucidate the contribution of the C9orf72 genetic expansion to

disease, we compared protein expression relative to our C9Pos case

group. Few proteins were differentially expressed in the frontal

cortex of C9Pos ALS cases compared to C9Neg ALS cases (Dataset

EV2 and Fig 6A). Furthermore, none of these C9orf72 genotype-

affected proteins were changed by greater than twofold, making it

difficult to resolve proteome-wide differences by differential expres-

sion alone. The presence of the C9orf72 expansion as a case-sample

trait also did not significantly correlate with any of the identified

protein co-expression module eigengenes in the network when

comparisons were drawn across all clinical groups. Together, these

findings were unexpected, as we anticipated genetic contributions

would generate a clear proteomic signature. However, mapping of

the differentially expressed proteins in C9Pos ALS to the same

modules from the co-expression network revealed that those

proteins with significant, yet marginal, fold change in C9Pos ALS

cases, generally mapped into the astrocytic/microglial modules

(positively correlated with gene expansion) and neuronal modules

(negatively correlated), consistent with changes associated with

cognitive dysfunction in FTD (Fig 6B). Furthermore, an analysis,

focused on strictly comparing only the non-demented ALS patients

with and without the C9orf72 expansion, identified one module

eigenprotein (M6) (P < 0.05) as increased in C9Pos ALS (Fig 6C).

Notably, these patients were not demented prior to death, suggesting

that the C9orf72 mutation may be associated with neuroinflammation

in the brain. These results also highlight the ability of our integrative
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Figure 5. Astrocyte and microglial markers associated with neuroinflammation are increased across the ALS-FTD spectrum.

A I-graph of M6 module (red) representing hub proteins and corresponding gene symbols as nodes. Node size and edges (gray) are reflective of the degree of
intramodular connectivity (kME). Specific cell-type expression is demonstrated by the node rim and text color around the gene symbols (blue: microglial marker and
green: astrocytic marker).

B Relative abundance measured by label-free quantification (log2 expression values) for the astrocytic hub proteins HEPACAM and GFAP, and the microglial hub proteins
MSN and TPP1 were increased in ALS/FTD and FTD cases consistent with the positive correlation of M6 to pathological TDP-43 pathological burden and clinical
dementia. Box plots depict mean (horizontal bars) and variance (25th to 75th percentiles), with whiskers extending to the last non-outlier measurements, as shown.
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systems approach to resolve genetic vulnerability, which was not

confidently recognized through differential expression analysis alone.

Although not significant (P = 0.13), we did observe a reduction in the

55-kDa-long isoform C9orf72 protein in C9Pos ALS cases compared to

C9Neg ALS cases consistent with a loss of C9orf72 function

(Fig EV5). This is of interest because haploinsufficiency of C9orf72

protein, possibly related to neuroinflammation, has been suggested

as a possible disease mechanism in C9Pos patients (Farg et al, 2014;

Waite et al, 2014; Yang et al, 2016).

Discussion

Using an unbiased proteomic screen of the postmortem frontal

cortex, we were able to identify and quantify protein differences

along the ALS-FTD disease spectrum. Employing both differential

and co-expression analyses, we demonstrate that protein expression

within the brain has a signature that defines the molecular and

genetic underpinnings of the clinical and pathological ALS-FTD

disease spectrum. WGCNA resolved related protein co-expression

patterns or modules representing pathways and brain cell types, and

showed a decrease in expression levels for modules associated with

neurons and an increase in expression of astroglial and microglial

modules associated with cognitive dysfunction and TDP-43 pathol-

ogy in brain. Strikingly, C9orf72 expansion in patients dying with

ALS predisposed the frontal cortex to elevated co-expressed markers

of neuroinflammation, the same ones co-expressed in a concerted

increased pattern across FTD and ALS/FTD patients. Thus, our find-

ings in the context of genetic underpinnings of ALS/FTD and prior

protein co-expression networks for AD (Seyfried et al, 2017) indi-

cate that neuroinflammation is a common signature of dementia,

while broad RNA binding protein co-accumulation is more
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Figure 6. Co-expression analysis resolves C9orf72-specific changes in ALS brain.

A Volcano plot displays the protein abundance (log2 fold change) against the t-statistic (�log10(P-value)) for C9Pos (n = 8) against C9Neg (n = 11) ALS cases. Red and
blue dots indicate significantly altered proteins that are increased and decreased, respectively, in C9orf72 carriers. Gray dots below the hashed line represent proteins
that are not significantly changed (P > 0.05). Notably, there are no significant proteins that are twofold or more (�log2 1.0) increased or decreased in C9Pos cases
compared to C9neg cases.

B Stacked bar plot represents the analysis of differential expression (pairwise comparison between C9Pos and C9Neg ALS cases) and enrichment of differentially
expressed proteins within co-expression modules. Modules are listed along the x-axis, and the height of the bar along the y-axis indicates the proportion of
significantly differentially expressed module members, while the color indicates the fold change according to the scale shown.

C Module eigenprotein (the summary expression profile of a module) for 4 of the 15 modules generated by comparing C9Pos ALS and C9Neg ALS cases. The M6 module
is significant, whereas other glial modules (M10 and M2) and a synaptic module (M8) are increased and decreased in C9Pos cases, respectively, yet do not reach
significance using a Student’s t-test (P-value listed above the plot). Box plots depict mean (horizontal bars) and variance (25th to 75th percentiles), with whiskers
extending to the last non-outlier measurements, as shown.

EMBO Molecular Medicine Vol 10 | No 1 | 2018 ª 2017 The Authors

EMBO Molecular Medicine ALS-FTD proteomic network Mfon E Umoh et al

56



pronounced in the current network organized around frontal cortex

of cases on the ALS-FTD clinical spectrum.

The protein co-expression network generated in this study was

consistent with those previously reported in AD (Seyfried et al,

2017), which revealed biologically relevant modules linked to speci-

fic cell types and organelles (e.g., mitochondria). Although the

genetic and pathological drivers in the ALS-FTD spectrum are

distinct from AD, we observed a consistent downregulation of

modules associated with neurons and synapses and upregulation of

glial (microglial and astroglial) modules with increased TDP-43

pathology and cognitive dysfunction in brain. This suggests signa-

tures reflecting relative changes in cellular phenotypes and/or abun-

dance are shared across neurodegenerative diseases (De Strooper &

Karran, 2016). However, one clear distinction between the AD

network and our current ALS-FTD network was the definition of the

M2 module that was enriched with both RNA binding proteins and

microglial markers. This contrasts with AD networks in which the

microglial and RNA binding proteins segregated to distinct modules

(Seyfried et al, 2017). M2 showed a strong correlation with clinical

and pathological traits of cases on the ALS/FTD spectrum, co-

expressed with protein products of genes with causative links to

ALS (hnRNPs, matrin 3, profilin 1, and TDP-43) and had significant

enrichment of TDP-43 PPIs. The strong enrichment of TDP-43 inter-

actors and other causal genes for ALS within this module further

supports a strong association of M2 with the ALS/FTD spectrum

and implicates other novel members of this module as having criti-

cal roles in TDP-43 biology that potentially influence TDP-43 aggre-

gation or other pathological processes (i.e., microglial-directed

neuroinflammation) inherent to ALS and FTD etiology.

Recent findings have demonstrated links between the C9orf72

expansion mutation and inflammatory pathways in C9orf72 animal

models (Burberry et al, 2016; O’Rourke et al, 2016; Sudria-Lopez

et al, 2016). Evidence also exists that C9orf72 mutation carriers

have an increased prevalence of certain autoimmune disorders

(O’Rourke et al, 2016), increased microglial pathology (Brettschnei-

der et al, 2012), and increased thinning in frontal and temporal

lobes in neuroimaging studies, compared to sporadic ALS and

controls (Floeter et al, 2016). Increased abundance of proteins iden-

tified within the inflammatory co-expression module in the frontal

cortex of ALS/FTD, FTD, and C9Pos ALS cases may explain the clin-

ical link between cognitive decline and the C9orf72 expansion

(Irwin et al, 2013; Umoh et al, 2016). Thus, from an unbiased

proteomic approach, these data support the hypothesis that the

dementia phenotype represents changes within the brain that corre-

late with, and are potentially causally linked to, increased neuroin-

flammation (Bettcher & Kramer, 2013).

There were several limitations in this work. First was the cover-

age of the proteome that we were able to achieve with our “single-

shot” LC-MS/MS approach. The number of proteins identified was

similar to proteomic coverage seen in other studies using similar

approaches (Bi et al, 2017; Seyfried et al, 2017). However, this is

much lower than studies investigating the transcriptome. Neverthe-

less, the co-expression patterns measured were robust, repro-

ducible, and correlated with clinicopathological phenotypes.

Another limitation was the relatively small number of FTD cases

carrying the C9orf72 expansion; this diminished our power to

discern any differences we may have seen due to this genetic muta-

tion between ALS and FTD clinical groups. Future studies that

include additional C9orf72 expansion-positive cases from ALS/FTD

and pure FTD cases will be critical at resolving genetic drivers of

disease. Of interest, though, is our finding of increased microglia-

and astrocyte-specific proteins in the frontal cortex of C9Pos ALS

patients with no clinically detectable dementia.

Our results demonstrate the utility of a systems biology approach

in understanding complex diseases with underlying comorbidity.

We were able to relate a proteomic signature of disease (i.e., proteo-

type) to clinicopathological phenotypes and C9orf72 genotype,

which has not previously been done. Proteins within co-expression

modules could further serve as potential biomarkers of disease

mechanism or targets to assess therapeutic interventions across the

ALS-FTD disease spectrum. Ultimately, this proteomic study

provides a resource that moves towards a broad and comprehensive

understanding of specific pathways, including inflammation, and

cell-type-driven processes that relate to the clinical and genetic

underpinnings along the ALS-FTD disease spectrum.

Materials and Methods

Case details

All brain tissues were obtained from the Emory Alzheimer’s Disease

Research Center (ADRC) Brain Bank. Human postmortem tissues

were acquired under proper Institutional Review Board (IRB) proto-

cols with informed consent from the subject or the family of the

deceased subject, and all experiments conformed to the principles

set by the WNA Declaration of Helsinki and the Department of

Health and Human Services Belmont Report. Cases were selected

based on clinical diagnoses. FTD cases were also selected based on

neuropathological diagnoses to exclude FTD subtypes that did not

have neuropathological diagnosis of FTLD-TDP (frontotemporal

lobar degeneration characterized by ubiquitin and TDP-43-positive,

tau-negative, FUS-negative inclusions) pathology. Emory neurolo-

gists cared for these patients throughout their disease course, and

diagnoses were made using established clinical criteria (Brooks,

1994; Brooks et al, 2000; McKhann et al, 2001; Rascovsky et al,

2011). Standard diagnostic neuropathological analysis was

performed for all cases, including phosphorylated TDP-43 (pTDP-

43) immunohistochemistry on paraffin-embedded tissue sections

using the phosphorylated Ser409/410 antibody (Cosmo Bio). Ordi-

nal scales were used to assess pTDP-43 pathology (0–3) with higher

scores indicating greater pathology. The presence of a C9orf72

repeat expansion was assessed from blood samples using the

published repeat primed PCR method (DeJesus-Hernandez et al,

2011). Clinical and pathological information from all cases, includ-

ing disease status, neuropathological criteria, age, sex, and post-

mortem interval are provided in Dataset EV1. Notably, 6 of 19 ALS

cases and 1 of 10 control cases processed in this study overlapped

with our previous study (Seyfried et al, 2017).

Homogenization and proteolytic digestion of frontal
cortex tissue

Dorsolateral prefrontal cortex (Brodmann area 9) tissue samples

were processed essentially as previously described (Seyfried et al,

2017). In brief, each piece of tissue was individually weighed
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(~100 mg) and homogenized in 500 ll of urea lysis buffer (8 M

urea, 100 mM NaHPO4, pH 8.5), including 5 ll (100× stock) HALT

protease and phosphatase inhibitor cocktail (Thermo Fisher, Catalog

#78440). Homogenization was performed using a Bullet Blender

(Next Advance) following manufacturer’s protocols. Each tissue

piece was added to the urea lysis buffer in a 1.5-ml Rino tube (Next

Advance) that contained 750-mg stainless steel beads (0.9–2 mm in

diameter) and blended twice for 5-min intervals in a 4°C cold room.

Protein supernatants were transferred into 1.5-ml Eppendorf tubes

and sonicated (Sonic Dismembrator, Fisher Scientific) for three

cycles of 5 s (at 30% amplitude) with 15-s intervals of rest to shear

DNA. Samples were then centrifuged for 2 min at 15,871 g at 4°C.

Protein concentration was assessed using the bicinchoninic acid

(BCA) method, and samples were frozen at �80°C until use. Each

homogenate was analyzed by SDS–PAGE to assess protein integrity.

Brain protein homogenates (100 lg) were diluted with 50 mM

NH4HCO3 to a final concentration of < 2 M urea. Samples were

subsequently treated with 1 mM dithiothreitol (DTT) at 25°C for

30 min and then 5 mM iodoacetamide (Engelhart et al, 2004) at

25°C for 30 min in the dark. Protein samples were digested with

1:100 (w:w) lysyl endopeptidase (Wako) at 25°C for 2 h and then

further digested with 1:50 (w/w) trypsin (Promega) overnight at

25°C. Resulting peptides were desalted with a Sep-Pak C18 column

(Waters) and dried under vacuum.

Liquid chromatography coupled to tandem mass
spectrometry (LC-MS/MS)

For LC-MS/MS analysis, the peptides were first resuspended in

100 ll of loading buffer (0.1% formic acid, 0.03% trifluoroacetic

acid, 1% acetonitrile). Peptide mixtures (2 ll) were separated on a

self-packed C18 (1.9 lm Dr. Maisch, Germany) fused silica column

(25 cm × 75 lM internal diameter (ID); New Objective, Woburn,

MA, USA) by a Dionex Ultimate 3000 RSLCNano and monitored on

a Fusion mass spectrometer (ThermoFisher Scientific, San Jose, CA,

USA). Elution was performed over a 140-min total gradient at a rate

of 300 nl/min with buffer B ranging from 1 to 65% (buffer A: 0.1%

formic acid in water, buffer B: 0.1% formic in acetonitrile). The

mass spectrometer cycle was programmed to collect at the top speed

for 3-s cycles. The MS scans (400–1,600 m/z range, 200,000 AGC,

50 ms maximum ion time) were collected at a resolution of 120,000

at m/z 200 in profile mode and the HCD MS/MS spectra (0.7 m/z

isolation width, 30% collision energy, 10,000 AGC target, 35 ms

maximum ion time) were detected in the ion trap. Dynamic exclu-

sion was set to exclude previous sequenced precursor ions for 20 s

within a �10 ppm window. Precursor ions with +1, and +8 or higher

charge states were excluded from sequencing.

Label-free protein quantification

Raw data files were analyzed using MaxQuant v1.5.2.8 with Thermo

Foundation 2.0 for RAW file reading capability essentially as

described with slight modifications (Seyfried et al, 2017). The

search engine Andromeda was used to build and search a concate-

nated target-decoy Uniprot human reference database. Protein

methionine oxidation (+15.9949 Da) and protein N-terminal acetyla-

tion (+42.0106 Da) were variable modifications (up to five allowed

per peptide); cysteine was assigned a fixed carbamidomethyl

modification (+57.0215 Da). Only fully tryptic peptides were consid-

ered with up to two miscleavages in the database search. A precur-

sor mass tolerance of �10 ppm was applied prior to mass accuracy

calibration and �4.5 ppm after internal MaxQuant calibration.

Other search settings included a maximum peptide mass of

6,000 Da, a minimum peptide length of six residues, 0.6 Da toler-

ance for ion trap HCD MS/MS scans. The false discovery rate (FDR)

for peptide spectral matches, proteins, and site decoy fraction were

all set to 1%. The label-free quantitation (LFQ) algorithm in

MaxQuant (Luber et al, 2010; Cox et al, 2014) was used for protein

quantitation as previously described. To account for possible

confounds in run time, a brain peptide standard, generated from

pooled samples of homogenized brain, was included at different

points in the run set to control for drift over time and highlight

consistency in the protein measurements (Fig EV1A).

Data analysis and pre-processing

Protein filtering and data imputation

Protein abundance was determined by peptide ion-intensity

measurements across LC-MS runs using the label-free quantification

(LFQ) algorithm in MaxQuant (Cox et al, 2014). In total, 47,977

peptides mapping to 4,178 protein groups were identified. However,

one limitation of data-dependent label-free quantitative proteomics

is missing quantitative measures, especially for low-abundance

proteins (Karpievitch et al, 2012; Seyfried et al, 2017). Thus, only

those proteins quantified in at least 90% of samples were included in

the data analysis. After filtering, only allowing 10% missing values

maximum across the 51 LC-MS/MS runs, 2,612 unique proteins were

identified and robustly quantified (Fig EV1B). The 10% or fewer

missing protein LFQ values were imputed using the k-nearest neigh-

bor imputation function in R impute::impute.knn() function, similar

to what has been previously described (Seyfried et al, 2017).

Outlier removal and regression

Prior to data analysis, outlier removal was performed using

Oldham’s “SampleNetworks” v1.06 R script (Oldham et al, 2008) as

previously published (Seyfried et al, 2017). Two control and two

FTD cases were removed from the 51 cases initially included

(Fig EV1B). Bootstrap regression of the remaining 47-case LFQ

intensity matrix that explicitly modeled case status category while

removing covariation with age at death, gender, and PMI was done

following principal component analysis (PCA) of the expression

data to confirm appropriate regression of selected traits, both in the

“SampleNetworks” graphical output and via an in-house R script for

PCA Spearman correlation to the amassed traits for 47 all non-

outlier cases. PCA visualized that the top five principal components

had Spearman correlation q < 0.3 with any of these three regressed

covariates, and < 0.02 after regression.

Differential expression analysis

Differentially enriched or depleted proteins (P ≤ 0.05) were identi-

fied by ANOVA comparing the four clinical groups (control, ALS,

ALS/FTD, and FTD). Multidimensional scaling as implemented in

the WGCNA R package (Langfelder & Horvath, 2008) was used to

visualize separation of cases using a subset of 165 proteins which

had at least two ANOVA Tukey pairwise comparisons of high

significance (P < 0.01) among the six possible comparisons
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among ALS, FTD, FTD/ALS, and control groups. In a separate

analysis, differentially expressed proteins in C9orf72 expansion-

positive (C9Pos) ALS versus C9orf72 expansion negative (C9Neg)

ALS (excluding cases with coexisting dementia) were identified

by t-test. Differential expression is presented as volcano plots,

which were generated with the ggplot2 package in Microsoft R

Open v3.3.2. Significantly altered proteins along with correspond-

ing P-value are listed in Dataset EV2.

Co-expression network analysis

Following previously described procedures of WGCNA (Seyfried

et al, 2017), a weighted protein co-expression network was gener-

ated using this pre-processed protein abundance matrix, using the

WGCNA::blockwiseModules() function with the following settings:

soft threshold power beta = 4.5, deepsplit = 4, minimum module

size of 12, merge cut height of 0.07, signed network with parti-

tioning about medoids (PAM) respecting the dendrogram and a

reassignment threshold of P < 0.05. Specifically, we calculated pair-

wise biweight mid-correlations (bicor, a robust correlation metric)

between each protein pair and transformed that matrix into a signed

adjacency matrix (Langfelder & Horvath, 2012). The connection

strength of components within this matrix was used to calculate a

topological overlap matrix, which represents measurements of

protein expression pattern similarity across the set of samples in the

cohort constructed on the pairwise correlations for all proteins

within the network (Yip & Horvath, 2007). Hierarchical protein

correlation clustering analysis by this approach was conducted

using 1-TOM, and initial module identifications were established

using dynamic tree cutting as implemented in the WGCNA::block-

wiseModules() function (Langfelder et al, 2008). Module eigenpro-

teins were defined, which represent the most representative

abundance value for a module and which explain covariance of all

proteins within a module (Miller et al, 2013). Pearson correlations

between each protein and each module eigenprotein were

performed; this module membership measure is defined as kME.

Figure EV1B illustrates workflow for analysis.

Module preservation and over-representation analyses

Module preservation was tested using the “modulePreservation”

WGCNA R package function, using exactly 500 permutations

comparing the frontal cortex proteomic network generated from

samples in this study against a previously generated Emory human

brain protein network, a similar network built with ALS and other

neurodegenerative disease cases from the Emory brain bank

(Seyfried et al, 2017). This analysis was to ensure that the modules

were representative of frontal cortex specific networks. Additionally,

over-representation analysis (ORA) was conducted using Fisher

exact tests (two-tailed) between module membership of the ALS-

FTD proteomic network versus the previous Emory brain protein

network (Seyfried et al, 2017). ORA analysis uses gene set enrich-

ment analysis with a two-tailed Fisher exact test with 95% confi-

dence intervals by employing the R function “fisher.test” (Seyfried

et al, 2017). To reduce false positives, Benjamini–Hochberg FDR

adjustment of P-values corrected for multiple comparisons.

Enrichment analyses

To characterize differentially expressed proteins and co-expressed

proteins based on gene ontology annotation, we used GO Elite

v1.2.5 as previously published (Seyfried et al, 2017), with pruned

output visualized using an in-house R script (Dataset EV3). Cell-type

enrichment was also investigated as previously published (Seyfried

et al, 2017). Enrichment of TDP-43 PPI across co-expression

modules was investigated by intersecting module proteins with lists

of genes known to interact with TDP-43, and assessing significance

of overlap using a one-tailed Fisher exact hypergeometric overlap

test. TDP-43 PPI lists from BioGRID (https://thebiogrid.org/

117003/summary/homo-sapiens/tardbp.html), and a previously

published global analysis of TDP-43 interacting proteins (Freibaum

et al, 2010) was used. The total list of identified protein groups was

used as the background and the PPIs lists (Dataset EV4) were fil-

tered for presence in the total proteins list prior to cross-referencing.

After assessing significance of TDP-43 PPIs, P-values were corrected

for multiple comparisons by the Benjamini–Hochberg method.

Western blotting

Frontal cortex tissue homogenates in Laemmli sample buffer were

resolved by SDS–PAGE [NuPAGE Bis-Tris (Life Technologies)]. Gels

were transferred onto nitrocellulose membranes (Invitrogen) using

the iBlot 7-min dry transfer blotting system (Thermo Fisher Scien-

tific). Blots were blocked with TBS starting block buffer (Thermo

Fisher Scientific) for 30 min at room temperature and then probed

with primary antibodies diluted in 10% blocking buffer in PBS over-

night at 4°C. The next day, blots were rinsed and incubated with

secondary antibodies conjugated to fluorophores, Alexa Fluor680

goat anti-mouse IgG(H+L) or Alexa Fluor680 goat anti- Rabbit IgG

(H+L) (Life Technologies), for 1 h at room temperature. Images

were captured using an Odyssey Infrared Imaging system (LiCor

Biosciences). Protein densitometry for relative quantification was

performed using ImageJ open source software. Higher molecular

weight protein isoforms were considered in the quantification for

both TPP1 and HEPACAM as each has been shown to be glycosy-

lated (Golabek et al, 2003; Moh et al, 2005). Antibodies used

include TDP-43 (Proteintech, 10782-2-AP; 1:1,000), tripeptidyl pepti-

dase 1 (TPP1) (Sigma-Aldrich, WH0001200M1; 3 lg/ml), GFAP

(Millipore, MAB360; 1:1,000), C9orf72 (Abcam, ab183892; 1:1,000),

moesin (MSN) (Abcam, ab50007; 1:2,500), hepatic and glial cell

adhesion molecule (HEPACAM) (Abcam, ab130769; 1:1,000), and

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (EMD Milli-

pore, AB2302; 1:1,000) as a loading control.

Immunohistochemistry

Paraffin-embedded sections of frontal cortex (8 lm thickness) were

deparaffinized by incubation at 60°C for 30 min and rehydrated by

immersion in graded ethanol solutions. Antigen retrieval was

performed by microwaving slides in 10 mM citrate buffer pH 6.0 for

5 min and then allowing slides to cool to room temperature (RT) for

30 min. Peroxidase quenching was performed by incubating slides

in a 3% hydrogen peroxide solution in methanol for 5 min at 40°C.

Slides were then rinsed in Tris-Brij buffer (1 M Tris-Cl pH 7.5,

100 mM NaCl, 5 mM MgCl2, 0.125% Brij 35). For blocking, sections

were incubated in normal goat serum or normal horse serum (Elite

Vectastain ABC kit), depending on the primary antibody species, for

15 min at 40°C. Sections were then incubated with primary antibod-

ies (diluted in 1% BSA in Tris-brij 7.5) overnight at 4°C. The
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following day sections were incubated in biotinylated secondary

antibody at 5 ll/ml (Elite IgG Vectastain ABC kit) for 30 min at

37°C and then incubated with the avidin-biotin enzyme complex

(Vector Laboratories) for 30 min. Stains were visualized by incu-

bation of DAB Chromogen (Sigma-Aldrich) for 5 min at RT. Slides

were then dehydrated in an ethanol series and mounted with

coverslips. Slides were analyzed using an Olympus BX51 micro-

scope and imaged with an Olympus DP70 camera. Antibodies

used include phosphorylated TDP-43 (pTDP-43) (Cosmo Bio 409/

410, TIP-PTD-P02; 1:1,000 for IHC), TPP1 (Sigma-Aldrich,

WH0001300M1; 3 lg/ml), GFAP (Millipore, MAB360; 1:1,000),

moesin (Abcam, ab50007; 2 lg/ml), and HEPACAM (Abcam,

ab130769; 5 lg/ml). Pathological sample traits were represented

by the abundance of phosphorylated TDP-43 cytoplasmic inclu-

sions in the frontal cortex (defined by the pTDP score) or label-

free quantification of TDP-43 (Fig EV2).

Data availability

All raw data, MaxQuant output files, and analysis code used in this

publication are available from Synapse (www.synapse.org) via

accession syn10142580.

Expanded View for this article is available online.
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