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Abstract Prediction of 3D structures of membrane pro-

teins, and of G-protein coupled receptors (GPCRs) in

particular, is motivated by their importance in biological

systems and the difficulties associated with experimental

structure determination. In the present study, a novel

method for the prediction of 3D structures of the mem-

brane-embedded region of helical membrane proteins is

presented. A large pool of candidate models are produced

by repacking of the helices of a homology model using

Monte Carlo sampling in torsion space, followed by

ranking based on their geometric and ligand-binding

properties. The trajectory is directed by weak initial

restraints to orient helices towards the original model to

improve computation efficiency, and by a ligand to guide

the receptor towards a chosen conformational state. The

method was validated by construction of the b1 adrenergic

receptor model in complex with (S)-cyanopindolol using

bovine rhodopsin as template. In addition, models of the

dopamine D2 receptor were produced with the selective

and rigid agonist (R)-N-propylapomorphine ((R)-NPA)

present. A second quality assessment was implemented by

evaluating the results from docking of a library of 29

ligands with known activity, which further discriminated

between receptor models. Agonist binding and recognition

by the dopamine D2 receptor is interpreted using the 3D

structure model resulting from the approach. This method

has a potential for modeling of all types of helical trans-

membrane proteins for which a structural template with

sequence homology sufficient for homology modeling is

not available or is in an incorrect conformational state, but

for which sufficient empirical information is accessible.
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Abbreviations

3D Three dimensional

7TM Seven transmembrane helix

APF Atomic property fields

b1AR b1 Adrenergic receptor

b2AR b2 Adrenergic receptor

D2R Dopamine D2 receptor

ECL2 Extracellular loop 2

GPCR G-protein coupled receptor

PDB Protein data bank

RMSD Root mean square deviation
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Cygnal Bioscience, Björnvägen 15, SE-435 43 Pixbo, Sweden

e-mail: lars.brive@cygnalbioscience.se

123

J Comput Aided Mol Des (2013) 27:277–291

DOI 10.1007/s10822-013-9640-z

http://dx.doi.org/10.1007/s10822-013-9640-z


TM Transmembrane

TM1, …, TM7 Transmembrane helix 1, …, 7

VLS Virtual ligand screening

Introduction

The family of monoaminergic G-protein coupled receptors

(GPCRs) is well-studied due to their relevance as drug

targets. For a complete understanding of the detailed

mechanism for ligand interaction with these receptors,

access to accurate and reliable 3D structures is needed.

GPCRs are believed to exist in active signaling states sta-

bilized by agonists, and in inactive states stabilized by

inverse agonists [1, 2]. The high affinity state has been

shown to be associated with the functional state of the

receptor which activates the G-protein and induces down-

stream signaling [1, 3]. Solved 3D structures of GPCRs

include several structures of rhodopsin with (e.g. Refs. [4,

5]) and without (e.g. Refs. [6, 7]) covalently bound trans-

retinal, the inactive states of the turkey b1- [8] and human

b2- [9, 10] adrenergic receptors (b1AR and b2AR), the

human A2A adenosine receptor with a bound inverse ago-

nist [11], and the CXCR chemokine receptor [12] and

dopamine D3 receptor with an antagonist [13]. For a recent

review on all GPCRs of known structures, see Reference

[14]. Only recently have structures of active- or near-

active-state GPCRs in the presence of agonists been

determined, achieved using an A2A adenosine receptor—

T4L chimera bound to UK432097 [15], thermostabilized

A2A adenosine receptors bound to adenosine and NECA

[16], or by using fragments of antibodies to stabilize the

agonist-bound state of the b2AR [17, 18]. These structures

confirmed previous hypotheses [19–22] that the agonist-

bound active-state binding site is contracted by 1–2 Å

relative to that bound to structurally related inverse ago-

nists. The major conformational changes, however, occur

on the intracellular side where transmembrane helices 5

and 6 (TM5 and 6) are extended and move outwards to

allow binding of the G-protein.

Although several examples of family A GPCR struc-

tures have recently appeared in the literature, their exper-

imental structure determination is time-consuming and

difficult, which makes access to modeling techniques

highly desirable. A protein structure in a particular con-

formational state can be used to predict the structure of

another protein of sufficient sequence homology in that

same state using homology modeling. Three-dimensional

models that can identify antagonists in virtual ligand

screening (VLS) experiments have been constructed by

inclusion of QSAR data [23], and new micromolar

antagonists have been discovered based on VLS using a

structure model where binding pocket side chains were

optimized with a ligand present [24] or by repacking of the

transmembrane part [25]. Tang et al. [26] reported that

manually refined homology models may be on par or even

better than crystal structures for VLS. For the majority of

GPCRs, however, the sequence identity within the family

is generally low [27], and only few structures of GPCRs in

an active, agonist-bound state have been reported. In

addition, the structural diversity of solved GPCR struc-

tures, mainly in loop regions and at the intracellular side,

shows that homology modeling of remote homologs will be

challenging. An additional complication is that GPCRs

bind ligands through multiple conformational states.

Therefore, the inactive-state crystal structure of the b2

adrenergic receptor (b2AR) was not able to represent the

interactions with agonists [19], and the identification of

agonists by VLS using homology models based on inac-

tive-state structures was only possible after careful struc-

tural refinement (see e.g. refs. [21, 28, 29]).

Methods for ab initio prediction of receptor structure aim to

circumvent the problem of lack of closely related template

structures. Transmembrane helices are constructed from the

amino acid sequence, followed by their assembly into a helix

bundle guided by data from known structures. Several

approaches have been described: Yarov-Yarovoy et al. [30]

adapted the ROSETTA structure prediction method for mem-

brane proteins, and applied it to 12 diverse membrane proteins.

Goddard and coworkers developed MembStruk and applied it

to the prostaglandin D [31], b2AR [32] and dopamine D2 [33]

(D2R) receptors. Shacham et al. [34] developed the PREDICT

approach to model the D2R, the neurokinin NK1 and neuro-

peptide Y1 receptors. Other studies describe methods where

homology models are modified in a systematic way to over-

come the lack of appropriate templates. For example, Evers and

Klebe [23] reported an iterative homology model building

method including ligand restraints which was used to produce

an NK1 receptor model that allowed the identification of a

compound that inhibited substance P binding. Michino et al.

[35] recently reported a method that reproduced the rhodopsin

and b2AR/carazolol structures to approximately 2–2.5 Å Ca

RMSD by restrained molecular dynamics simulation of the

helical regions. We have previously modeled dopamine D2 [36]

and D1 [37] receptors using homology modeling with an ago-

nist present in the binding site during the procedure. The model

RMSD for Ca in the TM region relative to the template structure

(b2AR, pdb code 2rh1 [19]) was 1.9 Å and 1.5 Å for the D1 and

D2 receptor models, respectively.

We present here a new method to generate all-atom

models of the membrane-spanning part of TM proteins that

repacks secondary structure elements of a homology model

guided by a ligand and a limited set of experimental and

evolutionary restraints. The rationale is to allow models to
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deviate more from the template structure than homology

modeling does, while including experimental restraints

based on other experimental data in order to make the

conformational search efficient. An initial homology model

is subjected to random helix displacements and Monte

Carlo geometry optimization to generate a large number of

receptor conformations from which the most probable

candidates are selected by means of a scoring scheme. The

method contains several elements of ab inito protein

structure modeling, but also uses restraints of experimental

origin, and is therefore referred to as a semi-empirical

approach. An agonist was present in the binding site during

the modeling to focus sampling towards the agonist-bound

conformation. The main goal of the current study was to

analyze ligand binding to the D2R binding site, and

therefore selected models were further evaluated by

docking of 29 compounds with known pharmacological

profiles towards the D2R.

Results and discussion

Helix docking method

In the present study, the receptor structure prediction was

based on the docking of seven individual helices (TM1–7)

that were initially rigid but gradually made more flexible as

structures became more refined. A homology model of the

transmembrane helices was used as the starting model,

numerous copies were created and their helix coordinates

were perturbed according to a defined stochastic scheme to

expand the covered conformational space, and brought

back to a compact shape by a Monte Carlo geometry

optimization (see below for details). A ligand was present

during the helix packing optimization to direct the bundle

towards a biologically relevant structural state, for example

agonist or inverse agonist-induced states.

Intra- and extracellular loops were removed to make the

conformational sampling more efficient, and also because

loops are notoriously difficult to predict as they vary both

in length and sequence [38]. The loops can be added back

to the helical bundle once the preferred solution (or solu-

tions) has been found. Although the second extracellular

loop is crucial for ligand discrimination in some receptors,

e.g. D2R [39–41], the present study focuses on the TM

region which contributes the majority of ligand contacts. In

addition, incorrect modeling of loops may have an adverse

effect on the results. Removal of loops in the b2AR

structure did not prevent the correct docking of carazolol

[27], and it has been shown that ligand docking has in fact

given equal or better results with the loops excluded [42].

The procedure is described in general terms below,

followed by a description of the scoring method, the

validation of the method by building of the b1AR, and

finally an application of the method to the D2R. A multiple

sequence alignment of relevant sequences was performed,

followed by manual editing guided by the 3D structures.

Typically, the modeling template (or templates) would be

chosen based on multiple factors, including the quality of

the pairwise alignments, the conformational state and

quality of the structures, and the structure of the ligand.

Structures of monoaminergic receptors are available for

modeling the D2R. However, we wanted to evaluate the

prediction method based on a more remote homolog, and

therefore chose bovine rhodopsin as template. The starting

structure was created from the helical regions of the tem-

plate structure using the modeling software ICM (ICM v

3.4, Molsoft LLC, CA), where the exact sequence positions

of helix termini were assessed manually to take sequence

alignments and 3D-structure into account.

In order to decrease the dependence on the template

model and cover a larger conformational space, many

copies of the helix bundles were made and each was

expanded and randomly displaced, i.e. each helix of a

model was moved by a random distance (0–5 Å) away

from the bundle center in the membrane plane, tilted with

respect to its center (0 ± 20 �) and rotated around the

helical axis (0 ± 30 �). These values were derived by

observing the effects of different settings, and were found

to allow a proper sampling of the conformational space

while avoiding the generation of unrealistic starting struc-

tures. The molecular system was defined in internal coor-

dinate space which conveniently allows each of these

geometrical properties of a helix to be controlled by a

single variable (Fig. 1).

A ligand was placed at least 5 Å away from the helix

bundle and its positional and internal torsion variables were

randomized to ensure that the model was not biased

towards the starting geometry and position of the ligand.

Rigidity of the ligand reduces the risk that less realistic

complex models are generated due to incorrect ligand

geometry. A minimal number of loose distance restraints

were used to orient the ligand relative to amino acids that

are known to be important for ligand binding in the initial

optimization phases, as described in detail for each target

below. The purpose was to exclude docking conformations

that disagree with available data and generally accepted

concepts of receptor-ligand interactions.

Monte Carlo geometry optimization brought the bundle

back to a compact shape in four main stages. The first stage

was a rough optimization of rigid helices and rigid ligand,

followed by three optimization stages with increasing level

of detail and demand for computation resources (Fig. 2).

The main changes of the procedure during the process were

the following: (1) The number of free variables was

increased stepwise. Sets of torsion angles were gradually
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made flexible such that the final optimization was per-

formed over all torsion variables, including those of the

backbone. (2) Regions of high sequence conservation were

expected to be more structurally conserved, and the opti-

mization was therefore biased towards the starting structure

by the use of distance restraints to the homology model

(tethers) for strictly conserved residues with a target value

of 0 Å. The strength of the tethers can be tuned such that

computational resources are not spent on sparsely packed

solutions (too weak restraints) while avoiding the regen-

eration of the starting structure (too strong restraints).

Tethers were gradually softened and completely turned off

during the longest, final optimization stage. (3) van der

Waals interactions were soft in the initial phase to decrease

steric repulsion energies of the coarse models and

increased gradually to standard Lennard-Jones 6–12

potentials.

We noticed that models that were geometrically unac-

ceptable at an early stage rarely resulted in satisfactory

models at the final stage. A scoring method (see the

‘‘Methods/experimental’’ section) was therefore developed

that evaluated the geometry of each model after stage 1 and

3. To probe how the scores varied as a function of simu-

lation time, intermediate geometries of a limited number of

structure models were evaluated during the optimization

stages (Supplementary Fig. 1). It was concluded that the

majority of the final high-scoring models were recovered

even if 50 % of the models were discarded earlier during

the optimization. By choosing proper score thresholds,

models are eliminated after the first and third stage which

dramatically improves performance since the later stages

are the most computationally intensive. The homology

model geometry perturbation and first optimization stage

are fast, and the first threshold is therefore set at a high

score value to produce a large pool of conformations to be

evaluated. When a selected number of final models are

available at the second threshold, the models are submitted

to the final fourth stage optimization.

The total number of models that are created depends on

the selected thresholds and on the selected number of final

models. For the complexes in this study, hundreds of

models were typically produced after rigid docking of

helices with ligand present (stage 1, Fig. 2), dozens at the

second and third stage, and around 10 models selected for

the final optimization.

Fig. 1 The overall position and orientation of a helix is determined

by six variables in the internal coordinate space representation, which

simplifies molecular transformations (e.g. controlled randomization of

helix positions) and makes geometry optimizations more efficient

[62]. Labels indicate the N-terminus (N), the center of mass of the

helix (M), the coordinate system axes (x, y, z) and virtual variables

(a1, b1, t1, a2, t2, t3)

Fig. 2 Overview of the generation of ligand-receptor models from a

homology model. The iterative process in A is increasingly CPU

demanding, allowing gradually more degrees of freedom, stronger

van der Waals interactions, and a decreased number of restraints.

Therefore, the results are scored at two stages so non-productive

solutions can be dismissed at early stages. In B, a library of

compounds is docked to the ten receptor models from A using the

standard ICM protocol. The model(s) that best matches binding data

is selected for analysis
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Generation of b1AR models from rhodopsin

The turkey b1AR receptor structure [8] in complex with

(S)-cyanopindolol was used to assess the structure predic-

tion method. A homology model was built based on the

2.2 Å resolution crystal structure of bovine rhodopsin

bound to the inverse agonist cis-retinal (pdb ID 1u19 [5]),

and the inverse agonist (S)-cyanopindolol in its protonated

form was generated from 2D coordinates and added to the

receptor model, using ICM. Two (S)-cyanopindolol atoms

were restrained to receptor residues to ensure the correct

length-wise orientation while avoiding the bias for the

exact local geometry (Fig. 3). The aim was to apply the

method to the D2R, and therefore the restraints were

selected to mimic those of the D2R case to ensure that the

results were comparable. Thus, the source of the restraints

was based on D2R experimental data, as described below.

A total number of 364 models were generated: 270

(stage 1), 42 (stages 2 and 3), and 10 (stage 4). The RMSDs

for Ca atoms of the models compared to the known b1AR

receptor structure (chain A of PDB ID 2vt4, Warne et al.

[8]) was between 2 and 6 Å for 92 % of the solutions

(Supplementary Fig. 2), and from 2.4 to 5.5 Å for the ten

stage 4 solutions (Supplementary Table 1). The corre-

sponding RMSD of the homology model was 2.9 Å. Three

out of ten models had RMSD values lower (better) than

that of the homology model with respect to all Ca atoms,

and three models had lower RMSDs for the binding site

heavy atoms.

In order to evaluate the docking of compounds to the

models, the ligand was removed and (S)-cyanopindolol was

re-docked to each stage 4 receptor model in triplicate

(Supplementary Table 1). The lowest RMSD value for the

ligand (0.5 Å, determined after superposition of receptor

binding pocket residues as described in the ‘‘Methods/

experimental’’ section) was observed for the model that

ranked two in total score and five in binding site score

(Supplementary Table 1, see the ‘‘Methods/experimental’’

section for score definitions). The heavy atoms of the

receptor binding site, as defined by residues within 5 Å

from the ligand in the crystal structure, had an RMSD of

1.6 Å for this model (Fig. 4). The docked ligand repro-

duces the receptor interactions well including all hydrogen

bonds except that between the N329/7.39 oxygen and the

basic nitrogen, and a non-optimal interaction between the

protonated ligand nitrogen and D121/3.32 (residues are

referred to by their position in the sequence followed by the

numbering according to Ballesteros-Weinstein [43]).

However, the N329/7.39 interaction with the b-hydroxyl

group of the ligand is in place. The high total Ca RMSD of

5.5 Å for this model is due to incorrect TM1 and TM4

positions, and the lack of a helical kink of TM1 (at residue

L50) which is unique to the A and D chains of the

crystallographic structure of b1AR. Helices TM1 and TM4

are expected to be more arbitrarily positioned as they have

lower sequence conservation to the template which leads to

fewer restraints. In fact, TM1 shows more structural vari-

ability when compared to the other TM helices in deter-

mined GPCR structures [14]. In addition, the incorrect

positions of TM1 and TM4 will not be penalized by the

ligand score and has no direct effect on the binding site

geometry as they are not in direct contact with the ligand.

Four additional models reproduce the correct ligand

binding conformation to 1.4–1.7 Å RMSD, showing that

the method generates several models that are relevant for

interpretation of ligand recognition. This is a clear

improvement over the RMSD results of the corresponding

starting homology model, which were 3.0, 6.5 and 7.1 Å

(Supplementary Table 1). Additional information on ligand

binding, e.g. mutation data pointing to critical interactions,

should be used to select the preferred solution among the

top ranked candidates. The low RMSDs for the receptor

and ligand, and good representation of the essential

receptor-ligand interactions for b1AR demonstrate the

(a)

(b)

Fig. 3 Distance restraints between the ligand and receptor place the

ligand near the binding pocket and promote the correct length-wise

orientation during the geometry optimization. a) Three loose distance

restraints roughly orient (S)-cyanopindolol in the b1AR model

binding pocket. Atoms were chosen to minimize bias with regards

to the exact orientation. Hence, Ca atoms of S211/5.42 and S215/5.46

allow either or both side chain or backbone oxygens to form hydrogen

bonds. b) Three distance restraints roughly orient (R)-NPA in the D2

receptor, in analogy to those in panel a. Two restraints include a-

carbons of serine residues in TM5 to carbon C11 in the ligand to

allow any of the main-chain and side chain oxygen atoms to hydrogen

bond to either or both catechol oxygens
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ability of the structure prediction method to generate rel-

evant structure models of monoaminergic receptors using

bovine rhodopsin as template.

Generation of the human dopamine D2 receptor model

The helix docking protocol was also applied to the human

D2R. The starting structure was a homology model for the

helical regions based on the same crystal structure of

bovine rhodopsin bound to the inverse agonist cis-retinal

(PDB id 1u19 [5]) as was used for b1AR. The sequence

identity for the selected region is 25 % (Supplementary

Fig. 3). Tethers were set to the a-carbons of the homology

model for residues that are conserved between the model

and the template. The average number of restraints per

helix is 7, or broken down per helix: 3 (TM1), 10 (TM2), 6

(TM3), 5 (TM4), 10 (TM5), 11 (TM6) and 4 (TM7).

In the helix docking procedure, the D2R-selective full

agonist (R)-N-propylapomorphine ((R)-NPA) was included

to bias the simulation towards the agonist-bound state.

Three loose distance restraints were applied to roughly

orient the ligand in the binding pocket with the protonated

amine near D114/3.32 and the catechol ring near S192/

5.42 and S197/5.46, based on experimental data (reviewed in

[44]) (Fig. 3). Although either one or both ligand catechol

oxygen atoms participate in hydrogen bonding to S193/5.42

and S197/5.46 side chain hydroxyl groups in TM5 [45] (or

main chain carbonyl oxygen atoms), the restraints were set to

carbon atom C11 (Fig. 3) in order to reduce the structural

bias and to improve conformational sampling.

Experimentally determined ligand-receptor interactions

were included in the ligand scoring scheme: Electrostatic

and hydrogen bonding energies were evaluated for the salt

bridge between the protonated amine and the aspartic acid

residues in TM3, and for interactions between serine resi-

dues in TM5 and heteroatoms of the ligand (see the

‘‘Methods/experimental’’ section for details, and Ref. [44]

for a review of the interactions). Complex models that did

not contain a hydrogen bond-stabilized salt bridge were

excluded. It has also been proposed that aromatic interac-

tions between F390/6.52 and the catechol moiety are

important for agonist binding (see e.g. Refs. [46, 47] and

references therein). Since aromatic edge-to-face p-inter-

action energies (reviewed by Waters [48]) are difficult to

evaluate using molecular mechanics methods, we verified

instead that aromatic groups were in contact by (1) calcu-

lating the van der Waals intermolecular interaction energy

between aromatic atoms of F390/6.52 and the ligand

and (2) discarding solutions with energies higher than

-0.3 kcal/mol. With the chosen threshold value, the results

correlate well with the results from manual inspection of

the complexes.

A total of 472 models were generated at stage 1,

whereof 38 passed the first selection filter and nine the

second filter. Despite the use of tethers during the initial

steps, the Ca RMSD was 3–12 Å demonstrating the wider

sampling of conformational space. Since the overall bundle

geometries were adequate for the nine final models, a more

detailed criterion for selection was needed that focused on

the properties of the binding pocket. Binding data is

available for a number of D2R ligands (Supplementary

Table 2), which allows the docking and scoring of com-

pounds to define a second model selection criterion, as

described below. It is clear that GPCRs are dynamic and

probably bind structurally diverse ligands by adopting

different conformations [49]. We previously studied ago-

nist binding to D2R [36, 40], and in the present study we

therefore focused on full agonists and inactive compounds.

Selection of dopamine D2 receptor ligands

In virtual ligand screening, docking of a compound library

to a receptor structure model is typically carried out to rank

compounds for their propensity of binding to the receptor.

We assumed that an opposite approach is also valid: By

docking of a library of compounds containing both binding

and non-binding compounds and measuring their geometric

fit to several receptor models, the models can be ranked for

their ligand binding predictive ability. We therefore

selected compounds from the literature with known affinity

and intrinsic activity for the D2R.

The series of compounds used in this study belong

to different structural classes comprising the basic dopa-

mine skeleton in their structure, such as aminotetralins,

phenethylamines, apomorphines, and benzoquinolines.

The ligands were selected on criteria related to their intrin-

sic activity, selectivity, conformational flexibility and

Fig. 4 Structural superposition of the binding site residues of the

b1AR X-ray structure (white ribbon and carbon atoms) and the model

that best reproduces the bound ligand conformation (colored ribbon
and green carbons) viewed from the extracellular side. This region of

the predicted model matches well that of the crystal structure, and all

receptor—ligand hydrogen bonds are reproduced except that between

the carbonyl oxygen of N329/7.39 and the basic nitrogen

282 J Comput Aided Mol Des (2013) 27:277–291
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stereochemistry (Fig. 5 and Supplementary Table 2). Suf-

ficiently rigid and selective full agonists at the D2R have

been chosen in the modeling together with structurally

related inactive compounds found in the literature. Inactive

analogs are represented by compounds which do not show

any or only weak effects, i.e. inverse agonists, antagonists

or low intrinsic partial agonists.

The final set contains 29 compounds (Fig. 5 and Sup-

plementary Table 2). A full account for most compounds in

the set is described elsewhere [40]. Basic nitrogen atoms

were protonated before docking. The stereochemistry of

protonated tertiary amine is important in the protein com-

plex model and thus both ‘‘N-enantiomers’’ were included,

resulting in a total of 43 compounds in the docking set.

Ranking of receptor models by D2 ligand docking

performance

The set of compounds was docked to all nine generated

receptor models using torsion space Monte Carlo optimi-

zation to potential (grid) maps representing van der Waals,

electrostatic, hydrogen bonding and hydrophobic interac-

tions that substitute for the receptor, as implemented as the

standard protocol in ICM (version 3.4). Several docking

solutions were stored for each ligand (typically 30–40) by

the protocol. The lowest-energy conformation did not

always make the key interactions (see above), so all con-

formations of each compound were evaluated for the key

interactions to identify the candidate docking solution. No

Fig. 5 Structures of full D2 agonists and inactive compounds used for docking to the final, selected D2R model. References and structures used

in the docking to all D2 receptor models are listed in Supplementary Table 2

J Comput Aided Mol Des (2013) 27:277–291 283
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energy threshold was defined, meaning that all conforma-

tions were evaluated. The lowest-energy conformation of

each compound that fulfilled the geometric criteria was

stored. Acceptance of a solution required the energy of the

hydrogen bond between the protonated amino group in the

ligand to D114/3.32 to be -0.2 kcal/mol or lower, that of

hydrogen bonds from any ligand atom (typically hydroxyl

groups of the catechol) to S193/5.42 and/or S197/5.46 to be

-0.2 kcal/mol or lower, and the van der Waals interaction

energy between F390/6.52 and aromatic ligand atoms to be

-0.3 kcal/mol or lower. These values were generously

chosen to allow several docked conformations. For each

receptor model, the number of unique agonists that passed

the selection scheme was summed up and used to rank the

receptor models (Supplementary Table 3). The three top

ranked models were further manually assessed based on the

geometry of the key interactions, the shape match between

the binding pocket and the compounds, and the conver-

gence of structurally similar compounds to a common

binding mode. One D2R model was selected for further

analysis. It had the highest number of accepted docked

agonists and ranked third according to receptor score.

Properties of the selected model

The Ca RMSD of the selected D2 model compared to the

initial (homology) model was 5.4 Å (Supplementary

Table 3). Exclusion of TM1 from the analysis, which had

clearly different positions in the two models, yielded a Ca

RMSD of 2.4 Å. Although TM1 shows structural vari-

ability across different GPCR structures, the large devia-

tion observed here is probably an artifact caused by the

random sampling and the few tethers to this helix. Helix

TM1 is not restrained by, nor directly affect, ligand binding

properties, and therefore neither the ligand binding score

nor the final screening selection will penalize TM1 as long

as it retains properties that are membrane protein-like.

Superposition of Ca atoms of TM2–7 (2.4 Å RMSD) shows

that the main structural differences is a sideward shift of

the extracellular ends of TM3 and TM4 by 2–3 Å and a

corresponding movement in the opposite direction of TM5.

This results in a decrease of the distance between the

midpoint of the D114/3.32 Oc atoms and S193/5.42 Oc

coordinates, from 14 Å in the homology model to 9.1 Å in

the selected model, which improves the binding pocket

agonist-binding properties (see below). The movements

may be triggered by the distance restraints and scoring of

receptor-ligand interactions that require helices TM3 and

TM5 to move closer, in analogy to the binding of an

agonist [16–18]. If the Ca atoms of TM3–TM5 are refer-

ence points for superposition instead (2.2 Å RMSD) the

structural change is a shift of TM2 and TM7 towards TM6

by approximately 3 Å, causing TM6 to tilt out from the

bundle center on the intracellular side by 2 Å. The outward

shift of TM6 is an important structural feature of the

activated state of rhodopsin [19–22], the b2AR [17, 18] and

the A2A adenosine receptor [15]. The magnitude of the shift

in the D2R model is modest in comparison to the structures

(2 Å vs. 6–11 Å) since the G-protein was not included in

the model and also due to the presence of tethers to the

inactive state helix packing. Residues I3.40 and F6.44 were

suggested to couple conformational changes of the binding

pocket with TM6 based on the active agonist-bound b2AR

structure [17]. These conformational changes are not

observed in the D2R model, probably due to the inactive-

state conformation of the intracellular part of TM6. The

binding pocket score of the homology model was inferior

relative to that of the selected model. However, the packing

score of the homology model was better than those of the

models generated by the presented method (see the

‘‘Methods/experimental’’ section for details on the score

definitions).

Binding site analysis

For further analysis, a more focused set of compounds was

used (Fig. 5) by removal of compounds that were struc-

turally similar. Also, compounds that contained large

substituents that were expected to interact with the extra-

cellular loop 2 (ECL2) were removed due to the lack of

loops in the receptor model. Docking and evaluation using

the same criteria as above (geometry of key interactions,

shape match and convergence to a common binding mode)

resulted in the correct binding mode for all 11 agonists for

the selected model. The shape of the binding pocket was

calculated using the icmPocketFinder function of ICM that

detects both buried and surface-exposed binding sites [50].

This method is useful for the D2R model since the ECL2,

that closes the pocket in known GPCR structures, is

missing. The volume (458 Å3) and shape of the binding

pocket matches those of the majority of agonists in this

study, and the selected docking solutions form a tight

cluster (Fig. 6a). The distance from the carboxylate group

of D114/3.32 and the Oc hydroxyl of S193/5.42 is 9.1 Å,

which is 5.4 Å shorter than that of the unrefined rhodopsin-

based homology model. This is in good agreement with the

shorter distance between TM3 and TM5 of the activated

state that has been suggested [19–22] and later confirmed

by structural studies [15, 18]. It also agrees well with the

9.1 Å distance in a pharmacophore model for selective D2

agonists, measured from the projected pharmacophoric

features representing the serine hydrogen bond donor/

acceptor to the aspartic acid projected feature [40]. The

corresponding distance in the inverse-agonist bound

structure of the dopamine D3 receptor is 9.9 Å [13]. Nine

out of the ten inactive compounds in the set also matched
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(a)

(b)

(c)

Fig. 6 a Orthogonal views of

ten D2R-active compounds

docked to the selected D2R

model showing a good match to

the size and shape of binding

pocket (blue surface). Selected

proximal side chains and

ribbons were removed for

clarity. The pocket shape was

calculated using

icmPocketFinder [50] which

closes the solvent-exposed

region, and ligands therefore

seems to protrude through the

pocket. Selected side chains are

labeled. b Definition of three

regions discussed in the text:

The catechol pocket (red), the

propyl pocket (green) and the

ECL2-proximal pocket (yellow).

Other regions of the receptor

molecular surface are white,

selected side chains are shown

and labeled, and rotigotine is the

representative compound. The

amine proton points towards

D114/3.32 which is near the

viewer. Selected helix numbers

are indicated. c Orthogonal

views of the average atomic

property fields (APFs)

calculated from docked agonists

matching properties of the

receptor model. The receptor is

shown as ribbon and ball-and-

stick models. The surfaces are

isocontours for the property

fields: sp2 hybridized (green),

hydrogen bond donor (cyan)

and acceptor (red) (top panels)

and hydrophobic (green) and

positively charged (blue) (lower
panels). Note the hydrophobic

extension near the positive

charge that matches the propyl

substituents on the basic

nitrogen
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(all but (-)-DHX), suggesting that the selection criteria

and/or the model properties are not sufficient for discrim-

ination between active and inactive compounds in their

current form.

Dopamine D2R ligand recognition

Three sub-pockets are present in the binding site of the

model (Fig. 6b): (1) A catechol-binding region offers

hydrogen bonding interactions to three serine residues in

TM5, and aromatic interactions with F390/6.52 in TM6. In

addition, V115/3.33 in TM3 is in position to form hydro-

phobic contacts with the ligand. These receptor-ligand

interactions are well established in the literature [45–47,

51, 52]. (2) The model has a small hydrophobic pocket near

TM7. Binding studies have shown that a propyl substituent

on the basic amino group is important for D2R selectivity

over the dopamine D1 receptor [53–56]. The basic amine

can carry two aliphatic substituents, but only one of them

can be larger than three carbons or the affinity decreases

[54]. An explanation is suggested by the D2R model: The

hydrophobic pocket near TM7, formed by W386/6.48,

T412/7.39, G415/7.42 and Y416/7.43, corresponds in size

and shape to an n-propyl group. The other substituent

projects in the direction of the loops, which are more

flexible and may accommodate larger groups. (3) A pocket

near the extracellular face of similar size as the catechol-

binding pocket. Its size is not well-defined due to the

absence of ECL2. However, due to the higher variability of

the loop region compared to the helical region, this part is

likely to be more flexible than the membrane-buried parts

and may adapt to a variety of chemical substituents.

In combination with D114/3.32, these three pockets

form a tetrahedral arrangement around the basic amino

group of the ligand (Fig. 6b), which allows the binding

mode of many catechol-containing monoaminergic ligands

to be rationalized. The requirement of a hydrogen bond

between the basic amine and D114/3.32 sets a clear

directional restraint, which leads to a critical dependence of

the stereochemical configuration around the protonated

nitrogen for the fit to the binding pocket. Therefore, only

one of the N-enantiomers was accepted for compounds

with a stereogenic protonated nitrogen and a clear differ-

ence in size of the N-substituents.

In order to generalize the docking results, the properties

of the ligand ensemble were represented by so called atom

property fields (APFs) [57] for the accepted docked solu-

tions of the agonists. The APFs are 3D grid representations

of seven properties that are assigned to each atom:

Hydrophobicity, hydrogen bond acceptor, hydrogen bond

donor, charge, sp2 hybridization, size, and electronegativ-

ity. In contrast to the initial APF study, the APFs reported

here are based on the docked conformations of the ligands

which therefore take receptor interactions into account. As

expected, hydrogen bond donor and positive charge fields

map to the basic amino group, and aromatic fields are

present near TM5, but also near the location of ECL2

(Fig. 6c). The hydrogen bond donor field has an elongated

maximum along the ridge of the catechol rings, adjacent to

serine residues 193/5.42, 194/5.43 and 197/5.46 on TM5.

The hydrogen bond acceptor fields are localized to two

lobes on either side of the rings. The presence of propyl

substituents on the amines is manifested as an elongated

hydrophobic field close to TM7.

As described above, the criterion for the final selection

of one out of the nine receptor models is based on the fit of

a set of compounds to the ligand binding site. Whereas our

aim was that the agonist-biased optimization should favor

the active state of the receptor [58], the structural adapta-

tion is not necessarily propagated throughout the whole

structure with the current settings. For example, the out-

ward movements of the parts of TM5 and TM6 close to the

intracellular side is not of the same magnitude as those of

active-state receptors [15, 18]. Although these two states

may be partly uncoupled, as shown in the crystal structure

of the b2AR T4L chimera bound to an inverse agonist

while the cytoplasmic end is in the active state [59], tethers

to residues in the intracellular region of the receptor may

be removed in future work, or set to the corresponding

residues of a model in the G-protein interacting state [7].

Conclusions

During the last few years, progress in 3D structure deter-

mination of GPCRs has enabled analysis of ligand recog-

nition by their receptors in different conformational states.

The structures of 15 receptors are known at present [14], all

belonging to family A, but so far only three agonist-bound

active-state structures have been reported (b2AR [17, 18]

and A2A adenosine receptor [15]). Homology models and

ab initio methods have been used to model other receptors,

and whereas homology modeling tends to be limited to

similar backbone geometries, ab initio methods are gen-

erally computationally expensive. Therefore we have

combined the two strategies into a semi-empirical method

that re-models the helical bundle of a 7TM homology

model by Monte Carlo optimization, guided by a ligand

and by restraints derived from experimental data, allowing

for larger backbone variation while keeping a bias towards

the template structure.

A wide conformational space was sampled, as demon-

strated by the application of the method to the b1AR and

D2R receptors. The automatic docking of agonists to the

selected D2R receptor model converged to a common

binding mode for several compounds, and alternative
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binding modes were selected manually from the docking

conformational stacks to yield a well-defined model for

agonist binding. The structural features of docked ligands

were interpreted using APF, and they correlated well with

experimental data. The binding site has been biased

towards the agonist-bound state by the use of constraints

based on receptor-agonist key interactions. However, these

conformational changes were not propagated to the inac-

tive state R132/3.50–E368/6.30 ionic lock on the intracel-

lular side, probably due to the constraints to conserved

residues of the homology model. Therefore, the analysis is

restricted to the ligand-binding site in the current form of

the method. It is however possible to bias the structure

optimization to several structure templates depending on

the desired properties—e.g. using the binding pockets of

monoaminergic receptors or the intracellular part of

G-protein peptide-bound structure models [7, 18].

This type of semi-empirical approach has a potential for

modeling of receptor targets for which a structural template

with sufficient sequence homology or the correct confor-

mational state is unavailable, but for which sufficient

empirical information is accessible to guide the modeling.

Methods/experimental

General

Default ICM energy terms and parameters were used for

energy evaluations [60]. The maximal van der Waals

interaction energy in the first stage of structure optimiza-

tion was limited to 2.0 kcal/mol. A distance-dependent

dielectric constant of 4 was used. Template structures were

converted to ideal covalent geometry prior to homology

model building to conform with the ICM internal coordi-

nate force field [60]. Homology models were built using

standard techniques implemented in ICM.

Since the focus of this study was ligand recognition, the

torsion variables of the ligand binding region were sampled

more often in the Monte Carlo protocol. Variables of the

ligand (torsions and positional variables) were sampled

twice as often as those of the binding pocket (defined as

residues within 7 Å from the ligand in this context), five

times more often than helix positional variables and 50

times more often than the remaining protein residues. The

binding pocket residues were re-defined regularly during

the optimization to account for structural changes.

All calculations were performed on a dual Intel Xeon

workstation running Linux. The generation of ten final

models (stage 4) from a single homology model typically

required 4–5 days on this single computer, and the docking

of ligands and automatic evaluation required 1 day. Cov-

ering the corresponding conformational space using

molecular dynamics simulations would require signifi-

cantly larger computational resources.

Protein/ligand complex scoring

The qualities of the generated complex models need to be

assessed during and after the docking part. We therefore

developed a series of functions that score the protein and

ligand geometries and energies. Protein-related scoring

terms are aimed to evaluate helical membrane protein

structures in general and are related to a) the total protein

molecular surface area and volume, the distance between

helix centra, the number and volume of internal cavities,

and b) the tilt of helices relative to the overall bundle

orientation, the offset of helix centra from the mid-plane of

the bundle (parallel to the membrane), the distances

between helix ends relative to loop lengths, and the dis-

tance between the polar residues that anchor distal parts of

the ligand. The weighted sum of terms in a) is referred to as

the protein packing score, whereas that of b) is the protein

orientation score. The ligand score is target-specific and

depends on the chemical properties of the compound and

its interactions with the receptor. The three scores are

weighted and summed into a total score for the complex.

The development of each term and determination of weight

factors were based on their application to a selected set of

determined membrane protein structures and decoy 7TM

models where helical orientations were partially random-

ized. Since it was not known a priori which functions

would give meaningful measures of quality, we allowed

overlapping functions be included.

Packing

The terms that correlate with packing include the follow-

ing: Total molecular volume and area—tightly packed

complexes tend to have smaller volumes and areas. Num-

ber and volume of pockets—badly packed cores contain

buried pockets that were predicted by ICM’s pocket finder.

Pockets located on the surface of the receptor are also

predicted by the method but are not related to packing

defects, which leads to noise in this term. Helix center

distance—The distances between the geometric centers of

each helix and the bundle centre are summed. An offset of

a helix along its helical axis relative to the bundle will

increase this term, and it is generally a good measure of

packing if residue ranges are properly chosen.

Orientation

Hydrophilic surface Hydrophilic residue side chains are in

general in contact with other protein residues and hidden

from the lipid surrounding. The exposed area of
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hydrophilic residues was calculated for residues in helix

conformation considering the solvent exposed area of (1)

those charged and polar groups that were at least 25 %

surface-exposed relative to their standard exposed area in a

Gly-X-Gly tripeptide [60] and (2) all charged and polar

residues including also those of small surface-exposed

area. Only the most membrane-embedded mid-third section

of the bundle was considered. Tilt Strongly tilted helices

are rare in membrane proteins, with the exception of

shorter segments near the membrane surface. Helix seg-

ments that were tilted more than 50 � compared to the

bundle axis were penalized by an amount proportional to

the tilt. Helices are assigned prior to this calculation, based

on the ICM assignment (a modification of the DSSP [61]

algorithm). This is followed by a more conservative re-

evaluation by breaking helices into segments at helical

kinks based on the distance between carbonyl oxygens in

the backbone. The overall orientation vector of the bundle

was determined by the sum of the individual helix vectors,

weighted by the number of residues in each helix. All

helical vectors were clustered prior to the overall bundle

axis determination, and up to 10 % of the helices that were

not in the main cluster were neglected to avoid the con-

tribution from helices that deviated from the main bundle

vector. Elevation Elevation is the calculated distance offset

of helix centers from the membrane mid-plane and should

be near zero if helix regions are accurately modeled. Loops

The distance between helix termini is not explicitly limited

during the docking since loops are not included in models.

Preliminary attempts to use distance restraints as replace-

ments for loops were not satisfactory, instead we intro-

duced a scoring term based on the difference between the

distance between the helical end residues and the expected

maximal length of the loop (estimated using 3.2 Å per

residue). Distance between ligand anchor residues A flat-

bottom quadratic function was used to score the distance

between key interacting residues that anchor distal parts of

the ligands. The target distance was estimated from ligand

geometry, as described for each case above.

Ligand

The ligand score is calculated from receptor-ligand inter-

action energies and is defined similarly for each complex,

see below.

Ligand docking to sets of receptor models

For the ligand docking to sets of receptor models, docking

parameters were set up for one protein–ligand complex

model and used for all other models, except for the exact

selection of receptor atoms. The atom selection was made

using a 10 9 10 9 10 Å3 box with defined coordinates for

one model, and other receptor models were superimposed

with the ICM ‘‘align’’ sequence/structure alignment tool

which aligns those parts of the 3D model that are conserved

in sequence. This means that single helices that differ in

orientation relative to the folded core will not affect the

structural alignment and binding site selection.

Turkey b1AR test case

The structure prediction method was developed using the

turkey b1AR as target, and the bovine rhodopsin crystal

structure (pdb entry 1u19) [5] as the template. The helical

sequence regions W40-S68, L75-V103, G110-A142, R155-

I177, R205-E233, H286, V314, D322-Y343 were used to

build a homology model using ICM. The inverse agonist

(S)-cyanopindolol was generated from 2D coordinates

using ICM and added to the receptor model. In the scoring

evaluation, the non-penalized distance from the average

coordinate of the Od atoms of D121/3.32 to the average

coordinate of the Oc atoms of S211/5.42 and S215/5.46

was set to 9.5 ± 1.5 Å. The corresponding distance is

10.8 Å in the crystal structure. The ligand score was the

weighted sum of the following terms: Hydrogen bond

energy between the ligand and serine residues S211/5.42

and S215/5.46; electrostatic and hydrogen bond energies

between the ligand and the side chain atoms of D121/3.32;

distance restraint energies from two heavy atoms of the

ligand and three receptor atoms (Fig. 3a), and van der

Waals interactions between ligand aromatic atoms and

F06/6.51,F307/6.52 that substitutes for aromatic face-to-

edge p–p interactions (see ‘‘Results and discussion’’). Too

large conformational variation was observed for TM7

which was due to the lack of restraints at its N-terminal

half. Only four residues at the extreme C-terminus are

conserved in the 22 residue helix. Therefore one extra

restraint from the model N-terminus to the template was

defined for the N329/7.39 Ca atom, yielding a total number

of restraints of 5, 7, 9, 3, 7, 7 and 5 for TM1-TM7,

respectively. The 19 residues that were within 5 Å from the

ligand in the crystal structure were defined as binding site

residues. Receptor and ligand RMSDs for each model were

calculated after superposition of the binding site residues.

Dopamine D2 modeling

The modeled helical regions were Y34-E62, T67-V97,

F102-T134, K149-G173, A185-K211, E368-D400, P405-

I425. In the scoring evaluation, the non-penalized distance

from the average coordinate of the Od atoms of D114/3.32

to the average coordinate of the Oc atoms of S193/5.42 and

S197/5.46 was set to 12 ± 2 Å estimated from the corre-

sponding distance (15 Å) in the homology model and

considering the longest distance between the catechol
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oxygens and the nitrogen of (R)-NPA (8 Å). The ligand

score was the weighted sum of the following terms:

Hydrogen bond energy between the ligand and serine res-

idues S193/5.42 and S197/5.46; electrostatic and hydrogen

bond energies between the ligand and the side chain atoms

of D114/3.32; distance restraint energies from two heavy

atoms of the ligand and three receptor atoms (Fig. 3b), and

van der Waals interactions between ligand aromatic atoms

and F389/6.51,F390/6.52 that substitutes for aromatic face-

to-edge p-p interactions (see ‘‘Results and discussion’’).

The distribution of Ca RMSD from all models to the

template was 3.5–5 Å for about 90 % of the solutions, and

above 5 Å for the remaining fraction.
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