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Abstract

Background: Steady-state 13C-based metabolic flux analysis (13C-MFA) is the most powerful method available for
the quantification of intracellular fluxes. These analyses include concertedly linked experimental and computational
stages: (i) assuming the metabolic model and optimizing the experimental design; (ii) feeding the investigated
organism using a chosen 13C-labeled substrate (tracer); (iii) measuring the extracellular effluxes and detecting
the 13C-patterns of intracellular metabolites; and (iv) computing flux parameters that minimize the differences
between observed and simulated measurements, followed by evaluating flux statistics. In its early stages, 13C-MFA was
performed on the basis of data obtained in a single labeling experiment (SLE) followed by exploiting the developed
high-performance computational software. Recently, the advantages of parallel labeling experiments (PLEs), where
several LEs are conducted under the conditions differing only by the tracer(s) choice, were demonstrated, particularly
with regard to improving flux precision due to the synergy of complementary information. The availability of an
open-source software adjusted for PLE-based 13C-MFA is an important factor for PLE implementation.

Results: The open-source software OpenFLUX, initially developed for the analysis of SLEs, was extended for the
computation of PLE data. Using the OpenFLUX2, in silico simulation confirmed that flux precision is improved
when 13C-MFA is implemented by fitting PLE data to the common model compared with SLE-based analysis.
Efficient flux resolution could be achieved in the PLE-mediated analysis when the choice of tracer was based on
an experimental design computed to minimize the flux variances from different parts of the metabolic network.
The analysis provided by OpenFLUX2 mainly includes (i) the optimization of the experimental design, (ii) the
computation of the flux parameters from LEs data, (iii) goodness-of-fit testing of the model’s adequacy, (iv) drawing
conclusions concerning the identifiability of fluxes and construction of a contribution matrix reflecting the relative
contribution of the measurement variances to the flux variances, and (v) precise determination of flux confidence
intervals using a fine-tunable and convergence-controlled Monte Carlo-based method.

Conclusions: The developed open-source OpenFLUX2 provides a friendly software environment that facilitates
beginners and existing OpenFLUX users to implement LEs for steady-state 13C-MFA including experimental design,
quantitative evaluation of flux parameters and statistics.
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Background
Metabolic flux analysis (MFA) plays a key role in systems
biology because intracellular fluxes, i.e., in vivo reaction
rates through different pathways within an intact living
cell [1], are the functional output of all conventional gen-
etic and metabolic regulatory systems and determine the
physiological phenotype of the cell [2].
In recent decades, a metabolic steady-state version of

13C-labeling-based MFA (13C-MFA) has become the best
developed and most powerful method for quantifying
intracellular fluxes when all fluxes and metabolite concen-
trations can be considered to be (at least approximately)
constant [2-4]. 13C-MFA, applied to microbial, plant and
mammalian systems, has been increasingly used in sys-
tems biology and metabolic engineering [5-7], biotechnol-
ogy and medicine [8-10].
Due to the high complexity of native metabolic net-

works, 13C-MFA typically involves the use of a simplified
stoichiometric model in which only the key pathway re-
actions of the central carbon metabolism and the set of
lumped targeted biosynthetic reactions are parameter-
ized before the assumed model-based fluxes are inferred
from measurable quantities [11].
Concerning the experimental data applied in 13C-MFA,

the physiological/extracellular fluxes or effluxes (e.g.,
biomass precursor drain, substrate uptake, and product
excretion rates) and 13C-labeling patterns (i.e., isotopomer
distributions) of metabolic products resulting from feeding
partially 13C-labeled substrates (tracers) are used. These
effluxes are determined from the time courses of cellular
dry weight and extracellular metabolite concentrations
during cultivation [12]. The 13C-isotopomers generated
due to the metabolic conversion of tracers are detected
through nuclear magnetic resonance (NMR) spectroscopy
[13], mass spectrometry (MS) [14], and/or tandem MS
(MS/MS) [15].
Prof. W. Wiechert and co-workers significantly contrib-

uted towards formalizing the framework for 13C-MFA:
from measured effluxes and intracellular labeling informa-
tion the intracellular fluxes could be computed [16-19].
On this basis, several mathematical models have been
developed that can simulate a unique profile of isotopo-
mer abundance for the fluxes with assigned parameters
by describing the propagation of labeled atoms from the
tracer through an assumed metabolic network according
to the known atom rearrangements for each reaction
[18,20-26]. All simulations are providing under the
essential assumption that the possible isotopic mass
effects [27] are negligible, i.e., that the labeling states of
the metabolites do not influence the rate of their enzymatic
conversion [16]. The goal of 13C-MFA is to determine
the set of initially unknown flux parameters that mini-
mizes the differences between experimentally observed
and simulated measurements. In mathematical essence,
this set is a solution of a large-scale non-linear parameter
estimation problem [28]. Analytical solutions of this prob-
lem are available only for the simplest systems. Therefore,
the values of the assumed fluxes must generally be in-
ferred from the experimental datasets through computer
model-based interpretation using an iterative least-squares
fitting procedure [2,3,26].
Several high-performance computational software suites

for performing flux calculations have been developed and
described, e.g., 13CFLUX [29] and its reinforced version –
13CFLUX2 [30], METRAN [31,32], OpenFLUX [33], FIA
[25], influx_s [34], OpenMebius [35].
These software toolboxes most often automatically gen-

erate metabolite and isotopomer balance models relying
on an initially user-defined simple notation of metabolic
networks and the known atom transitions occurring in
biochemical reactions. Then, starting from the generated
models and from measured effluxes that must be con-
strained within the obtained error ranges, semi-random
guesses regarding intracellular fluxes are used to simulate
in silico 13C-labeling patterns of targeted metabolites,
which, in turn, are compared with the measured patterns.
This process is repeated until a satisfactory match to the
measurable quantities is achieved, i.e., the constrained
non-linear least-squares minimization problem (NLLSP)
is solved [29]. According to the rules of regression ana-
lysis, providing a statistical goodness-of-fit test of the
adequacy of the applied flux model is required, at a
minimum, after determining the optimized fluxes [28,36].
Then, linearized statistics [17,37,38], a non-linear-based
search algorithm [28], and/or the Monte Carlo approach
[39,40] are used to estimate the precise flux resolution,
i.e., the uncertainty of the determined fluxes. The opti-
mized parameters of the fluxes and their confidence
intervals in the statistically adequate user-made metabolic
model must be obtained as the concerted results of these
computations.
When the 13C-labeling data were obtained from NMR

in the early stages of 13C-MFA development, each analysis
was typically performed on a single labeling experiment
(SLE), primarily for cost reasons [41]. Implementing
highly sensitive MS- [42-44] and MS/MS-mediated [15,45]
measurements, which are development approaches that
involve 13C-tracer experiments at a miniaturized scale
[46,47], led to a significantly increased accessibility and
decreased cost of labeling experiments (LEs). Thus, it
has become possible to realize the advantages of parallel
labeling experiments (PLEs), in which two or more LEs
are initiated from the same seed culture and conducted
in parallel under the same experimental conditions dif-
fering only in the set of 13C-tracers applied [48-53].
SLE-based 13C-MFA remains a widely used method and

can be implemented with the application of a single labeled
substrate as a tracer or using a mixture of isotopomers
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of the same compound or multiple labeled substrates
[32,54-57]. Studies have shown that achieving optimal
resolution of fluxes from different parts of the central
carbon metabolism requires different 13C-tracers [19,48,58].
Several sophisticated experimental design strategies have
been adopted to improve the desired flux precision
[19,32,36,49,54,56,59-64]. Therefore, the use of only one
set of tracers will likely not maximize the resolution of all
fluxes in SLEs, particularly when a large-scale metabolic
model is employed [28,65].
According to previous studies [53,58,66,67], there are

several advantages of using PLEs for 13C-MFA compared
with an SLE-based approach. In general, the data from
each LE are integrated to achieve an improved flux reso-
lution, primarily due to the synergy of the complemen-
tary information used for fitting to the single metabolic
model [48,53,58,66]. Indeed, the latest applications of the
COMPLETE (short for COMplementary Parallel Labeling
Experiments TEchnique [58]) MFA approach employing
all six singly labeled glucose tracers to evaluate metabolic
fluxes resulted in the most accurate and precise flux pa-
rameters obtained thus far for wild-type E. coli as well as
for some metabolically engineered strains of the bacterium
[58,67]. However, for laboratories lacking in-house experi-
ence, one crucial factor in the implementation of the PLE
approach is the availability of a free, ready-to-use software
package allowing the successful manipulation of the
complex data obtained in PLEs, which is necessary for
comprehensive flux analysis.
In the present study, the open-source software Open-

FLUX [33], which uses an elementary metabolic unit
(EMU) decomposition-based algorithm to generate an
isotopomer balance model [26] and was initially devel-
oped for SLE analysis, has been extended for the
computation of PLE data (see, Additional file 1: SF-1.3.
The methodology of PLE data implementation is rather
clear, and one of the possible algorithms has been earlier
schematically described in [53]. The expertized investi-
gators have already adjusted their home-made 13C-MFA
software by PLEs-mediated data (see, [66] for review).
Currently, additional MATLAB-based scripts have been
appeared on the OpenFLUX homepage (http://openflux.
sourceforge.net) that demonstrated to users how the
data of two labeling experiments conducting in parallel
could be implemented in the already existing software. The
presented open-source OpenFLUX2 provides a friendly soft-
ware environment that facilitates beginners and existing
OpenFLUX users to manipulate with SLE- and PLE-based
data, for experimental design, determination of flux pa-
rameters, and for broaden evaluation of flux statistics.
Using OpenFLUX2, direct in silico simulation confirmed

that the flux resolution was improved when 13C-MFA was
provided with PLE data that were fitted to and integrated
with the common metabolic model as compared with the
individual analysis of each LE. Additionally, the best flux
resolution was achieved in the analysis of PLE results
when the choice of tracer for each provided LE was based
on a computed experimental design targeted to minimize
the approximated variances of several fluxes from the
different parts of the assumed metabolic network. The
statistical methods of analysis of the obtained experi-
mental and simulated data, followed by a goodness-of-
fit test of the adequacy of the applied metabolic model,
have been extended in OpenFLUX2, including the statis-
tical conclusions concerning the feasibility of the obtained
flux parameters in the final report and the flux confidence
intervals estimated at the desired significance level. In
turn, the flux confidence intervals could be computed in
OpenFLUX(2) using different methods, but up today the
most dependable and precise approach is a fine-tunable
Monte Carlo-based determination of the flux variances,
which are dependent on the randomly corrupted measured
data [33,39] and that has been modified in OpenFLUX2
due to implementation of a convergence control and
visualization of computation results.
Following the original position of the OpenFLUX au-

thors [33], OpenFLUX2, which is an extended version
of the already available software, has been developed as
open-source software. We hope that OpenFLUX2 will
be useful to research groups applying 13C-MFA, particularly
for beginners not yet experienced in fluxomics analyses.
Additionally, the availability of the OpenFLUX2 code could
promote further improvement of the software based on
the experiences of different researchers. OpenFLUX2 can
be downloaded from SourceForge (http://sourceforge.net/
projects/openflux2).

Results
Key features of OpenFLUX2 software
OpenFLUX2 was developed as an extension of the
OpenFLUX software. New calculation facilities were
added, mostly as extensions of the initial options, with-
out dramatic changes in the parent content. Moreover,
the initial forms of the model and experimental data
setup, together with results representation, were main-
tained as much as possible during the development of
OpenFLUX2 to facilitate the transition from one ver-
sion to the other. In the present study, the procedures
that were developed previously in OpenFLUX and retained
in OpenFLUX2 without essential modifications are in-
dicated as “OpenFLUX(2)”, and only the added/modi-
fied elements are indicated as being implemented in
OpenFLUX2.
To clarify the essence of the modifications implemented

at the stage of OpenFLUX2 software development, the
following items are schematically described in Additional
file 1: (SF-1.1.) the assignment of free fluxes, followed by
(SF-1.2.) flux variability analysis; (SF-1.3.) the calculation

http://openflux.sourceforge.net
http://openflux.sourceforge.net
http://sourceforge.net/projects/openflux2
http://sourceforge.net/projects/openflux2
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of optimized fluxes through iterative fitting; (SF-1.4.) a
goodness-of-fit analysis of the adequacy of the metabolic
model; (SF-1.5.) local linearized statistical approximations;
and non-linear-search of the optimal flux confidence in-
tervals (SF-1.6.), where, in particular, the introducing a
convenient concept, “the normalized flux precision” func-
tion, is described, as well; (SF-1.7.) – a fine tunable and
convergence-controlled Monte Carlo-based approaches
for precise determination of the optimized flux confidence
intervals according to “discarding” strategy at the pre-
determined confidence level, significantly modified at
the stage of implementation in OpenFLUX2. The main
aim of this description is to demonstrate that the indi-
vidual procedures are essential interconnected parts of
a unique solution to a complex optimization problem,
where the statistical significance of the calculated model-
based parameters must be verified via the comprehensive
goodness-of-fit of the model’s adequacy. As an auxiliary
Figure 1 Workflow of OpenFLUX2. Green boxes represent the two main
and isotopomer model generation and the MATLAB-based box for the 13C
offered by OpenFLUX(2). A yellow background indicates options added du
aim of this part, it is a rather short, but slightly (in com-
parison with the excellent review [4]) mathematically-
enriched introduction in the 13C-MFA background that
could be helpful, especially for beginners, to repair
their knowledge by essential parts of linear algebra and
statistics.
The workflow of OpenFLUX software consists of two

components: (i) the automated set-up of stoichiometric
and isotopomer balance models from user-supplied data,
performed by Java PARSER, and (ii) the application of
the generated models to the 13C-MFA of SLEs for flux
parameter estimation and sensitivity analysis, performed
by a set of specially developed MATLAB functions. The
modifications introduced in OpenFLUX2 can be divided
into two types (Figure 1). First, a set of new options
related to statistical analysis of the flux evaluated from
SLE data and experimental design facilities were added.
Second, the new software was extended to perform
components of OpenFLUX(2): PARSER for automatic stoichiometric
-MFA of the generated model. A gray background indicates options
ring OpenFLUX2 development.
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metabolic flux analysis of PLE-based data. Here, the PLE
concept is considered as determined in [66]; PLE-based
design means that several tracer experiments that are
started from the same seed culture to minimize biological
variability, and must be performed independently under
identical conditions on the same substrate(s), using differ-
ent tracer(s).
Because an 13C-MFA PLE-based approach requires the

simultaneous fitting of several datasets obtained from
independent LEs to a single model, there is no major
difference in the spread-sheet model set up and the
consequent automated generation of stoichiometric
and isotopomer balance models by the Java PARSER
for PLEs and SLEs in OpenFLUX2. The set of substrates
is fixed during the model generation step, and individual
substrate tracer configurations are then defined by the
user for each LE constituting the PLE together with the
corresponding measured data (Figure 1). The option to
use either a single label or a labeling mixture for each sub-
strate in the PLE is provided by OpenFLUX2, as was pre-
viously provided in OpenFLUX for SLEs. Thus, all of the
introduced modifications were finally concentrated in the
MATLAB-based portion of the computational algorithm.

Comprehensive flux analysis of a Corynebacterium
glutamicum model, as an example, using OpenFLUX2
software
The C. glutamicum model
The specific features of the developed OpenFLUX2
software were illustrated via the in silico simulation of
a set of SLEs and PLEs followed by their comprehensive
13C-MFA. The Corynebacterium glutamicum metabolic
model initially proposed for an L-lysine-overproducing C.
glutamicum strain by Becker et al. [68] and later used to
demonstrate the possible applications of OpenFLUX
software [33] was chosen (with minor changes; see
Methods) as the object of the computational simulation
and 13C-MFA. This model, schematically presented in
Figure 2, accounted for the main central metabolic
pathway, the biosynthetic pathways for several excreted
products, including lysine as the main product, and
anabolic demand. CO2-mediated carbon transfer was
accounted for using expression reactions, accompanied
by CO2 production/consumption, in an explicit manner.
The bi-directional reactions were represented as non-
negative forward and reverse fluxes. Finally, the metabolic
model was composed of 51 unknown fluxes balancing 36
metabolites, resulting in the stoichiometric matrix S,
dim(S) = (36 × 51), with a residual 15 degrees of freedom.
The degrees of freedom were associated with the follow-
ing free fluxes: experimentally determined effluxes, in-
cluding biomass biosynthesis (1 flux), effluxes of secreted
products (5 fluxes), and the glucose uptake rate (1 flux);
reverse branches of five bi-directional reactions; and
free irreversible reactions associated with branch points.
An isotopomer model was generated automatically
under the assumption that the mass isotopomer distribu-
tions of the following metabolites were measured: alanine,
valine, threonine, aspartate, glutamate, serine, phenylalan-
ine, glycine, tyrosine, and trehalose. Application of the
EMU approach offered by OpenFLUX(2) led to a major
simplification of the isotopomer model (see Methods).

Circumstantiation of flux parameters for the computer
simulations
The full set of fluxes necessary for the simulation of in
silico SLEs and PLEs for the defined model was unfortu-
nately not directly available from previously published
materials [33,68]. Thus, the evaluation of fluxes from
published experimental data was repeated in the present
study. To this end, a new constrained NLLSP was designed
based on a modified metabolic model, with assigned free
fluxes, previously measured [68] effluxes with their
variances, and MIDs with variances assumed to be 0.15
mol% (see Methods). Solutions of the designed NLLSP
were obtained by OpenFLUX2 using a gradient-based
local optimization method with the assistance of
MATLAB’s FMINCON function (see Additional file 1:
SF-1.3., for details). To determine the global mini-
mum, 100 independent iterative trials were performed
with an arbitrary set of initial free fluxes, θk ∈ℜp, k =
1, 2,…, 100, where ℜp indicates a feasible constrained
domain in the free flux variation space (see Additional
file 1: SF-1.2.). These trials resulted in a set of flux esti-

mates, uð⌢θkÞ; k ¼ 1; 2;…; 100 , corresponding to the
minimum values of the objective function SSRSLE

f

� �
k in

Eq. (S − 1.3.7), which were reached in each k-th trial.
According to the optimization report, all of the provided
trials were terminated successfully due to the achievement
of the given termination tolerance (ΤΤ = 1 × 10− 4) within
the constraint violation tolerance. The χ2-based goodness-
of-fit confirmed the model adequacy (see Additional file 1:
SF-1.4., for details) for 82 (at a significance level of
α = 0.05) and 34 (at α = 0.32) of the 100 obtained values
of Ξk ¼ 2⋅ SSRSLE

f

� �
k as follows:

χ2α=2 W−pð Þ < Ξk < χ21−α=2 W−pð Þ ð1Þ

where W is the number of independent measurements,
and p is the number of estimated free fluxes ((W − p = 21)
in this case). All essential information concerning the
obtained solutions is presented in Table 1 (Exp_1.1),
Additional file 2: Figure SF-2.1, and Additional file 3:
Table SF-3.3. A minimal value of the Ξ function was
registered for the group of 26 trials, and all fluxes from
these solutions corresponded practically to the same



Figure 2 Assumed metabolic model of an L-lysine-producing Corynebacterium glutamicum strain grown on glucose. Single (solid) and
double (solid and dotted) lines with arrows correspond to the assumed irreversible reactions and to bi-directional (forward and reverse) reactions,
respectively. The letter “θ” indicates fluxes assigned as free, and the letter “v” indicates dependent fluxes. The free and dependent fluxes are numbered
continuously throughout the applied model. Amino acid biosynthetic pathways are shown schematically as the drain of precursors of the corresponding
amino acid. Carbon sources are indicated with ovals. The following abbreviations are used for metabolites: 3PG – 3-phosphoglycerate;
ACCOA – acetyl-CoA; ACETAL – acetaldehyde; ACETAL_EX – extracellular acetaldehyde; AKG – α-ketoglutarate; AKG_EX – extracellular α-ketoglutarate;
CIT – lumped pool of citrate and isocitrate; CO2 - carbon dioxide; CO2_EX – extracellular carbon dioxide; DAP – diaminopimelate;
DHAP – dihydroxyacetone phosphate; E4P – D-erythrose 4-phosphate; F16BP – fructose 1,6-bisphosphate; F6P – D-fructose 6-phosphate;
G3P – glyceraldehyde 3-phosphate; GLC_EX – extracellular glucose; GLC6P – D-glucose 6-phosphate; GLY_EX – extracellular glycine;
LAC - lactate; LAC_EX – extracellular lactate; LYS_ EX – extracellular lysine; MAL – malate; OAA – oxaloacetate; P5P – pentose-5-phosphates (lumped
pool of D-ribulose 5-phosphate, D-ribose 5-phosphate, D-xylulose 5-phosphate); PEP – phosphoenolpyruvate; PYR – pyruvate; S7P – D-sedoheptulose
7-phosphate; SUC – succinate; TREM – trehalose constituent (D-glucose 6-phosphate and UDP-glucose); TRE_EX – extracellular trehalose. Amino acids
are expressed using the standard three-letter code.
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point, uð⌢θÞ∈ℜn , in the feasible n-dimensional space for
the flux variation.
The flux identifiability analysis, which was based on

model linearization and on the computation of

Null Jfð
⌢
θÞ

� �
in Eq. (S− 1.5.9) (see Additional file 1: SF-1.5.),

was provided for the obtained statistically available solu-
tion as described by Yang et al. [69]. This analysis resulted
in the conclusion that only a unique set of flux parameters
for the global minimum of the constrained NLLSP
could be computed numerically; because the calcu-
lated null space matrix was empty. The goodness-of-
fit analysis was finalized by confirming the Ν(0, 1) dis-
tribution of the individual variance-weighted residuals

in Ξð⌢θÞ (see Additional file 1: SF-1.4. for details).
The obtained statistically acceptable solution of the con-

strained NLLSP, uð⌢θÞ , primarily coincided with the previ-
ously published [33,68] values of fluxes in the range of the
earlier evaluated flux confidence intervals (Additional file
2: Figure SF-2.2). Thus, all flux parameters, including pre-
viously unavailable, were evaluated and assigned as the
true values for the assumed metabolic model, u(θtrue).
Other χ2 -statistically acceptable trials resulted in lar-

ger values of Ξ(θ), which corresponded to the points of



Table 1 General characteristics of the obtained NLLSP solutions
Characteristic Exp 1.1 Exp 1.2 Exp 2.1 Exp 2.2 Exp 3.6 Exp 3.1 Exp 4.1 Exp 4.2 Exp 4.3 Exp 5.1 Exp 5.2 Exp 5.3 Exp 5.4 Exp 5.5 Exp

PLE_1
(5.1-5.5)

Number of measurements, W(a) 36 36 45 45 45 45 45 42 41 56 61 66 59 48 290

Number of free fluxes, p(b) 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Degrees of the freedom, W-p 21 21 30 30 30 30 30 27 26 41 46 51 44 33 275

Termination tolerance, TT 1 × 10−4 1 × 10−6 1 × 10−4 1 × 10−6 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4

Minimal reached value of Ξ(Ξmin) 18.2 18.2 1.5 ×10−3 1.5 ×10−3 9.65 22.8 46.6 38.9 18.9 23.2 24.6 50.4 44.4 31.5 239

Maximal reached value of Ξ(Ξmax) 8.5 × 104 263.1 105.6 1.4 × 104 3.5 × 104 1.5 × 104 1.4 × 104 1.4 × 104 1.1 × 104 23.7 28.8 53.9 983 910.5 9.0 × 103

Number of Ξk : Ξk < χ20:025 W−pð Þ 0 0 98 99 92 0 0 0 0 100 100 0 0 0 0

Number of
Ξk : χ20:025 W−pð Þ < Ξk < χ20:975 W−pð Þ

82 85 0 0 6 96 26 47 97 0 0 100 99 99 97

Number of
Ξk : χ20:16 W−pð Þ < Ξk < χ20:84 W−pð Þ

34 85 0 0 2 96 0 0 97 0 0 100 99 99 0

Number of trials with
Ξk : Ξk = Ξmin

(c)
26 77 6 51 28 11 4 4 7 94 89 96 96 82 91

Null Jfð⌢θÞ
� �

(d) Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty

Individual Residuals ∈ N(0, 1)(d, e) Yes Yes No No Yes Yes No No Yes Yes Yes Yes Yes Yes Yes

To determine the global minimum of the NLLSP, 100 independent iterative trials were provided with an arbitrary set of initial free fluxes for all represented in silico LEs. All iterative trials were terminated successfully
for each independent NLLSP. More detailed characteristics for all performed in silico experiments are listed in Additional file 3.
(a)In the case of the SLE, the vector of the measured data consists of both measured MID values and measured effluxes. In the case of the PLE, the vector of the measured data consists of the measured MIDs and
effluxes that were available for each SLE.

(b)The measured effluxes are included in the set of free fluxes, constrained according to Eq. (S − 1.2.2) with experimentally determined parameters qmea
eff ;σmea

eff .
(c)The values of Ξk that were obtained during different iterative trials were assumed to be equal to the Ξmin if the values were different from the Ξmin by a value less than or equal to the TT level, i.e., Ξk − Ξmin ≤ TT.
(d)The analysis was performed for the NLLSP solution, which provided the minimal achieved value of Ξ, i.e., Ξmin.
(e)The individual variance-weighted residuals were recognized to be not distributed as N(0, 1) if both the Kolmogorov-Smirnov test, provided by MATLAB, rejected this hypothesis and the individual residual plot
revealed unpredictable high values for the individual residual/group of the individual residuals or, in contrast, unpredictable small values for the primary part of the individual residuals.
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u(θ) ∈ℜn and primarily differed from u(θtrue) in the values
of two fluxes: θ22: PYR + CO2→F OAA and (vdep)23:
OAA →F PYR + CO2 (Figure 3(A)). The value of the re-
sidual net flux for these reactions, vnet = |θ22 − (vdep)23|,
remained practically constant for all χ2 -statistically ac-
ceptable trials. The possible existence of local minima of
the Ξ(θ) function with a parameter of θ22, as an alternative
to its true values, was tested. As shown in Additional
file 2: Figure SF-2.3, the minimized sum of the squared
residuals as a function of θ22 represents one distinct glo-
bal minimum in the neighborhood of (θ22)true followed
by a gentle decreasing slope, which ends nearly as a
plateau.
Thus, additional solutions of the constrained NLLSP

may be obtained in independent trials starting from the
random initial values of the free fluxes, resulting in the
premature termination of the computer search for the
global minimum due to the discovery of a termination
tolerance (TT). Indeed, repeated numerical solutions of
the same constrained NLLSP under conditions with a
decreasing TT of the objective function value sloped
from the default value of 1 × 10− 4 up to the more precise
value of ΤΤ = 1 × 10− 6 (see Additional file 1: SF-1.3., for
details), resulting in an increased number of trials that
reached the global minimum (77 of 100, in contrast to
26 in the previous calculations; see Table 1 (Exp_1.1;
Exp_1.2) and Additional file 2: Figure SF-2.1), with a
decreasing number of alternative statistically accept-
able solutions (Figure 3(B)).
Thus, a unique optimal set of fluxes for the statistically

adequate metabolic model was obtained: uð⌢θÞ≡u θtrueð Þ .
Then, new GC-MS-based “experimental data,” i.e., new
MIDs, could be generated through direct in silico simu-
lation describing the propagation of 13C atoms from dif-
ferent tracers through a metabolic network with known
flux parameters (see Methods).
Figure 3 Comparison of true flux values with flux parameters corre
objective function. The fluxes that successfully coincide with true values lie
from the same iterative trial are indicated by the same color. (A) The terminatio
13C-MFA for in silico SLEs with [1-13C]-glucose as a tracer
Initially, the simulation was provided for 99% of [1-13C]-
glucose as a tracer. The new set of MIDs was generated
as described in Methods, excluding the last step of data
corruption. To confirm that flux estimations could be un-
ambiguously inferred from the obtained non-noised data,
these simulations were used as the experimental data, with
assumed MID variances equal to 0.4 mol%, and the as-
signment of all effluxes as variable free fluxes constrained
in the range of the 95% confidence intervals with the
standard deviations determined in [68] (see Additional
file 3: Table SF-3.3). The solution to the corresponding
constrained NLLSP was obtained using OpenFLUX2
software according to the standard procedure described
above with details presented in Table 1 (Exp_2.1). In
total, 98 values of Ξi, which corresponded to solutions

from the total obtained set of uð⌢θiÞ; i ¼ 1; 2;…; 100 ,
were smaller than the upper, and even the lower, critical
threshold values, χ20:975 W−pð Þ and χ20:025 W−pð Þ, respect-
ively, at the 95% confidence level and with (W − p) =
(38 + 7) − (8 + 7) = 30 degrees of freedom. Moreover, the
group of trials (6 solutions at ΤΤ = 1 × 10− 4 and 51 solu-
tions in the case of TT decreased to 1 × 10− 6; see Table 1
(Exp_2.1; Exp_2.2)) had a minimal value of 1.5 ⋅ 10− 3,
which was significantly less than the minimal threshold.
Such a questionably small value for the objective function
generally indicates possible overfitting of the applied
model. However, in our case, the cause stems from the so-
lution of the inverse task without corrupting the “experi-
mental” data generated at the stage of direct simulation.
The same cause resulted in the negative evaluation of the
individual weighted residuals in Ξi according to the nor-
mality test, and the null hypothesis (concerning Ν(0, 1)
distribution of residuals) was rejected. The flux estimates
that corresponded to the solutions of the group with the
minimal Ξi that was reached were assigned as reference
sponding to all χ2 –statistically acceptable values of the
on the 1:1 line when plotted against the true flux. The fluxes estimated
n tolerance, TT, is equal to the default value of 10−4; (B) TT =10−6.
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fluxes, i.e., u(θref). Confirmation of flux identifiability was
obtained based on the empty null space for the Jacobian
matrix calculated at point θ = θref. As shown in Additional
file 3: Table SF-3.5, the obtained reference flux values are
extremely close to the true values used for data generation.
The next stage of the simulation was the generation of

“experimental data” that were closed to results that could
be obtained in real experiments. The values of the previ-
ously simulated MIDs and the measured effluxes were
corrupted with the Ν(0, σmea) normally distributed ran-
dom errors using the Statistics Toolbox of MATLAB. Five

(L = 5) obtained sets of data, xmea
i ¼ xi1; x

i
2;…; xiw

� �Τ
; i ¼ 1;

2;…; L were used for calculation of mean, and unbiased es-
timator of the variance, respectively:

μmea
j ¼ 1

L
⋅
XL
i¼1

xij; σ
mea
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L−1ð Þ ⋅
XL
i¼1

xij−μ
mea
j

� �2

vuut
ð2Þ

for each from wMID MIDs and weff effluxes, (w =wMID +
weff ), and to assign the SSRSLE

f objective function that fi-
nally determines the constrained NLLSP (S − 1.3.8). Sta-
tistically acceptable solution (corresponding to the value
9.65 of Ξ(θ) function (for the group of 27 from 100 per-
formed trials) that was smaller even the lower threshold,
χ20:025 30ð Þ ¼ 16:79
� �

) at the 95% confidence level, with
Ν(0, 1) distributed weighted residuals, was found using
OpenFLUX2 (Table 1 (Exp_3.6)).

Monte Carlo-based and non-linear approaches for
determination of flux confidence intervals
At the final stage of the 13C-MFA performed for the con-
sidered above constrained NLLSP, accurate 68% and 95%
confidence intervals (CIMC

0:68 and CIMC
0:95 , respectively) were

computed for the optimized fluxes initially by fine-tunable
and convergence-controlled Monte Carlo-based approach
implemented in OpenFLUX2 for this purpose (see
Additional file 1: SF-1.7. for details). According to [39],
Monte Carlo-mediated analysis of flux statistics was carried
out on the basis of a discrete approximation of optimized
flux estimation distributions obtained in L multi-trials
when the experimental data for each trial, comprising mea-
sured MIDs and effluxes, were artificially generated by
corrupting of real initial data with normally distributed
random errors. So, consecutive providing of L optimization
trials finally resulted in L-set of optimized flux estimations:

U
⌢
QL

� �
¼ uð⌢θ1Þ; uð⌢θ2Þ;…; uð⌢θjÞ;…; uð⌢θLÞ

� �
;

ð3Þ
where

⌢
QL ¼ ð⌢

θ1;
⌢
θ2;…;

⌢
θLÞ and uð⌢

θ jÞ ¼ ðu1ð⌢θ jÞ; u2ð⌢θ jÞ;
…; unð⌢θjÞÞΤ; j ¼ 1; 2;…; L . Finally, the upper and lower
bounds of the CIMC

γ confidence interval at a determined
confidence level of γ were evaluated for each flux on the
basis of these distributions according to “discarding” or
“mean-varianced” strategies (see Additional file 1: SF-1.7.,
for details, and Figure 4 for clarity). In OpenFLUX2, the
first group of the tunable parameters was implemented in
the Monte Carlo-based procedure which modifications
could increase/decrease the precision of global minimum
search during optimization process in each trial. It was ne-
cessary to tune these control parameters up to the levels
when their further modification does not significantly de-
crease the width of CIMC

γ uið Þ . Testing the several control
parameters of the first group resulted in a set of their de-
fault values provided the convergence of the CIMC

γ uið Þ
bounds. Evaluations of these parameters, partially, were
presented in the Additional file 2: Figure SF-2.4 as direct
visualization of the computed interval bounds in depend-
ence on provided trials at the different values of control
parameters.
Usually, the Monte Carlo search of CIMC

γ uið Þ bounds

is based on an assumption that their estimated values
have to converge in case of significant increasing of the
total number of trials. So, the number of trials, L, is one
of the most important parameters of Monte Carlo-based
procedure, and it has to be optimally chosen (L = LMAX)
for CIMC

γ uið Þ precise determination in a reasonable com-

putation time. The special procedure was implemented
in OpenFLUX2 for a control of an essential number of
optimization trials that was performed during target flux
CIMC

γ uið Þ bound estimation. This control finalizing in

determination of all CIMC
γ uið Þ , could be realized ON-

LINE, with a help of specially preset control parameters
(the second group of parameters implemented for fine
tuning of the Monte Carlo-based search procedure), or
according to direct user’s decision based on visualization
of estimated bound plots in dependence on the current L,
and flux estimation histograms that could be presented
after the predetermined LMAX trials were performed.
The developed Monte Carlo-based approach was used

for determination of CIMC
γ uið Þ for the solution of the

constrained NLLSP described above (Table 1 (Exp_3.6)).
The optimized flux parameter distributions were ob-
tained for LMAX = 500 trials using the default set of tun-
able control parameters that facilitate search of global
minimum in each trial of the applied “multi runs per
trial” fitting strategy (NAS =3, KNR =50, ΤΤ ¼ 1� 10−4;
ε ¼ 1� 10−4 , see Additional file 1: SF-1.7., for details).
Then, for all 51 fluxes of assumed metabolic network
the sliding control was performed for upper and lower
bounds of CIMC

γ uið Þ evaluated initially according to

“discarding” strategy (i.e., bounds of CIMC−1
γ uið Þ , see

definition in Additional file 1: SF-1.7.) with the “win-
dow” size equaled to 40 trials. As could be seen from



Figure 4 Determination of flux confidence intervals at a confidence level of γ using the Monte Carlo approach based on multiple
parameter estimations. For each of LMAX = 500 trials (simulations), all MIDs and measured efflux values were corrupted by random noise with a
given standard deviations, and fluxes were estimated via least-squares optimization. Then, the estimations of each flux obtained in LMAX trials were
sorted in ascending order followed by performing of “discarding” or “mean-varianced” strategies for determination of flux confidence intervals at
the confidence level of γ, CIMC−1γ or CIMC−2γ , respectively, (see Additional file 1: SF-1.7.). The computation of the 68% and 95% confidence interval

bounds for the
⌢
θ8 and

⌢
θ22 fluxes provided by both Monte Carlo-based strategies are presented as examples of estimates that are distributed rather

symmetrically or non-symmetrically, respectively, around the optimized values of fluxes (indicated by the cursor).
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Additional file 3: Table SF-3.6, and Figure 5 (the later
presented the convergence process of confidence bounds

of the CIMC−1
0:95 θ22ð Þ interval, as example), the δMC−1

L=Uð ÞB
(defined by Eq. (S − 1.7.7)) relative spreadings for the

both upper and lower bounds of CIMC−1
0:95 uið Þ for 42

from 51 fluxes were dispersed between 0.1 and 1.0% in
Figure 5 Visualization of the θ22 flux confidence interval bounds conv
absolute spread of an upper confidence interval bound evaluated accordin
predetermined threshold.
the last “window”, that could be considered as rather
rigorous conditions of convergence. Moreover, if a

value of δMC−1
L=Uð ÞB γ; i;

⌢
QL;M

� �
had been equaled to 1.0%

as the predetermined threshold, this level of conver-
gence was achieved for more than 70% fluxes after
already 20 – 50 optimization trials performed. The
ergence. Achieved as could be seen in the “window” due to an
g to “discarding” Monte Carlo-based strategy is smaller than the



Figure 6 Illustration of the θ22 flux confidence bound convergence
process in dependence on the number of performed trials
computed according to “discarding” (A) and “mean-varianced” (B)
strategies of Monte Carlo-based approach. (C) – distribution of the
⌢
θ22 flux estimations presented in accord to their appearance in i-th trial.
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residual 30% of determined bounds converged after
400–420 trials according to these rigorous conditions.
Eight residual fluxes (θ10;θ12;v13; θ14; θ22;v23; v29 and v36)
demonstrated the convergence at the relax conditions
for upper and/or lower bounds, when δMC−1

L=Uð ÞB≤10% at

the level of confidence γ = 0.95, and this criterion was
satisfied when 200 – 440 trials were performed. Five
fluxes (θ10; θ14; θ31; v29 and v36) had the specific feature:
the values of lower bounds of their CIMC−1

0:95 uið Þ were
closed to zero. So, these bounds, manifesting the obvi-
ous convergence, had to be restricted at the level of ab-
solute (not relative) value of spreading (defined in Eq.
(S − 1.7.6)), e.g., ΔMC−1

LB γð Þ≤2. In any case, all bounds of
CIMC−1

γ uið Þ could be obviously determined after the

Monte Carlo-based optimized flux estimation had been
obtained after LMAX =500 performed trials in case of
“discarding” strategy was used. In case of “mean-varianced”
strategy was applied, the main part of CIMC−2

0:95 uið Þ (see def-
inition in Additional file 1: SF-1.7.) bounds (for 41 of 51
fluxes) converged earlier than LMAX trials were per-
formed under the rigorous convergence conditions, bounds
for six additional fluxes demonstrated the convergence
under relaxed conditions, and the corresponding bounds
of CIMC−2

0:95 uið Þ were rather closed to the earlier determined
bounds CIMC−1

0:95 uið Þ. At the same time, the upper bounds
for four residual fluxes ( v9; θ10; θ22; and v23) did not
finalize the convergence process after 500 performed
trials (Figure 6B): their minimal upper bound values of
CIMC−2

0:95 uið Þ were gradually decreased in dependence on
increased L at the late stage of computation, nevertheless,
they remained significantly higher than the corresponding
upper bounds of CIMC−1

0:95 uið Þ (Figure 6A). As could be
seen from the (Figure 6C), the reason of this rather slow-
speed convergence of several flux bounds was appearance
of a small quantity of flux estimations significantly exceeded
the ordinary values: “mean-varianced” strategy could not
discard these outstanding values and had to accumulate a
lot of usual estimations for significant decreasing the to-
tally calculated “mean”.
Summing up, it could be concluded that obtaining a

proper approximation of the optimized flux parameters
was the most important part of the Monte Carlo based
search of CIMC

γ uið Þ : even rather small quantity of signifi-

cantly differed “outstanding” values in the flux estimations
distribution that were obtained when the global minimum
was not achieved in the fitting procedure, could signifi-
cantly increase the width of the evaluated CIMC

γ uið Þ. In the

tested cases, the convergence of CIMC
γ uið Þ bounds was

achieved faster (at the smaller number of the performed
trials) if the “discarding”, but not “mean-varianced” strategy
of the bound determination was used. So, the “discarding”
strategy manifested significantly higher resistance for these
occasional “outstanding” estimations. Moreover, this strat-
egy was preferable to demonstrate the asymmetric charac-
ter of optimized flux estimation distribution resulting in
the asymmetric locations of the upper and lower bounds
presented simultaneously for CIMC−1

0:95 uið Þ, and CIMC−1
0:68 uið Þ,

in comparison with symmetric locations of their bounds
obtained in case of “mean-varianced” strategy was used
(Figure 4).
The later feature of the CIMC−1

γ uið Þ bounds corresponded
well with the parameters of CIn−linγ uið Þ independently ob-

tained by non-linear search developed by Antoniewicz et al.
in [28] and implemented in OpenFLUX (see Additional
file 1: SF-1.6. for details). All obtained data were presented
in the Additional file 3: Table SF-3.6. As could be seen, the
most part of CIn−linγ uið Þ parameters coincided rather well

with Monte Carlo-based results, especially with CIMC−1
γ uið Þ

bounds (this was true from 39 of 51 fluxes). Nevertheless,
in several cases evaluations of the CIγ(ui) bounds given
by Monte Carlo and non-linear approaches differed, and
some times significantly (e.g., UBMC−1

0:95 ≤UBn−lin
0:95 and, on

the contrary, UBMC−1
0:68 ≥UBn−lin

0:68 for the θ14, and θ22 fluxes;
both determined upper bound values for the θ31 -flux confi-

dence interval, UBn−lin
0:95 and UBn−lin

0:68 , was lower in case on
non-linear computing). Absolutely statistically incorrect re-
sult was obtained for 9 fluxes (e.g., θ32, θ33, v2, v5 and etc.):

estimated upper bound of CIn−lin0:68 uið Þ had higher values

than their upper bound of CIn−lin0:95 uið Þ . It seems that
these “mistakes” appeared as a result of low accuracy of
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numerous calculations performed according to non-
linear search-based algorithm in the used software. It
finally resulted in termination of computation even
when necessary optimality conditions were not satisfied
and the real global minimum was not reached in the
optimization procedure. The proposed modifications
targeted to improvement of the calculation efficiency
are at the final stages of testing and implementation in
new release of OpenFLUX2 software (see, Additional file 1:
SF-1.6., for details). Up today, the current version of
OpenFLUX2 contains the initial variant of non-linear algo-
rithm of flux confidence intervals search. Keeping in mind
incorrect results that could be computed now for CIn−linγ of

some fluxes, that are very difficult to recognize without in-
formation for comparison, but, on the other hand, very
high speed of all flux CIn−linγ uið Þ computation (about one

hour for estimation flux statistics for SLE using computers
described in Methods), it could be highly recommended to
use the current algorithm of CIn−linγ uið Þ non-linear search

mainly for quick preliminary evaluation. The accurate deter-
mination of CIγ(ui) could be performed, e.g. as CIMC−1

γ uið Þ,
according to the fine-tunable Monte Carlo based ap-
proach with automatic and/or visual control of all bounds
convergence.

Normalized flux precision function as a measure of flux
resolution efficiency
To compare the achieved efficiency of the ui flux resolution,
it is convenient to use the normalized flux precision
function (see, Additional file 1: SF-1.6.) with β as the
scaling parameter:

ηMC−1
γ ui

⌢
θ

� �
; β

� �

¼

1−
CIMC−1

γ uið Þ
ui

⌢
θ

� �
þ β⋅maxVmea

eff

⋅;

when CIMC−1
γ uið Þ≤ui ⌢

θ
� �

þ β⋅maxVmea
eff

0; when CIMC−1
γ uið Þ > ui

⌢
θ

� �
þ β⋅maxVmea

eff

8>>>>>>><
>>>>>>>:

ð4Þ

Generally, in this function, ui
⌢
θ

� �
is the best available

estimation of the unknown true value that can be com-
puted from the SLE- or PLE-based 13C-MFA. In the case
of computer simulations, the “true” flux parameters are

known: namely ui
⌢
θ

� �
¼ uið Þtrue were used for the calcu-

lation of ηγ(ui; β) values in the present study. In turn, the
superscript employed for the ηγ(ui; β) and CIγ(ui) func-
tions, e.g., n-lin and MC − 1, respectively, indicates the
method of estimation of the flux confidence interval. So
long as the Monte Carlo-based approach with applica-
tion of “discarding” strategy was used in all examples of
the present study as the main method for flux confi-
dence interval determination, we would not specially in-
dicate below the way of determination of flux confidence
intervals using the superscript “MC-1”. The variable scal-
ing parameter β was set to 0.1 in the present study, and
the dependence of the ηγ(ui) function on β as the param-
eter is not directly indicated in the corresponding equa-
tions below for brevity. According to its definition, the
ηγ(ui) function at each fixed β parameter is close to “1”
for precisely estimated ui fluxes (with narrow confidence
intervals) and is close to “0” for a poorly determined ui.
The computed values of ηγ(ui) for the obtained solution of

the NLLSP were flux specific and varied from zero to almost

unity, with a sum of Ση 0:95ð Þ ¼
Xn
i¼1

η0:95 uið Þ ¼ 38:3 (see

Additional file 3: Table SF-3.6 for details). The flux spe-
cificity of the ηγ(ui) function for the determined me-
tabolic model was subsequently shown to be primarily
dependent on the applied labeled tracer (see Figures 7
and 8). Indeed, the high resolution of one set of fluxes
(e.g., v3: GLC6P →FR F6P; θ4: F6P →R GLC6P; v25:
3PG→F SER; θ26: SER→

F GLY +MTHF, with values of
η0:95 uið Þ∈ 0:65; 0:96½ � ) and the low resolution of another
set of fluxes (e.g., θ22: PYR + CO2→F OAA; v23: OAA →F

PYR +CO2; θ31: CO2_EX →R CO2, with η0.95(ui) = 0) are
rather typical for experiments using [1-13C]-glucose as the
labeled tracer (Figure 7 (A), Figure 8: Column 1). The fol-
lowing indication of the η -function emphasizes the type
of tracer used and the SLE- or PLE-based character of the

provided 13C-MFA: η0:95 ui; 1−13C½ �SLE
� �

.
Concerning the tracer-specific values of ηγ(ui), it was in-

teresting to estimate the sensitivity of this function, which
is dependent on flux variances, in the case of five simu-
lated SLEs with the same tracer. The corresponding calcu-
lations were provided for 5 independent SLE with earlier
simulated MIDs and the measured effluxes with the
Ν 0; σmeað Þ normally distributed random errors (Additional
file 3: Table SF-3.6 (Exp.3.1-Exp.3.5)). These data are sum-
marized in Additional file 2: Figure SF-2.5. The calculated
mean-doubled measured specific variances did not exceed
0.02 for nearly all fluxes, and they therefore practically did
not change the tracer-specific profile of the η -function.
The summarized values of the η -function for all fluxes,
(Ση(0.95)([1 −

13C]SLE))k, which were calculated for each flux
from k = 1, 2,…, 5 SLEs, varied in a rather narrow range
(between 37.9 and 38.5). Considering the total number
of fluxes (equal to 51) for the assumed metabolic model
and the detected measurement-dependent sensitivity of
the η -function, if the difference between the Ση(0.95)

values is no greater than 1, then the LEs can be consid-
ered to be provided with an essentially equivalent flux



Figure 7 (See legend on next page.)
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(See figure on previous page.)
Figure 7 The values of the normalized flux precision function in the different parts of the assumed metabolic network depend
significantly on the applied tracer(s). The results of flux estimation: (A) SLE using 100% [1-13C]-glucose as the tracer; and from PLEs consisting
of: (B) 5 LEs using different mixtures of [U-13C]/[U-12C]-glucose in each LE, with 20%, 35%, 50%, 65%, or 80% [U-13C]-glucose; (C) 5 LEs using
partially optimized mixtures of [1-13C]/[U-12C]/[U-13C] glucose for the separate minimization of the approximated variances of the
θ10, θ12, θ14, θ22, θ31 free fluxes in each LE; (D) 3 LEs using 100% [1-13C]-, [3-13C]-, or [4-13C]-glucose as a tracer; (E) 6 LEs, where 3 of the LEs
used in (D) corresponded to partial optimization for θ4andθ12, θ14, θ22andθ31, respectively, and 3 other LEs used the partially optimized
mixture of [1-13C]/[3-13C]/[4-13C]-glucose to minimize the approximated variances of the θ8, θ10, θ26 free fluxes. The values of the normalized
flux precision function for all fluxes are indicated by the color-scored grade.
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precision. Certainly, the value of Ση(0.95) could be con-
sidered only as a general, conditional measure of flux
resolutions in the investigated network: some metabolic
branches could be resolved better, and other branches –
worse in different experiments with, perhaps, equal
values of summing normalized flux precision functions.
So, only the value of the ηγ(ui) -function could be con-
sidered as the absolute measure of the ui-flux resolution
efficiency that could be compared with other LEs per-
formed with the same metabolic model.

The necessity of a comprehensive statistical analysis of the
NLLSP solution
In the present study, the results of the 13C-MFA included
the set of estimated fluxes, the goodness-of-fit of the
model’s adequacy, and the confidence intervals of fluxes,
in accord with the recently recommended publishing
guidelines [70]. As shown in Additional file 1: SF-1.4., the
comprehensive goodness-of-fit analysis had to consist of
the χ2 -mediated testing of the Ξ(θ) objective function at

the point of convergence,
⌢
θ, and confirmation that the indi-

vidual weighted residuals used as the summands of this
function were Ν 0; 1ð Þ distributed. The solution of the con-
strained NLLSP was considered statistically acceptable only
if all of the tests were successfully passed.
In this report, an example is presented in which the

mistaken flux parameters could be assumed when the
statistical analysis of the obtained solution was partially
provided but to an insufficient extent. Let us analyze the
first from five earlier described in silico experiments with
99% [1-13C]-glucose as a tracer (see Table 1 (Exp_3.1)).
The “contribution matrix” (see Additional file 1: SF-1.5),
CM; dim CMð Þ ¼ n� wð Þ , was computed at the true
point, u(θtrue), as an important component of the flux
statistics (Additional file 3: Table SF-3.12). It is known
[28] that the (CM)ij elements of this matrix indicate the
relative importance of the variance of the j-th measure-
ment to the local variance of the i-th flux. As can be ob-
served in Additional file 3: Table SF-3.12, the variances
of the “serine” MIDs demonstrated the high importance
of the flux resolution among MS measurements; all
matrix columns corresponding to the SER mass isotopo-
mers showed rather high sums of their elements. The
variances of these “serine” (“SER”) MIDs significantly in-
fluenced the resolution of several fluxes (θ8; θ22; v23; θ31)
for the following reactions: GLC6P →F P5P + CO2; PYR +
CO2 →F OAA; OAA →F PYR + CO2; and CO2_EX →R

CO2, respectively. The new set of “experimental data” was
generated in the following fashion: the measured effluxes
and all MIDs, except for “SER” MIDs, were considered as
in the previously analyzed example. The “SER” MIDs were
modified as in the case of “poor” resolution of the SER-
390 (m + 0) MID, which exhibited an unknown by-
product that increased the value of the corresponding SER
peak to +4.5%. Due to the necessity of normalizing all
SER-isotopomers, the applied modification resulted in a
proportional decrease in the other SER MID portions;
therefore, the SER-390 MIDs were modified from (m+ 0)/
(m + 1)/(m + 2)/(m + 3) = 0.443/0.357/0.140/0.042 (in the
previously described example) to a ratio of 0.463/0.344/
0.135/0.040.
This “mistakenly” modified set of “experimental data”

was used to generate the newly constrained NLLSP. A
unique solution, corresponding to the minimal values of
the Ξ =Ξ(θ) objective function with the empty null space of
the Jf(θ) matrix evaluated at the new point of convergence,

θ ¼ ⌢
θnew , was found. Moreover, the value of Ξð⌢θnewÞ was

in the χ2 -statistically acceptable interval (see Table 1
(Exp_4.1)). Simultaneously, the parameters obtained for
several fluxes did not coincide with the true flux values
even in the range of their confidence intervals. Among
them there were fluxes θ8 and θ31 (Figure 9 (I - B)) which
exhibited variances that were essentially determined by SER
MID measurements. The fact that the obtained flux param-
eters were incorrect could be established only at the stage
of normality distribution testing of the weighted residuals;
three variance-weighted residuals corresponding to “SER-
390” MIDs and one corresponding to “alanine (ALA)-260”
were shown to be located outside of the 95% confidence
interval (Figure 9 (II-B)). According to the general recom-
mendation presented in SF-1.4, improvement of the solu-
tion statistics could be achieved due to the excision of the
“prominent” residuals from the expression for the objective
function followed by the repeated solution of the con-
strained NLLSP with the partially truncated Ξ function.
Two alternative NLLSPs were generated where ALA or SER



Figure 8 Normalized flux precision functions for all fluxes are presented in the form of color-scored squared diagrams for the different
tracers used for simulations. The columns correspond to the following labeling experiments: 1, 2, …., 6 − SLEs with 100% [i-13C]-glucose as a
tracer, where i = 1, 2, …, 6, respectively; 7 − an SLE with a generally optimized (minimum D-value) mixture of [U-13C]65%/[U-12C]35%-glucose; 8 − a
PLE consisting of 5 LEs with different mixtures of [U-13C]/[U-12C]-glucose in each LE, where the fraction of [U-13C]-glucose was 20%, 35%, 50%,
65%, or 80%; 9 − a PLE consisting of 5 LEs with partially optimized mixtures of [1-13C]/[U-13C]/[U-12C] glucose for separate minimization of the
approximated variances of the θ10, θ12, θ14, θ22, θ31 free fluxes in each LE; 10 − a PLE composed of 3 LEs using 100% [1-13C]-, [3-13C]-, or [4-13C]-glucose
as the tracer; 11 − a PLE consisting of 6 LEs, where all singly labeled isotopomers of glucose, as in 1 – 6, were used as tracers; 12 − a PLE
composed of 6 LEs, including 3 of the LEs used in 10, corresponding to partial optimization for θ4 and θ12, θ14, θ22andθ31, and 3 other LEs
using the partially optimized mixture of [1-13C]/[3-13C]/[4-13C]-glucose to minimize the approximated variances of the θ8, θ10, θ26 free fluxes.
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MIDs were excluded from the “experimental data” set. Pa-
rameters obtained after solution of the NLLSP with ignored
“ALA-260” MIDs did not coincide with the true flux values
in the range of their confidence intervals (Figure 9 (I-C)).
Moreover several variance-weighted residuals still located
outside of the 95% confidence interval including that of



Figure 9 (I) – Determination of optimized parameters and confidence intervals for the θ8, θ31 fluxes from (A) “properly” corrupted and (B)
“mistakenly” corrupted values of SER MIDs, and after the “elimination” of residuals corresponding to ALA MIDs (C) or SER MIDs (D) from the
expression for the objective function. (II) – Stem plots of the variance-weighted individual residuals at the point of convergence. The individual
residual values are represented by the leaves of the stem plots sorted in accordance with their enumeration provided by the model. Additional red
horizontal lines represent the 0.95-quantile values of the standard normal distribution Ν(0, 1). The efflux values, estimated from an SLE, are usually rather
close to the measured values; the last seven points, indicating the residuals corresponding to the efflux measurements, are close to zero. In the case of the
PLE in which efflux measurements were generated independently for each SLE making up the PLE, this tendency was not observed.
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“SER-390” (Figure 7 (II-C)). In contrast, the proper statisti-
cally acceptable solution was obtained for NLLSP with
ignored “SER-390” MIDs, which coincided with true fluxes
in the range of the determined flux confidence intervals
(Figure 9 (I-D) and (II-D)). Thus, “incorrect flux parameters”
could be assumed if test for normality of variance-weighted
individual residual distribution is ignored. Certainly, higher
negative influence on the proper flux estimation could be
assumed if χ2 -statistically unacceptable solution is obtained.
Analysis of variance-weighted residuals plot followed by step
by step exclusion substances with prominent residuals, as
described in the example, could help to identify “incorrect
measurements” and, perhaps, to obtain statistically accept-
able solution with correctly estimated parameters.
It is obvious that measured MIDs and effluxes’ param-

eters are completely separate categories of experimental
data that could not be trivially compared. It is well
established [3] that labeling experiments are performed
to resolve internal fluxes, even parallel and cycle path-
ways, and reversible reactions, which cannot be resolved
on the basis of measured effluxes. Nevertheless, the vari-
ances of the measured effluxes could provide the most
significant influence on the resolution of some fluxes, as
could be seen from the values of the corresponding
(CM)ij elements in the Additional file 3: Table SF-3.12.
Thus, generally, it is desirable to execute the efflux mea-
surements with the highest possible accuracy to decrease
the variances and totally improve the flux resolution.
One of the interesting step in this direction has been
done recently when the authors tried to increase the
measurement accuracy for an efflux corresponding to
quantifying biomass composition due to exploiting of the
high-precision GC-MS technique [71]. Unfortunately, in
many cases, the efflux measurements as the stage of label-
ing experiment have received much less attention than the
more glamorous stages of the subsequent highly-precised
MS-based measurements.

Simulations of LEs with [U-13C]-glucose as a tracer
A uniformly 13C-labeled isotopomer of glucose, [U-13C]-
glucose, is often used as a tracer in 13C-MFA. In the
present study, new sets of “experimental data” were
generated for the same metabolic model when different
relative amounts of [U-13C]-glucose (20%, 35%, 50%,
65%, and 80%) mixed with non-labeled ([U-12C]) glucose
were used as the sole carbon source (Additional file 3:
Table SF-3.8).
Statistically acceptable solutions were obtained for

constrained NLLSPs for five independent SLEs and for a
PLE using all of the generated “experimental data” for



Shupletsov et al. Microbial Cell Factories 2014, 13:152 Page 17 of 25
http://www.microbialcellfactories.com/content/13/1/152
fitting to the single metabolic model (see Table 1 (Exp_5.1-
Exp_5.5; PLE_1) and Additional file 3: Table SF-3.8).
As shown by the presented data, the SLE-based 13C-MFA
resulted in values between 35.4 and 40.4 for the
Ση(0.95)([U − 13/12C]SLE) function (Additional file 3: Table
SF-3.8). Again, a set of tracer-specific fluxes that
possessed rather high values of the η -function could be
detected (at least more than in the case of exploiting
[1-13C]-glucose as a tracer), e.g., θ22: PYR + CO2 →F

OAA; v23: OAA →F PYR + CO2; θ31: CO2_EX →R CO2.
The PLE-based 13C-MFA of experiments using [U-13/12C]-
glucose as the carbon source actually improved the
resolution of all fluxes estimated in the corresponding
SLEs, Ση(0.95)([U − 13/12C]PLE) = 42.4. Moreover, the tracer-
specific behavior described in relation to SLEs was
reproduced in the PLE. The colored scheme presented in
Figure 7 and the diagram in Figure 8 correspond to the cal-
culated values of the η -function for all fluxes obtained in
different experiments, illustrating this fact and demonstrating
that optimization of the experimental design is necessary to
increase the precision of the targeted fluxes [19,49,54,62].

Optimal design for LEs using mixtures of [U-13C]-, [1-13C]-,
and [U-12C]-glucose isotopomers
To achieve the best flux resolution in an LE employing a
mixture [U-13C]-, [1-13C]-, and [U-12C]-glucose isotopo-
mers as the carbon source, optimization of the experimen-
tal design could be performed according to the method
proposed by Möllney et al. [19]. In their study, the com-
parison of different designs was based on an evaluation of
D-factor values [72], i.e., the squared volumes of the flux
confidence ellipsoids for a given confidence level. Accord-
ing to [19] and using the notations introduced in the
present study, the squared volume of the p-dimensional
confidence ellipsoid for free fluxes, which was evaluated at

the point of convergence, θ ¼ ⌢
θ , could be obtained (up to

a constant that does not depend on designed parameters)
using the following expression:

Dðminput;mmea; σmea;
⌢
θÞ ¼ detΣ⌢

θðminput;mmea; σmea;
⌢
θÞ

¼ det½HSSRð⌢θÞ�−1
ð5Þ

where Σ⌢
θ
is a covariance matrix of the free fluxes estimated

according to linearized statistics (see Additional file 1:
SF-1.5.) and to the approximation of this matrix by the in-
verse Hessian matrix presented in Eq. (A2 − 10) Additional
file 1: SF-1 Appendix 2. Specifically, the last equality from
Eq. (5) was used for computation of the D-factor. Accord-
ing to a previous suggestion [19], the use of the value of
the

ffiffiffiffi
D2p

p
parameter, which can be interpreted as an aver-

age length of the confidence interval of estimated fluxes,
is more suitable. As noted previously, the confidence
ellipsoid volume estimation provided by Eq. (5) holds
true within some vicinity of the predefined point θ ¼ ⌢

θ
and can change due to a shift in that point [19]. Be-
cause the true values of the free fluxes were known for
our artificial metabolic model, the optimization of the
experimental design, which was dependent on the tested
13C-labeled tracers, was significantly simplified and was
based on the computation of the determinant of the in-
verse Hessian matrix evaluated at the point θ = θtrue. In
practice, when the true flux values are not known a priori,
they are assumed, for example, from data in the literature,
FBA or even from 13C-MFA performed on the basis of a
rather inexpensive label [37,63]. In some cases, a second
round of experimental design optimization is necessary if
the proposed flux distribution is far from the feasible point
of convergence obtained in a planned labeling experiment
[73,74]. In the present study, all of the new experimental
designs were compared with the reference design (SLE
with 99% [1-13C]-glucose as the tracer) using the value
of the

ffiffiffiffi
D2p

p
parameter. In addition to the “general

optimization” achieved due to the minimization of the
relative value of the average confidence interval length:

�Dopt minput;mmea; σmea; θtrue
� �

¼ min
minput−feasible

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dnew minput ;mmea; σmea; θtrueð Þ
Dref mref ;mmea; σmea; θtrueð Þ

2p

s

ð6Þ
“partial optimization” could be obtained as a result of
minimization of the standard deviation of the targeted θi
free flux, which, in turn, was approximated as the square
root of the corresponding diagonal element of the Σ ⌢

θ

matrix:

min
minput−feasible

σθtrue
lin

� �
i ¼ min

minput−feasible

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HSSR θtrueð Þ½ �−1� �

ii

q
ð7Þ

The results of the corresponding computations per-
formed using the special subprograms implemented in
OpenFLUX2 software are presented in Additional file 2:
Figure SF-2.6. According to the provided calculations,
“general optimization” required the use of a mixture of
[1 − 13C]78%/[U − 13C]22% glucose isotopomers in the SLE
(Additional file 2: Figure SF-2.6 (A)). Interestingly, these
D-factor-mediated optimized tracer compositions were
extremely close to the [1 − 13C]80%/[U − 13C]20% -labeled
mixture of glucose that has been used without any cal-
culations to achieve a rather high flux resolution in
other experimental systems (e.g., Escherichia coli-based
systems [48], in particular). In contrast, the same D-criterion-
based approach resulted in another optimal mixture of the
same glucose isotopomers ([1 − 13C]48 %/[U − 13C]40 %/
[U − 12C]12 %) when some modifications differed in the
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metabolic model of the L-lysine-producing C. glutami-
cum strain applied in the present study, and plans were
made to obtain another set of measurements [19].
According to the provided computations, “partial

optimization,” i.e., the optimal resolution of different tar-
geted free fluxes, had to be achieved in the SLEs with the
distinguished mixtures of the same glucose isotopomers
(e.g., see Additional file 2: Figure SF-2.6 (B - F)). Several of
the proposed optimal designs (e.g., see Figure 10 (I))
were realized using computer simulations, and the set
of experimental data was generated, followed by a
search of the solution for the corresponding con-
strained NLLSP. One of the simulated SLEs was per-
formed using the “generally optimized” mixed tracers,
five others employed the “partially optimized” mixtures,
Figure 10 Experimental design studies for the identification of mixtu
optimization or for the best resolution (“partial” optimization) of θ31,
through 13C-MFA of the simulated SLEs (A – F) or PLEs (G) with the m
for θ12); B − SLE, 10/44/46, %% (partially optimized for θ22); C − SLE
%% (partially optimized for θ14); E − SLE, 89/0/11, %% (partially op
G − PLE consisting of five LEs using the same tracers as in A – E fo
flux precision function values for the confidence level of γ = 0.95 c
(II) indicate flux estimation resulted from 13C-MFA of SLE optimized for
studies computed by OpenFLUX2 were visualized in the form of a tern
(Originlab Corp., Northampton, MA, USA) software.
and five experiments were performed with the randomly
chosen mixture of [1 − 13C], [U− 13C] and [U− 12C] glucose
isotopomers (“randomly mixed”) as the tracers. As shown in
the presented results (Additional file 3: Table SF-3.9), the
SLE with “generally optimized” conditions resulted in
Ση(0.95)([1 −

13C]78 %[U − 13C]22 %SLE ) = 38.4, with “partially
optimized” conditions – Ση 0:95ð Þ ParOptSLEð Þ∈ 36:0; 38:7½ �,
and with “randomly mixed” tracers – Ση 0:95ð Þ RanMixSLEð Þ∈
35:2; 39:1½ �. It has to be especially noted, that SLEs with
the higher calculated values than Ση(0.95) = 38.4 was
detected here, and among described earlier (see, final
Additional file 3: Table SF-3.11), and so “general” and/or
“partial” optimizations does not result in maximization
of the sum of normalized precision functions for all
fluxes, Ση(0.95). Simultaneously, the free fluxes, θi, that
res of [1-13C]/[U-12C]/[U-13C]-glucose isotopomers for “general”
θ14, θ22 fluxes (I), results of these flux estimations (II) obtained
entioned mixed tracers: A − SLE, 0/50/50, %% (partially optimized
, 13/0/87, %% (partially optimized for θ31); D − SLE, 66/0/34,
timized for θ10); F −78/0/22, %% (generally optimized);
r each experiment (red 68% CI boxes); (III) the normalized
omputed for these (A – G) experiments. Green 68% CI boxes in
best resolution of this flux. The results of the experimental design
ary plot generated by commercially available OriginPro 9.1
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were used as the targets for the partial optimization gener-
ally showed the best resolutions (i.e., the narrowest confi-
dence intervals, CI0.95(θi), (Figure 10 (II)) and the highest
values of the η0.95(θi) function (Figure 10 (III)) among all
of the estimations obtained for different SLEs that could
be provided using all possible combinations of the tested
tracers. The detected exceptions (see Figure 10(II) (D))
could most likely be explained by the simplified linearized
statistics used for design optimization; however, a Monte
Carlo-based approach was later performed to calculate the
non-symmetrical flux confidence intervals.
It was interesting to see the possible effect of “general”

and “partial” optimizations when the corresponding set of
independently analyzed SLEs was considered as LEs in a
PLE, followed by rigorous fitting of all of the simulated
“experimental” data to the single metabolic model. The set
of PLE-based experiments consisted of 5 earlier analyzed
SLEs consisted of “generally” and “partially” optimized, as
well as “randomly mixed” tracers were analyzed. As could
be expected, the PLE consisted of “generally” and/or “par-
tially” optimized LEs were among experiments with the
most precisely resolved fluxes (with the maximal values of
Ση(0.95)). On the other hand, the real difference between
summarized values of the η -function for all fluxes deter-
mined for these PLEs was very small (between 42.7 and
44.2 see, Additional file 3: Table SF-3.9) and all of these
values significantly exceeded the corresponding sum esti-
mated for any SLEs among used in this comparison. So,
the positive effect of PLE-based experiment provided with
many LEs substantively differed in the used tracers was so
significant, that further improvement of flux resolution due
to additional optimization of experimental design could
have rather marginal positive sense.

13C-MFA for SLEs/PLEs with singly 13C-labeled-glucose tracers
It has been repeatedly shown [19,59,72] that significantly
improved resolutions of fluxes from different parts of a
metabolic network can be achieved using commercially
available or specially synthesized singly or multiply 13C-
labeled glucose isotopomers other than the previously
applied and cheapest [1-13C] and [U-13C] variants.
Moreover, the COMPLETE-MFA approach, using all
singly labeled glucose tracers ([i-13C]-glucose, where i = 1,
2,…, 6) in the individual LEs of the PLE, was recently de-
veloped to evaluate metabolic fluxes for the metabolic
model of wild-type Escherichia coli with a high precision
[58]. Additionally, the PLE included two LEs with only
[2-13C]-glucose, and separate [3-13C]-glucose in the
medium provided the most precise fluxes for the E. coli
model among all possible paired combinations of singly
labeled glucose added as the sole tracer.
It was of interest to evaluate the advantages of this ap-

proach in the case of another metabolic model used in the
present study. Initially, the possible exploitation of all six
singly labeled 13C-glucose isotopomers, which were separ-
ately added to the medium as tracers for SLEs and PLEs,
was investigated. The solutions of the corresponding con-
strained NLLSPs are summarized in Additional file 3:
Table SF-3.10 and Figure 8: Columns 1 – 6. The following
conclusions were drawn from these data. Initially, the
values of the normalized flux precision function varied sig-
nificantly for individual fluxes in a tracer-dependent man-
ner, and it was not the best singly labeled glucose tracer
for the estimation of all fluxes in the assumed metabolic
model. Indeed, according to the formally computed value
of the D-factor (see (S − 1.5.14)) for the six singly labeled
tracers, the volume of the confidence ellipsoid for free
fluxes had to be increased in the following order for the
applied tracers:

D 3−13C½ � < D 1−13C½ � < D 2−13C½ � < D 4−13C½ � < D 6−13C½ � < D 5−13C½ �

ð8Þ
i.e., the minimal volume of the confidence ellipsoid for
free fluxes could be obtained using [3-13C]-glucose as a
singly labeled glucose tracer. Simultaneously, a different
order of the tracers could be formed by increasing the
summarized values of the normalized flux precision
functions, Ση(0.95)([i −

13C]SLE) ≡ Ση(i), i = 1, 2,…, 6:

39:4 ¼ Ση 4ð Þ > Ση 3ð Þ > Ση 1ð Þ > Ση 6ð Þ > Ση 2ð Þ > Ση 5ð Þ
¼ 36:6

ð9Þ
i.e., [4-13C]-glucose was the best tracer according to this
Ση -based criterion; namely, [4-13C]-glucose was the best
tracer for determining 13 fluxes, and the corresponding
values of the η -function for this tracer for 28 other
fluxes were among the maximal values in the range of no
more than 0.02, which is a typical value for measurement-
specific errors. Notably, the applicability of [4-13C]-glucose
as the tracer for the efficient resolution of primary branch
points and reversibilities was previously demonstrated for a
similar C. glutamicum metabolic model [49].
The flux resolution obtained in each of the six inde-

pendent LEs could clearly be improved via PLE-based
flux analysis if two or more LEs were combined in the
PLE. The corresponding calculations for the possible
pair combinations are provided (see Additional file 3:
Table SF-3.10), which resulted in the conclusion that
the combination of [2-13C]-glucose and [1-13C]-glucose
provided the most precise fluxes. In contrast, the use of
[2-13C]-glucose and [5-13C]-glucose as the tracers in two
independent LEs provided the least precise fluxes:

Ση 0:95ð Þ i;jð ÞPLE∈ 39:0 i¼2
j¼5

� �
PLE

; 43:6 i¼1
j¼2

� �
PLE

h i
ð10Þ

The results concerning the flux resolution obtained in
experiments using singly labeled tracers demonstrated the
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model specificity of the experimental design optimization.
Indeed, [4-13C]-glucose was one of the best tracers for the
resolution of a large portion of the fluxes for the assumed
C. glutamicum model and was one of the worst tracers for
determining precise fluxes in the E. coli model [58]. Fur-

thermore, the best detected pair combination i¼1
j¼2

� �
PLE

for

the resolution of fluxes in the model applied in the present

study differed from the i¼2
j¼3

� �
PLE

combination, which is

best for E. coli [58].
In full accordance with the published data on the E.

coli model [58], a significant improvement of the flux
resolution was detected under the COMPLETE-MFA
approach, where all six singly 13C-labeled glucose isoto-
pomers were used separately as tracers in the individual
LEs combined in the PLE (Figure 6: Column 13). Indeed,
the computed value of the normalized flux precision
function for all fluxes was as follows:

Ση 0:95ð Þ 1; 2; 3; 4; 5; 6ð ÞPLE ¼ 45:9 ð11Þ

The flux resolution detected in this PLE was the best
among the above-described resolutions obtained in the
present study. It was clear that this result was obtained
through PLE-mediated 13C-MFA due to the synergy of
complementary information concerning the highly effi-
cient resolution of the set of fluxes from the different
parts of the metabolic model and the dependence of
these sets on the different tracers used in individual LEs.
Performing partial optimization of the experimental de-
sign for individual LEs for further PLE-based 13C-MFA
it seemed probable to improve the flux resolution.
To test this possibility, partial optimization was con-

ducted by searching the minimal linear approximation of
free flux variances in the triangle composed of all possible
mixed tracers, which consisted of the three singly labeled
glucose isotopomers ([1-13C], [3-13C], and [4-13C]) that
previously resulted in the best flux resolution according to
the Ση -based criterion (see Additional file 3: Exp. 9). The
obtained results are presented in Additional file 2: Figure
SF-2.7. The set of minimal free flux variances could be
observed to correspond closely to the corners of the tested
triangle (e.g., for fluxes θ4, θ14, θ22, see Additional file 2:
Figure SF-2.7 (B), (D), and (F), respectively), and three
minima were detected approximately at the middle
positions of the triangle’s sides (for fluxes θ8, θ10, θ26, see
Additional file 2: Figure SF-2.7 (C), (E), and (G), respect-
ively). It was interesting to mention, that all singly labeled
glucose isotopomers used in these calculations could be
considered as “partially optimized” for some free fluxes in
the current metabolic model. According to this partial
optimization, two PLEs were designed. The first consisted
of three LEs with separately applied singly [1-, 3-, or
4-13C] labeled glucose. The second PLE consisted of six
LEs, where, in addition to the three LEs from the previous
PLE, three LEs used the optimized mixed paired combina-
tions of glucose isotopomers. The corresponding PLEs
were simulated, and 13C-MFA was performed, resulting in
solutions of NLLSPs with highly resolved fluxes (Figure 7
(D) and (E)). Concerning the PLE consisting of three LEs
(Figure 8: Column 10), the corresponding value of Ση(0.95)
(1, 3, 4)PLE = 44.6 Additional file 3: (Table SF-3.10) signifi-
cantly exceeded the best parameters obtained for the pairs
of tracers, and was more than earlier obtained for PLEs
from 5LEs with another tracers (see previous item). In
turn, the flux precision obtained in the second PLE
(Figure 8: Column 12) was approximately identical (maybe
even slightly exceeded) to the previously described result
for COMPLETE-MFA performed with six different singly
labeled isotopomers of glucose (Additional file 3:Table
SF-3.10, Figure 8: Column 11):

Ση 0:95ð Þ 6 ⋅ParOpt−mixPLEð Þ ¼ 46:1 ð12Þ

Notably, an exceptionally high flux resolution was
obtained in both PLEs including 6 LEs. For all fluxes,
η0.95(ui) > 0; i.e., the length of the 95% confidence interval
did not exceed the value of the corresponding flux cor-
rected by the scaling factor.

Conclusions
The main aim of the present study was to extend the possi-
bilities of the previously developed open-access OpenFLUX
software for comprehensive 13C-MFA. These extensions in-
cluded (i) fitting the obtained experimental data, not only
in SLEs but also in PLEs, to the assumed metabolic model;
(ii) computing the flux parameters and providing the
goodness-of-fit of the model’s adequacy, followed by an
estimation of the model’s viability and its probable im-
provement; (iii) fine-tunable and convergence-controlled
Monte Carlo-based approach to obtain distribution of op-
timized flux estimations followed by precise computing of
flux confidence intervals; and (iv) conducting general and/
or partial experimental design through searching for the
minimal value to characterize the average confidence
interval length for all free fluxes and/or the minimal linear
approximation of the targeted free flux variances, respect-
ively. The considered examples demonstrated the specific
features of these steps and their concerted essentiality for
obtaining statistically verified results of the described 13C-
MFA provided with the help of OpenFLUX2.
Introducing the normalized flux precision function,

ηγ(ui; β), allowed for the quantitative characterization of
the efficiency of the flux resolution at a confidence level
of γ, with values of η close to “1” or “0” being obtained
for efficiently or poorly resolved fluxes, respectively, de-
pending on β as the scaling parameter, in particular.
Moreover, the sum of η for all of the evaluated fluxes in
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the model, Ση, could be a rather convenient parameter
for conditional comparison of the flux precision achieved
in different experiments, i.e., depending on the tracer(s)
used.
The goodness-of-fit test of the assumed metabolic

model’s adequacy is an essential and extremely important
part of the statistically verified solution of the NLLSP. This
test involved not only obtaining the χ2 -statistically accept-
able value of the Ξ(xinput, xmea, σmea, θ) objective function
but also confirmation of the expectation concerning the
Ν 0; 1ð Þ distribution of its summands. Providing an in-
sufficient goodness-of-fit test could result in mistaken
flux estimations, and the computed contribution matrix
could be helpful for improving the statistical properties
of the obtained solutions. It is desirable to retain the
summands corresponding to the most important mea-
surements if some of the “outstanding” variance-weighted
residuals must be deleted to satisfy the normalization
criterion.
The assumed metabolic model clearly influences the

optimization of the experimental design and, ultimately,
the precision of the flux estimation. Nevertheless, accord-
ing to comparative calculations, the complementary paral-
lel experimental labeling technique for metabolic flux
analysis (COMPLETE-MFA [58]) using a set of different
labeled tracers, e.g., singly 13C-labeled glucose isotopomers
or combinations of mixed labeled tracer(s), chosen accord-
ing to the partial optimization of the targeted fluxes, usu-
ally resulted in better flux precision compared with the
resolution of fluxes computed from SLE data, which were
provided according to a sophisticated general experimental
design strategy. Only one simplified metabolic model, con-
sisting of an L-lysine-producing C. glutamicum strain, was
used for the simulation of experimental data and for com-
prehensive 13C-MFA in the present study; however, the
obtained general conclusions coincided well with the
data reported by other groups working with other models
(e.g., [48,58]).
We hope that the developed OpenFLUX2 open-access

software adjusted for comprehensive 13C-MFA of SLE
and PLE data will help to broaden investigations aimed
at quantitatively estimating the cellular metabolic state
with high precision.
OpenFLUX2 is being released as open-source software.

Regarding the citation of the OpenFLUX2 application, it
is highly recommended that the present paper be cited,
adding that this software is an extended version of the
OpenFLUX open-source software described in [33].

Methods
In silico experiments
Metabolic and isotopomer balance models
The C. glutamicum metabolic model used as an example
included catabolic reactions of the central metabolism,
such as the Embden-Meyerhof-Parnas (EMP) and pentose
phosphate (PP) pathways, the tricarboxylic acid (TCA)
cycle, anaplerotic carboxylation, and the decarboxylation
reaction of oxaloacetate and malate. Moreover, the path-
ways for the biosynthesis and transport of L-lysine and dif-
ferent extracellular co-products (glycine, trehalose, lactate,
and α-ketoglutarate) were included. For glycine synthesis,
two possible pathways, starting from serine and threonine
[75,76], were considered. The glyoxylate bypass (shunt)
was assumed to be inactive [39]. Pools of pyruvate/PEP or
oxaloacetate/malate were lumped, followed by the expres-
sion of reactions catalyzed by PEP/PYR carboxylase or by
PEP carboxykinase/malic enzyme as an irreversible reac-
tion. To achieve accurate accounting of CO2-associated
carbon transfer, the reactions, accompanied by CO2 pro-
duction or consumption, were expressed in an explicit
manner, including an anabolic reaction and a reaction
involving CO2 exchange with environment. Additionally,
the linear consequence of the irreversible reactions was
represented as a single reaction. The forward and reverse
components of a bi-directional reaction were considered
as two non-negative fluxes. The biosynthetic pathways for
the following amino acids were expressed explicitly: (i) the
amino acids whose mass isotopomer distribution (MID) was
assumed to be measured and (ii) the amino acids whose
synthesis was accomplished by CO2 release. In Figure 2,
for simplicity, the amino acid biosynthetic pathways are
expressed schematically as a drain of the precursors to
amino acids. Anabolic demand is represented in a slightly
different manner than in previous studies [33,68]. Specific-
ally, a single biomass equation was designed by presenting
the biomass composition of C. glutamicum [75] as the sum
of the amino acids whose biosynthesis was expressed expli-
citly and the residual amounts of the precursors drained to
produce biomass. The reactions involved in alanine, aspar-
tate, and glutamate synthesis were used to map the MID of
the metabolite onto the MID of the corresponding amino
acid (S-type reactions according OpenFLUX(2) notation),
whereas the anabolic demand to synthesize these amino
acids was considered through precursors. The anabolic de-
mand for lysine included both the lysine used in protein
synthesis and the diaminopimelate used in cell wall synthe-
sis, as previously described [75].
The resulting metabolic model contained 54 reactions

and 36 balanced metabolites. The reactions, which only
map the labeled distribution of the metabolite onto the
corresponding amino acid (e.g., pyruvate to alanine), did
not participate in the stoichiometric balance. Thus, the stoi-
chiometric matrix S, dim(S) = (36 × 51), with 36 balanced
metabolites, 51 unknown fluxes, and r = rank(S) = 36,
was finally generated. As a result, 15 fluxes should be
assigned as free. Seven fluxes were experimentally deter-
mined effluxes, which included biomass biosynthesis
(1 flux), the effluxes of secreted products (5 fluxes), and
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the glucose uptake rate (1 flux). Unless otherwise stated,
these fluxes were considered free fluxes constrained
according to Eq. (S − 1.2.2) with the experimentally deter-
mined parameters Vmea

eff ; σmea
eff ; thus, these fluxes subse-

quently formed the corresponding residuals in the SSRSLE
f

objective scalar-function Eq. (S − 1.3.7), which was sub-
jected to a least-squares minimization procedure. Five free
fluxes were automatically assigned due to their accord-
ance to the reverse reactions: (i) in the non-oxidative
branch of the PP pathway (3 fluxes), (ii) catalyzed by
glucose-6-phosphate isomerase (1 flux), and (iii) for the
carbon dioxide intracellular exchange (1 flux). The three
remaining free fluxes were previously automatically
assigned using OpenFLUX software [33]. There were
fluxes corresponding to irreversible reactions catalyzed by
glucose-6-phosphate dehydrogenase in the PP pathway,
PEP/PYR carboxylase in the PEP-PYR-oxaloacetate node,
and glycine synthesis in the serine-glycine biosynthetic
pathway.
An isotopomer model was automatically built based

on the EMU approach that simulated the MIDs of target
compounds from the known MIDs of input substrates.
The input substrates were specifically labeled glucose
and naturally labeled CO2 (13C isotope abundance of
1.07%). In total, 17 sets of matrix equations of EMU
balances were used to calculate the 107 unknown EMUs
from 15 known EMUs of input substrates. The application
of the EMU approach reduced the number of unknown
variables from 9,138 unknown scalar variables in the
full isotopomer model to 360 scalar MID variables, corre-
sponding to 107 unknown EMUs.

Data used for estimating true flux values in the assumed
model
Initially, the calculation of “true” flux values for the as-
sumed metabolic model was performed using experimental
data on effluxes and MIDs, together with their variances,
available from the literature [33,68]. The published labeling
patterns of the proteinogenic amino acids were determined
due to GC-MS-mediated selective ion monitoring of se-
lected ion clusters, representing [M-57] fragments with
the complete carbon skeletons of the amino acids. The
simulated MIDs of a compound with n carbon backbone
atoms was represented by a mass distribution column
vector (MDV), whose elements corresponded to the
fractional abundances (xm0þi) of mass isotopomer m0 + i

(i = 1, 2, …, n), with
Xn
i¼0

xm0þi ¼ 1, where m0 is the mo-

lecular weight of an unlabeled compound. As the pub-
lished MIDs were uncorrected in accordance with the
natural mass isotopomer abundance, all the simulated
EMU variables were modified for mass interference
from non-carbon backbone isotopes in dependence on
the chemical structure of the derivatized substance ac-
cording to the method developed in [77]. Then for each
fragment, the first (n + 1) simulated mass isotopomers
(m0,m1,…,mn) were normalized to unit followed by trun-
cation of the isotopomers number to the dimension of the
xmea
MID vector before performing least-square analysis. The

measured MIDs dim xmea
MID

� � ¼ 3� 1ð Þ , i.e., only (m0,m1,
m2) were presented for derivatized mass isotopomers frag-
ments of Ala-260, Val-288, Thr-404, Asp-418, Glu-432,
Ser-390, Phe-336, Tyr-466, Tre (trehalose)-361 isotopo-
mers, and MIDs dim xmea

MID

� � ¼ 2� 1ð Þ , for (m0,m1) of
Gly-246. At the same time, an extremely small MID
variance of 0.15% for mass isotopomer fractional abun-
dances was indicated in [68] and accepted in [33], which
ultimately led to rather large and statistically non-
acceptable values of the objective function, i.e., the
variance-weighted sum of squared residuals, calculated

at the point of convergence (Ξð⌢θÞ≡2⋅SSRSLE
f ð⌢θÞ, according

to the notations of the present publication (see Additional
file 1: SF-1.3.). These MID variances were assumed to
be significantly underestimated. Indeed, the minimal
published GC-MS measurement errors are usually ap-
proximately 0.2-0.4 mol% [78], and values of this magni-
tude have been used for variance weighting in studies
where 13C-MFA has been applied [53,58,79]. To achieve
statistically acceptable model fitting for the MIDs mea-
sured in [68] and to demonstrate all of the essential
stages of the statistical analysis of the solution to the con-
strained NLLSP provided by the designed OpenFLUX2
software, the MID variances were assumed to be equal
to 0.15 mol% for mass isotopomer fractional abundances
(instead of 0.15%, as in [68]).
Generation of new “experimental data”
To generate new “experimental data” for in silico LEs, the
OpenFLUX(2) forward simulation option was used, which
calculated the MIDs of selected EMU variables from the
assumed metabolic and isotopomer networks as well as
the known label states of input substrates (13C-tracer(s))
and the assumed values of the fluxes. Unless otherwise
stated, the true flux values, utrue(θtrue), were used for direct
“experimental” data simulation in the present study. An
isotopic purity of 99% was assumed for all of the specific-
ally labeled carbons in the input substrates, and natural
enrichment (1.07%) was assumed for other carbons. Again,
the simulated MIDs of a substance with n carbon back-
bone atoms were represented by MDV with (n + 1) ele-

ments, xm0þi; i¼1; 2; …; n
Xn
i¼0

xm0þi ¼ 1. The natural

mass isotopomer abundance of non-carbon-backbone
atoms was generated according to the method [77] that
resulted in significant increasing of the elements number
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in MDV for each tested substance, but OpenFLUX2 auto-
matically truncated these mass isotopomers up to the first
(n + 1) (with or without their normalization according to
the user’s choice) (Additional file 3: Table SF-3.2). Then,
mass isotopomer fractional abundances of lower than 0.04
(i.e., ≤ 4 mol%) from the total of 1 (i.e., 100 mol%) for each
derivatized fragment were excluded from the set of simu-
lated “experimental data,” thus modeling the limited sensi-
tivity of the MS equipment. It is important to mention,
that this procedure of the experimental data generation re-
sulted in dependence of xmea

MID vector dimension for each
“measured” substance not only on its specific number of
carbon backbone atoms, but on the different 13C-labeled
tracers used in the simulated experiments. At the final
stage of “experimental” MID generation, mass isotopomer
fractional abundances were corrupted with N 0; σmea

MID

� �
distributed noise, where σmea

MID

� �
i ¼ 0:4 mol%½ �; i ¼ 1; 2;…;

wMID . As a result, a set of non-normalized, noisy MS
“experimental data,” mmea

MID , that were corrected for the
presence of natural isotopes, was generated for each
LE according to the described procedure.
Another type of “experimental data” used during the

in silico experiments was measured effluxes, Vmea
eff . To

generate these data, the “true” value of each efflux was
corrupted with noise distributed as Nð0; fσmea

eff g
j
Þ, where

fσmea
eff g

j
was the experimentally determined standard devi-

ation for each j-th efflux [68]. As a result, the full set of

the “experimental data,” mmea ¼ mmea
MID

Vmea
eff

	 

, was generated

for the in silico-simulated LE.
Flux estimation and statistical analysis
Flux estimation, identifiability, and goodness-of-fit ana-
lyses were performed using OpenFLUX2 software. To de-
termine the global minimum of the constrained NLLSP, as
a rule, 100 independent iterative trials, starting from ran-
domly selected points from a feasible constrained domain
in the free flux variation space, ℜp, were applied. In special
cases, e.g., when the minimal value of the Ξ function was
achieved in only a few trials, the number of iterative trials
was increased to 300 to verify the detected global minimum.
Only those iterative trials were used for analysis, which were
terminated by satisfaction of the termination criteria with-
out constraint violation (see Additional file 1: SF-1.3.).
Monte Carlo-based approach included previously in

OpenFLUX, but significantly modified in the OpenFLUX2
software for convenience of the computation process tuning
and control of convergence, was used for estimation of the
flux confidence intervals. Usually the most reliable results
could be obtained if the variant when “multi runs per trials”
approach was chosen for estimation of the optimized flux
parameter distributions followed by determination of flux
confidence interval borders according to “discarding”
strategy after confirmation of the borders convergence
(see Additional file 1: SF-1.7. for details).

Software requirements
OpenFLUX2 (http://sourceforge.net/projects/openflux2)
requires Java and MATLAB, including the Optimization
and Statistics Toolboxes. The current version of the
OpenFLUX2 software was tested using Java 6 (Sun Micro-
systems, Inc., Santa Clara, CA, USA) and MATLAB 7.12.0
(R2011a; MathWorks Inc., Natick, MA, USA) software,
together with the Optimization Toolbox (version 6.0) and
the Statistics Toolbox (version 7.5), on the Microsoft
Windows 7 Professional (2009; Microsoft Corp, Redmond,
WA, USA) platform on a PC equipped with a 3.2 GHz
CPU and 4 Gb of RAM. Using these computation facil-
ities, the calculation of 51 fluxes for the applied metabolic
model (see Methods) requires approximately 20 minutes
and 2 hours for SLEs and a PLE consisting of 5 LEs, re-
spectively. The confidence interval estimations for the 51
optimized fluxes using the Monte Carlo approach (see
Methods) takes approximately 30–70 and 60–120 hours
for the SLEs and the PLE noted above, respectively. The
computation time significantly depends on the used tun-
able control parameters and linearly depends on the num-
ber of the provided trials. In general, the flux estimation
and its statistical analysis via OpenFLUX2 can be per-
formed within one to four days, depending on the type of
LE. OpenFLUX2 was also tested on the Microsoft Win-
dows XP (Professional × 64 edition, 2003; Microsoft Corp,
Redmond, WA, USA) platform. The following additional
software packages were used: Windows Microsoft Excel
2003 (Microsoft Corp, Redmond, WA, USA) for metabolic
model formulation and for the generation of Additional file 3
and OriginPro 9.1 (Originlab Corp, Northampton, MA,
USA) for the generation of ternary plots, and box charts.
Furthermore, several in-house MATLAB scripts were
employed to generate “experimental data” and to visualize
data related to the NLLSP solving process.
Additional files

Additional file 1: General description of 13C-MFA steps performed by
OpenFLUX2. The PDF-format file contains the schematic description of
the mathematical and statistical approaches used for comprehensive
metabolic flux analysis via OpenFLUX2 software.

Additional file 2: Additional figures illustrated results of performed in
silico LEs. The PDF-format file contains additional illustrations of the in
silico experimental results, denoted as Figure SF-2.x in the text.

Additional file 3: C. glutamicum metabolic model. The XLS- format file
includes the C. glutamicum metabolic model in a format that is readable by
OpenFLUX(2); the “experimental data” (MIDs and efflux measurements with
their errors) used in the in silico experiments; the main results of the in silico
experiments, including the estimated optimal flux values, confidence
intervals and normalized flux precision function values; and the results of
the “general” and “partial” optimization of the experimental design.

http://sourceforge.net/projects/openflux2
http://www.microbialcellfactories.com/content/supplementary/s12934-014-0152-x-s1.pdf
http://www.microbialcellfactories.com/content/supplementary/s12934-014-0152-x-s2.pdf
http://www.microbialcellfactories.com/content/supplementary/s12934-014-0152-x-s3.xls
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