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Purpose: Clinical applicability of renal arterial spin labeling (ASL) MRI is 
hampered because of time consuming and observer dependent post-processing, 
including manual segmentation of the cortex to obtain cortical renal blood 
flow (RBF). Machine learning has proven its value in medical image segmen-
tation, including the kidneys. This study presents a fully automatic workflow 
for renal cortex perfusion quantification by including machine learning-based 
segmentation.
Methods: Fully automatic workflow was achieved by construction of a cas-
cade of 3 U-nets to replace manual segmentation in ASL quantification. All 1.5T 
ASL-MRI data, including M0, T1, and ASL label-control images, from 10 healthy 
volunteers was used for training (dataset 1). Trained cascade performance was 
validated on 4 additional volunteers (dataset 2). Manual segmentations were 
generated by 2 observers, yielding reference and second observer segmentations. 
To validate the intended use of the automatic segmentations, manual and auto-
matic RBF values in mL/min/100 g were compared.
Results: Good agreement was found between automatic and manual segmen-
tations on dataset 1 (dice score = 0.78 ± 0.04), which was in line with inter-
observer variability (dice score = 0.77 ± 0.02). Good agreement was confirmed 
on dataset 2 (dice score = 0.75 ± 0.03). Moreover, similar cortical RBF was ob-
tained with automatic or manual segmentations, on average and at subject level; 
with 211 ± 31 mL/min/100 g and 208 ± 31 mL/min/100 g (P < .05), respectively, 
with narrow limits of agreement at −11 and 4.6 mL/min/100 g. RBF accuracy 
with automated segmentations was confirmed on dataset 2.
Conclusion: Our proposed method automates ASL quantification without com-
promising RBF accuracy. With quick processing and without observer depend-
ence, renal ASL-MRI is more attractive for clinical application as well as for 
longitudinal and multi-center studies.
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1  |   INTRODUCTION

Functional renal imaging is an emerging field in medical 
research, where renal perfusion has proven its value as a 
potential biomarker for renal health.1,2 Methods to accu-
rately, non-invasively, image global renal perfusion would 
be of benefit for clinical routine by providing repeatable 
measures of global kidney function.

One promising, non-invasive method, arterial spin 
labeling (ASL), has already shown value in research 
settings.1,2 It uses magnetically labeled blood water as an 
endogenous tracer, alleviating the use of contrast agents 
and gives the possibility to capture regional renal func-
tion of both kidneys at the same time. Nevertheless, ASL 
quantification involves many manual interactions, mak-
ing it time consuming and observer dependent, limiting 
ASL clinical practicability and usage. It is recommended 
to report ASL MRI renal blood flow (RBF) exclusively 
for cortical voxels,3 because medullary ASL perfusion is 
low,3,4 and the renal pelvis contains urine, which should 
not contribute to renal perfusion measurements either. 
Segmentation of the cortex, however, requires manual 
interaction.5-7 Automating the ASL quantification pipe-
line, excluding manual segmentation, would remove an 
important obstacle for wide clinical adoption and use in 
large multi-parametric MRI studies.

So far, at most semi-automatic approaches for renal 
ASL processing have been reported.5-11 Here, segmen-
tation of the kidney on anatomic images is performed 
manually, and automatic subsequent intensity-based cor-
tical voxel extraction from T1-maps often requires manual 
adaptation.12-16

In the field of machine learning, the potential for au-
tomatic medical image segmentation in many different 
organs,17 including the kidney,18 has recently been shown. 
Studies based on CT and MRI images have shown that es-
pecially convolutional neural networks18-22 can accurately 
segment the entire kidney, extract its compartments, and 
even distinguish tumor tissue.

The aim of our study is to propose a clinically viable 
workflow for fully automatic renal ASL quantification 
from ASL MRI datasets by replacing the manual segmen-
tation steps with fully automatic segmentation based on 
3D U-nets. Performance of the cross-validated U-nets was 
demonstrated on another independent dataset. Finally, 
feasibility of the obtained automatic segmentations for 

renal ASL quantification is evaluated based on the accu-
racy of cortical RBF.

2  |   METHODS

This study was approved by the local institutional review 
board. Written informed consent was obtained from all 
subjects before the examination.

2.1  |  ASL quantification pipeline

The proposed quantification pipeline aims to obtain a purely 
cortical RBF from the ASL input data, being ASL label con-
trol pairs, M0-images and T1-maps (see Figure 1). It includes 
motion correction, segmentation, and ASL calculation steps, 
similar to established ASL quantification in the brain.23

2.1.1  |  ASL data

All 1.5T ASL-MRI data were acquired at 3 × 3 × 6 mm with 
a single-shot gradient echo EPI 2D readout in 7 oblique 
coronal slices with a 1-mm slice gap in each subject. The 
ASL protocol consisted of balanced pseudo-continuous 
ASL (pCASL) label (label duration = 1500 ms, post labe-
ling delay = 1500 ms) and control pairs with 10 repetitions, 
an M0-image with 3 repetitions, and inversion recovery im-
ages at 11 inversion times to map T1. The labeling plane 
was carefully planned to avoid susceptibility artefacts that 
could influence pCASL labeling efficiency24 and to avoid 
undesired labeling of the kidneys by making sure they 
would not move into the labeling slab during respiration. 
This was achieved by staying well below the diaphragm 
while placing the label slab as high as possible inside the 
FOV. Background suppression (BGS) was applied for ASL 
to decrease the influence of (physiological) noise and 
achieved by 2 hyperbolic secant inversion pulses. Two data-
sets, dataset 1 with 10 healthy subjects (age 23-38 years, 6 
men) and dataset 2 with 4 different healthy subjects (age 
24-28 years, 4 men), were used in this study, containing the 
same ASL sequences scanned at the same MRI scanner. 
Dataset 1 was used for methods development, dataset 2 for 
validation of the methods. Quality of all data with regard to 
image artifacts was visually assessed.
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2.1.2  |  Localization and cropping

Before motion correction, the kidneys were localized by 
a coarse manual delineation on an M0-image, providing 
their location and extent. For each kidney, the image was 
then automatically cropped to a smaller, but sufficiently 
large region, to cover the kidney and allow for respira-
tory introduced displacement of the kidneys between im-
ages. Cropping allows for kidney wise motion correction, 

because kidneys may move differently,3,25,26 without 
distraction by motion of background structures.

2.1.3  |  Motion correction

Motion correction of cropped ASL, M0, and T1 images was 
performed collectively using Elastix,27

per subject, per kidney, per slice. Contrast differ-
ences between the sequences were accounted for using 
a principal component analysis-based (PCA) group-
wise metric.28 All images were registered collectively to 
a common space. We used adaptive stochastic gradient 
descent optimization in 250 iterations with 1000 random 
samples each.

2.1.4  |  Cortex segmentation

Cortex segmentation is achieved via an intermediate step 
that segments the whole kidney outer borders. Manual 
segmentations of the whole kidney and cortical region 
for training were drawn slice-wise using ITK-SNAP29,30 
on the M0-image (anatomic image), excluding the renal 
pelvis (collecting system and large vessels) (Supporting 
Information Figure S1). Care was taken to exclude partial 
volume voxels of the cortex. For cortical kidney segmen-
tation, the whole kidney segmentation was superimposed 
on the T1-map (Supporting Information Figure S1), pro-
viding corticomedullar contrast, allowing cortex segmen-
tation. This manual process results in reference cortex and 
non-cortex masks, together covering the whole kidney, 
taking ~20 min per subject.

Two observers with experience in renal ASL data pro-
cessing performed this process for all subjects of dataset 1. 
Dataset 2 was only segmented by 1 observer.

2.1.5  |  ASL processing

After motion correction M0-images are averaged, the ASL 
label and control pairs are subtracted and averaged, and 
the T1-images are fitted to a mono exponential function to 
produce a T1-map. Together, the T1-map, subtraction map, 
and M0-image are used for ASL signal quantification.

2.1.6  |  Quantification and cortical 
RBF extraction

RBF was estimated using Buxton’s general kinetic model31 
for continuous ASL at a single time point, defining the 
subtraction (ΔM) as:

F I G U R E  1   Common ASL quantification pipeline with 
single-slice example images. Steps requiring manual interaction 
are highlighted in red. Automation of those manual steps using 
machine learning is illustrated in Figure 2. Note that with this 
design the low signal ASL source data (because of background 
suppression) is not directly used in the segmentation task, but the 
segmentation information is transferred via registration
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The apparent tissue relaxation T1t′ is given by 
1∕

(
1∕T1t + RBF∕6000λ

)
, with T1t being the tissue T1. For 

the blood partition coefficient λ 0.9 mL/g was used.24 
�pCASL, the label pulse inversion efficiency, was set to 
0.85.24 Post-labeling-delay (PLD) and bolus duration (BD) 
were 1500 ms each, and the arterial transit time (ATT) was 
assumed to be 750 ms.32 BGS inversion efficiency �BGS was 
assumed to be 0.95, for each of the n BGS pulses applied. 
T1 of arterial blood (T1b) at 1.5T was set to 1350 ms.24

Voxelwise fitting results in a perfusion map with RBF 
values in mL/100 g/min. Finally, the cortical segmenta-
tion is used to obtain a purely cortical RBF value.

2.2  |  Automatic segmentation cascade

2.2.1  |  Pre-training image processing

All processing before training was performed using 
MeVisLab (MeVis Medical Solutions AG, Bremen, 

Germany). For each dataset, 5 central slices were selected 
from 7 coronal slices because the outer slices in some sub-
jects did not contain kidney tissue. Slices were appended 
to allow for 3D training. Data was resampled in-plane to 1 
× 1 mm voxels and padded to a square image. M0-images 
were normalized to 0 mean and unit standard devia-
tion (SD). T1-maps consisted of quantitative values and 
were not scaled or normalized to preserve inter-subject 
variation.

2.2.2  |  Cascade

To fully automate renal ASL MRI quantification, a cascade 
consisting of 3 subsequent 3D U-nets was implemented 
to replace the manual tasks: (1) localization and crop-
ping (U-net1), (2) whole kidney segmentation (U-net2), 
and (3) cortical voxel extraction within the whole kidney 
(U-net3). The cascade is illustrated in Figure 2A-C. (1) 
Pre-registration, U-net1 performs a coarse segmentation 

(1)
ΔM =

M0 ⋅ �
n
BGS

⋅ RBF ⋅ T1t� ⋅ 2�pCASL ⋅ e
−ATT∕T1b

⋅ e−(PLD−BD−ATT)∕T1t� ⋅
(
1 − e−BD∕T1t�

)

6000 ⋅ λ
.

F I G U R E  2   Schematic representation of our segmentation cascade for kidney localization and cortical voxel extraction to fully 
automatize renal ASL quantification. In Figure 1, those are steps that require manual interaction otherwise. (A) U-net1: kidney localization 
for image cropping. (B) U-net2: fine whole kidney segmentation. (C) U-net3: cortical segmentation. In a last step, U-net2 and U-net3 
segmentations are multiplied to remove eventual erroneous cortical predictions outside of the kidney



804  |      BONES et al.

of each kidney on the full FOV M0-images (256 × 256 after 
padding) to localize and separate the kidneys. These kid-
ney locations are then used for cropping all ASL-data of 1 
volunteer. (2) After motion correction, U-net2 predicts fine 
whole kidney segmentations based on cropped M0-images 
(160 × 160 after padding), and (3) U-net3 extracts corti-
cal segmentations from cropped T1-maps (160 × 160 after 
padding). Resulting predictions from U-net2 and U-net3 
are voxel-wise multiplied to remove potential erroneous 
cortical predictions outside of the kidney. The resulting 
cortical segmentation was used for ASL quantification.

2.2.3  |  Architecture

All U-nets were implemented and trained using Keras. 
Supporting Information Figure S3 illustrates the detailed 
U-net33 architecture, with 5 resolution levels and residual 
blocks per level. The final layer is a 1 × 1 convolution that 
maps each feature to a class using sigmoid activation. For 
U-net1 multiple classes were predicted (background, left, 
and right kidney) using a soft-max activation.

2.2.4  |  Training and hyper-parameters

The 3 U-nets in the segmentation cascade were indepen-
dently trained on dataset 1 in a cross-validation setup, 
using the masks of observer 1 as the reference. The follow-
ing hyperparameters were optimized over all folds with 
dataset 1 per U-net. For that matter, we explored the use of 
batch sizes of (1, 2, 3, and 4), epochs between 100 and 700 
as well as dynamic or fixed learning rate of (0.005, 0.01, 
and 0.02) and (0.001-0.005), respectively. A NAdam opti-
mizer was used. Per epoch, all data was seen.

U-net1: a dynamic learning rate of lr = 0.01 (momen-
tum = 0.8, decay = lr/epochs) was used to optimize the 
generalized dice loss,34 with a batch size of 2 for 200 
epochs reaching convergence.
U-net2: the loss was composed as the sum of soft dice 
loss, binary cross entropy and volume difference, and 
optimized with a learning rate of 0.001, using a batch 
size of 3 for 350 epochs.
U-net3: the loss was composed as the sum of soft dice 
loss, binary cross entropy and volume difference, and 
optimized with a dynamic learning rate of lr = 0.01 
(momentum = 0.8, decay = lr/epochs), using a batch 
size of 3 for 150 epochs.

Training and testing in cross-validation of the cascade 
took 55 min using an NVIDIA GeForce 1060 GPU with 
6GB RAM.

2.2.5  |  Segmentation post-processing

For U-net1 and U-net2 connected component analysis was 
used to remove small segmentation outliers. For U-net3 
this was not necessary. We masked the cortical segmenta-
tion from this network with the whole kidney segmenta-
tion from U-net2.

2.3  |  Evaluation of cascade 
performance and inter-observer variability

Cross-validation results as well as inter-observer variability of 
cortical segmentations from dataset 1 were reported as well 
as the cascade performance on an independent dataset 2.

2.3.1  |  Segmentation performance

Network performance evaluation was based on the dice 
score (DS) (%), Hausdorff distance (HD) (mm) and volu-
metric difference (VD) (%) between automatic cortical seg-
mentations and manual segmentations. The DS measures 
the volumetric overlap between 2 segmentations (Equation 
1), whereas the HD is a contour distance measure, es-
pecially penalizing false positive segmentation outliers 
(Equation 2). The volumetric difference measures volume 
bias (i.e., over or under segmentation) (Equation 3).

with

with

2.3.2  |  Evaluation of segmentation 
performance on ASL perfusion quantification

To study the influence of the accuracy of automatic seg-
mentation of cortical segmentations for renal ASL quan-
tification, therefore their ultimate usage, the RBF in 
mL/100 g/min per subject was quantified using manual 
and automatic cortical segmentations.

All statistical analyses were performed using GraphPad 
Prism 8 version 8.0.1 (244) for Windows (GraphPad 
Software, San Diego, CA). Differences in cortical RBF were 

(2)DS =

(
2 ⋅ |ref ∩ pred|
|ref | + |pred|

)
⋅ 100,

(3)HD(REF ,PRED) =max{min {d (ref , pred)}

ref ∈ REF pred ∈ PRED

(4)VD(REF , PRED)= (VPRED − VREF)∕VREF

V = voxelSize ⋅ voxels
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tested between predictions and reference (observer 1) as well 
as observer 2 and reference using paired t tests with a signifi-
cance level α of 0.05. Moreover, Bland-Altman analyses were 
performed to investigate the agreement of subject level cor-
tical RBF gained from ASL quantification using predictions, 
reference, and observer 2 cortical segmentations; bias is re-
ported together with the standard error of the mean (SEM) 
of the differences next to the 95% confidence intervals.

3  |   RESULTS

Automated ASL quantification pipeline was obtained by 
replacing the manual steps (highlighted in red) by the U-
nets from the proposed cascade in Figure 2. Automatic 
cortical segmentations of 2 kidneys took <1 s.

3.1  |  Evaluation of cascade 
performance and inter-observer variability

3.1.1  |  Segmentation performance

A summary of segmentation performance results using 
different cortical segmentations on dataset 1 and dataset 
2 is given in Table 1. On average, cross-validation on data-
set 1 yielded a DS of 0.78 ± 0.04, a HD of 6.3 ± 1.2 mm, 
and a VD of −9.6% ± 5.4%. Small SDs indicate consistent 
performance among subjects. Visual illustration of final 
cascade performance is given in Figure 3 and Supporting 
Information Figure S2.

Between the 2 manual observers (observer 2-observer 
1), we found a comparable DS of 0.77 ± 0.02 and a HD of 
8.5 ± 4.0 mm and a larger VD of 27.7% ± 5.6% (Table 1).

Testing the trained cascade on an independent dataset 
2 yielded DS of 0.75 ± 0.03, HD of 7.0 ± 1.7 mm, and VD 
of −20.0% ± 5.6% (Table 1). Those results are in line with 
cross-validation as well as inter-observer variability stated 
above on dataset 1.

3.1.2  |  Influence of segmentation 
performance on ASL perfusion 
quantification

An example of how the segmentations are used for cortical 
extraction in the ASL quantification pipeline is illustrated 
in Figure 3. Automatic cortical segmentations in dataset 1 
yielded cortical RBF values, which were in line with those 
obtained using the manual reference, on average as well 
as on individual level (Figure 4A).

Similar group average RBF was found for predictions 
and reference with 211 ± 31 mL/min/100 g and 208 ± 
31 mL/min/100 g, respectively. Bland-Altman analy-
sis on RBF values of automatic and manual segmenta-
tions exposed a bias of −3.2 mL/min/100 g with a SEM 
of ±1.3 mL/min/100 g (Figure 4B). This bias was small, 
but significant (P = .032). Consistency across subjects was 
underlined by small limits of agreement at −11 and 4.6 
mL/min/100 g, which was similar to the intra-observer 
limits of agreement of 3.8 and 23 mL/min/100 g and small 
compared with the “effect size”, that is, the RBF variation 
between subjects (±31 mL/min/100 g).

Inter-observer variability was slightly but significantly 
higher on average and also on individual level (Figure 4C); 
with a significantly lower average cortical RBF of 195 ± 
27 mL/min/100 g using the segmentations of observer 2, 
(P < .001) resulting in a larger bias of 14 mL/min/100 g in 
the Bland-Altman analysis. This was consistent between 
subjects as indicated by small limits of agreement at 3.8 
and 23 mL/min/100 g (Figure 4D) in comparison with the 
variance between subjects.

The RBF accuracy with automated segmentations 
was confirmed on the independent dataset 2, result-
ing in an accurate cortical RBF, which was slightly 
but significantly higher than based on manual seg-
mentations: 262 ± 33 mL/min/100 g versus 248 ± 
32 mL/min/100 g, respectively (P < .05). Supporting 
Information Figure S4 provides individual RBF values 
per subject of dataset 2.

Dataset DS HD (mm)a VD (%)

1 Reference vs prediction 0.78 (0.04) 6.3 (1.2) −9.6 (5.4)

Reference vs observer 2 0.77 (0.02) 8.5 (4.0) 27.7 (5.6)

2 Reference vs prediction 0.75 (0.03) 7.0 (1.7) −20.0 (5.6)

First row: on dataset 1 used for training and cross-validation. Comparison for reference vs automatic 
prediction as well as reference versus second manual observer (observer 2). Second row: on independent 
dataset 2. Comparison for reference versus automatic prediction. Standard deviation of evaluation metrics 
between subjects displayed in brackets.
Abbreviations: DS, dice score; HD, Hausdorff distance; VD, volume difference.
aNote the low original acquired image resolution of 2.54 × 2.54 × 6 mm.

T A B L E  1   Performance evaluation 
metrics DS, HD, and VD averaged over all 
included subjects in the dataset
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4  |   DISCUSSION

In this study, we demonstrate the feasibility of fully auto-
matic renal cortex segmentation using machine learning 
for automatic ASL quantification.

To the best of our knowledge, there are no previous 
studies reporting the influence of segmentation accuracy 
on quantified cortical RBF. Certainly, creating a ground 
truth segmentation with high accuracy is difficult be-
cause of the large ASL voxel size. With the current study 

F I G U R E  3   Single slice segmentation example. Segmentations are displayed in blue contours. (A) M0-image with whole kidney contours 
as a result from U-net2. T1-map and perfusion map with cortical contours as a result from U-net3, corrected with U-net2 output. (B) 
Reference cortical contours manually drawn by observer 1. (C) Cortical contours manually drawn by observer 2. Good agreement between 
the 3 different cortical contours can be seen; the bright cortical perfusion signal is captured by all contours, assuring accurate mean cortical 
RBF calculation

F I G U R E  4   (A) Cortical RBF per subject quantified with either the reference (gray) or the prediction (striped). (B) Bland-Altman plot of 
cortical RBF values resulting from ASL analysis using the reference (ref) and predicted (pred) cortical segmentation. Solid blue line: mean 
difference, dotted red lines: 95% limits of agreement. (C) Cortical RBF per subject quantified with either the reference (gray) or the second 
observer (hatched). (D) Bland-Altman plot of cortical RBF values resulting from ASL analysis using the reference (ref) and observer 2 (obs2) 
cortical segmentation
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we have shown that differently generated segmentations, 
manually or automatically, do have an effect on the quan-
tified cortical RBF; which was small, −3.2 mL/100 g/min 
(equivalent to 1.5%), but still significant. This remains 
small although in comparison to pathology induced cor-
tical RBF changes, for example, the 28% difference ob-
served in patients with diabetic nephropathy compared 
to healthy controls.5 Additionally, we found a larger inter-
observer variability with 14 mL/100 g/mL in cortical RBF 
in our study, which is equivalent to 7%. At the same time, 
previous reports on ASL scan re-scan variability state RBF 
coefficients of variation in healthy subjects in the range 
of 4%-13%.2,6,10,14,35,36 With fully automatic processing this 
variation may be reduced, giving promising ground for 
more reproducible renal ASL.

Moreover, this small, but still significant difference 
in RBF was found between predictions (211 ± 31 mL/
min/100 g) and reference (208 ± 31 mL/min/100 g) data. 
This shows the substantial biological variation across sub-
jects but also suggests segmentation consistency between 
observers, which is additionally supported by small SD in 
segmentation evaluation metrics of this study (Table 1).

We found DS of 0.78 and 0.77 between manual and 
automatic segmentations and between observers, respec-
tively, which is somewhat low as compared to other stud-
ies with high resolution imaging.21 DS values tend to be 
lower for non-convex thin objects such as the renal cortex, 
as well as for images with a limited resolution with respect 
to the size of the object such as this renal imaging data, 
which results in a large portion of partial volume voxels. 
With that in mind, a DS of 0.78 is a quite satisfactory re-
sult. Moreover, relating the DS to the inter-observer DS of 
0.77, we qualify 0.78 as good because it makes the auto-
matic method a good alternative to manual segmentation, 
especially because of the limited influence of the segmen-
tation differences on the desired perfusion measurement.

The HD in the renal cortex was mostly determined by 
a small number of pixels, which hardly contributed to the 
mean RBF. Hence, for agreement in determining cortical 
RBF, it is expected that DS is a more predictive measure.

In the end, the prediction cascade has been trained 
with the reference segmentations and should therefore 
generate similar results, without significant difference. 
This could be caused by the connected component anal-
ysis that we applied as a processing step of the generated 
whole kidney segmentations (U-net1 and U-net2) to re-
move small errors in segmentations in the periphery, but 
is not included during training. Future work could include 
connected component analysis within training for optimal 
usage of a loss function that is volume aware.

Our method is entirely based on the structural imaging 
of the kidney, and independent of the functional imaging. 
Other methods on functional MRI (e.g., DCE MRI) use 

the functional/temporal information to distinguish renal 
tissues, which might introduce an undesired dependence 
of the segmentation on kidney function.37,38 However, in 
cases where T1 of cortex and/or medulla is decreasing be-
cause of disease,39 our cascade network could drop in per-
formance and additional training will be necessary.

The proposed segmentation method may be used on 
ASL datasets acquired using a different readout sequence, 
(e.g., 3D GRASE or 2D spin echo EPI). Additional prepro-
cessing steps or retraining may be required to adapt the 
method accordingly, especially when applying it to data 
from scanners at different field strength. Intensity inhomo-
geneities may occur on higher field strengths because of 
field inhomogeneities, often hampering automatic image 
segmentation because of diminishing tissue contrast. It 
has been demonstrated that simulation of those artifacts 
and their inclusion for training improves automatic image 
segmentation,40 which could be a valuable addition when 
extending our method to 3T images. Further interesting 
future work could be to investigate convergence during 
training with increasing number of training data.

To evaluate the actual clinical performance of our pro-
posed automatic method, a larger subject group, including 
patients is needed. Future studies should focus on increas-
ing generalizability of the presented method by training 
on large amounts of data from different scanners and sites.

5  |   CONCLUSION

Our proposed framework automates crucial steps in renal 
ASL quantification, removing observer dependence and 
increasing time efficiency and scalability. With this, we 
show the potential of automatically predicted segmenta-
tions to take away an important barrier for adoption of 
non-invasive quantitative renal ASL-MRI perfusion imag-
ing in clinical practice.
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FIGURE S1 Manual segmentation steps based on M0-
image and T1-map. For the whole kidney segmentation, 
the M0-image (anatomic image) was used and all kidney 
voxels were labeled, excluding the renal pelvis (collect-
ing system and large vessels). Care was taken to exclude 
partial volume voxels of the cortex with the surrounding 
background tissue or with the renal pelvis, respectively. To 
obtain the cortical kidney segmentation, the whole kidney 
segmentation was superimposed on the T1-map, which of-
fers good corticomedullary contrast. On the T1-map, cor-
tical voxels differentiate from the medulla with a brighter 
signal, based on which cortical voxels were labeled

FIGURE S2 (A) Five slices of the left kidney of 1 subject 
with high cascade network performance. Good accor-
dance between reference and prediction are seen (dice 
score = 0.81). (B) An example for poorer network per-
formance with under-segmentation (dice score = 0.66). 
Orange arrows point out areas where cortical regions are 
incorrectly not labeled. (C) Example of cascade perfor-
mance on the independent dataset 2 (dice score = 0.81). 
Good agreement between the automatic and manual seg-
mentation can be seen
FIGURE S3 Architecture illustration. Each network 
consists of a contraction and expansion path. In the con-
traction path, features are encoded by 5 layers with each 
containing 2 convolution-normalization activation blocks. 
In the expansion path, up sampling is followed by double 
convolutions. Arrows denote operations and number of 
feature-maps per layer is displayed above the blocks
FIGURE S4 Cortical RBF for the 4 subjects of dataset 2, 
quantified with either the reference or the prediction from 
the trained automatic segmentation cascade. Reference 
is represented in gray, prediction in striped bars. Using 
the prediction yields slightly higher RBF than using the 
reference
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